
Z. Q. WANG, J. NAVARRETE
140
Sieve Materials and Their Use in Catalysis,” Chemical
Reviews, Vol. 97, No. 6, 1997, pp. 2373-2420.
doi:10.1021/cr960406n
[3] K. M. Reddy and C. Song, “From Microporous to
Mesoporous Molecular Sieve Materials and Their Use in
Catalysis,” Catalysis Today, Vol. 31, No. 1-2, 1996, pp.
137-144. doi:10.1016/0920-5861(96)00030-2
[4] P. Serrano, J. Aguado and J. M. Escola, “Catalytic
Cracking of a Polyolefin Mixture over Different Acid
Solid Catalysts,” Industrial & Engineering Chemistry Re-
search, Vol. 39, No. 5, 2000, pp. 1177-1184.
doi:10.1021/ie9906363
[5] A. Ghanbari-Siahkali, A. Philippou, J. Dwyer and M. W.
Anderson, “The Acidity and Catalytic Activity of Heteropoly
Acid on MCM-41 Investigated by MAS NMR, FTIR and
Catalytic Tests,” Applied Catalysis A: General, Vol. 192,
No. 1, 2000, pp. 57-69.
doi:10.1016/S0926-860X(99)00333-6
[6] Y. Zhao, S. L. Qiu, Y. Tang and C. Z. Yu, “Recent
Progress in Mesostuctured Materials,” Studies in Surface
Science and Catalysis ,Vol. 165, No. 65, 2007, pp. 1-920.
[7] V. Alfredsson and M. W. Anderson, “Structure of MCM-
48 Revealed by Transmission Electron Microscopy,”
Chemistry of Materials, Vol. 8, No. 5, 1996, pp. 1141-
1146. doi:10.1021/cm950568k
[8] T. J. V. Yates, J. M. Thomas, J.-J. Fernandez, O. Terasaki,
R. Ryoo and P. A. Midgley, “Three-Dimensional Real-
Space Crystallography of MCM-48 Mesoporous Silica
Revealed by Scanning Transmission Electron Tomogra-
phy,” Chemical Physics Letters, Vol. 418, No. 4-6, 2006,
pp. 540-543.
[9] J. M. Kim and R. Ryoo, “Synthesis of MCM-48 Single
Crystals,” Chemical Communications, Vol. 7, No. 2, 1998,
pp. 259-560.
[10] T. S. Jiang, D. L. Wu, J. N. Song, X. P. Zhou, Q. Zhao, M.
R. Ji and H. B. Yin, “Synthesis and Characterization of
Zr-MCM-48 with Good Thermal and Hydrothermal
Stability,” Powder Technology, Vol. 207, No. 1-3, 2011,
pp. 422-427. doi:10.1016/j.powtec.2010.11.030
[11] W. C. Zhan, Y. L. Guo, Y. Q. Wang, X. H. Liu, Y. Guo,
Y. S. Wang, Z. G. Zhang and G. Z. Lu, Synthesis of
Lanthanum-Doped MCM-48 Molecular Sieves and Its
Catalytic Performance for the Oxidation of Styrene,” The
Journal of Physical Chemistry B, Vol. 111, No. 42, 2007,
pp. 12103-12110. doi:10.1021/jp074521l
[12] Y. F. Shao, L. Z. Wang, J. L. Zhang and M. Anpo,
“Synthesis of Hydrothermally Stable and Long-Range
Ordered Ce-MCM-48 and Fe-MCM-48 Materials,” The
Journal of Physical Chemistry B, Vol. 109, No. 44, 2005,
pp. 20835-20841. doi:10.1021/jp054024+
[13] S. Gómez, O. Giraldo, L. J. Garcés, J. Villegas and S. L.
Suib, “New Synthetic Route for the Incorporation of
Manganese Species into the Pores of MCM-48,”
Chemistry of Materials, Vol. 16, No. 12, 2004, pp.
2411-2417.
[14] S. Yuan, L. Y. Shi, K. Mori and H. Yamashita,
“Synthesis of Ti-Containing MCM-48 by Using TiF4 as
Titanium Source,” Materials Letters, Vol. 62, No. 17-18,
2008, pp. 3028-3030. doi:10.1016/j.matlet.2008.01.100
[15] U. S. Taralkar, P. Kalita, R. Kumar and P. N. Joshi,
“Synthesis, Characterization and Catalytic Performance
of Sn-MCM-48 in Solvent-Free Mukaiyama-Type Aldol
Condensation Reactions,” Applied Catalysis A: General,
Vol. 358, No. 1, 2009, pp. 88-94.
doi:10.1016/j.apcata.2009.02.001
[16] X. L. Yang, W. L. Dai, R. H. Gao, H. Chen, H. X. Li, Y.
Cao, K. N. Fan, “Synthesis, Characterization and Catalytic
Application of Mesoporous W-MCM-48 for the Selective
Oxidation of Cyclopentene to Glutaraldehyde,” Journal
of Molecular Catalysis A: Chemical, Vol. 241, No. 1-2,
2005, pp. 205-214. doi:10.1016/j.molcata.2005.07.025
[17] M. L. Peña, A. Dejoz, V. Fornés, F. Rey, M. I. Vázquez
and J. M. López Nieto, “V-Containing MCM-41 and
MCM-48 Catalysts for the Selective Oxidation of Pro-
pane in Gas Phase,” Applied Catalysis A: General, Vol.
209, No. 1-2, 2001, pp. 155-164.
doi:10.1016/S0926-860X(00)00761-4
[18] M. Hartmann, S. Racouchot, C. Bischof, M. Hartmann, S.
Racouchot and C. Bischof, “Characterization of Copper
and Zinc Containing MCM-41 and MCM-48 Mesoporous
Molecular Sieves by Temperature Programmed Reduction
and Carbon Monoxide Adsorption,” Microporous and
Mesoporous Materials, Vol. 27, No. 2-3, 1999, pp. 309-
320. doi:10.1016/S1387-1811(98)00264-9
[19] M. L. Guzmán-Castillo, H. Armendáriz-Herrera, A.
Tobón-Cervantes, D. R. Acosta, P. Salas-Castillo, A.
Montoya de la Funte and A. Vázquez-Rodriguez, “The
Effect of Sulfate Ion on the Synthesis and Stability of
Mesoporous Materials,” Studies in Surface Science and
Catalysis, Vol. 142, 2002, pp. 1039-1046.
doi:10.1016/S0167-2991(02)80261-0
[20] C.-L. Chen, H.-P. Lin, S.-T. Wong and C.-Y. Mou, “Sul-
fated Zirconia Catalyst Supported on MCM-41 Mesopor-
ous Molecular Sieve,” Applied Catalysis A: General, Vol.
215, No. 1-2, 2001, pp. 21-30.
doi:10.1016/S0926-860X(01)00504-X
[21] S. Choi, Y. Wang, Z. Nie, J. Liu and C. H. F. Peden,
“Cs-Substituted Tungstophosphoric Acid Salt Supported
on Mesoporous Silica,” Catalysis Today, Vol. 55, No. 1-2,
2000, pp. 117-124. doi:10.1016/S0920-5861(99)00231-X
[22] P. Salas, L. F. Chen, J. A. Wang, H. Armendáriz, M. L.
Guzman, J. A. Montoya and D. R. Acosta, “Thermal
Stability and Surface Acidity of Mesoporous Silica
Doubly Doped by Incorporation of Sulfate and Zirconium
Ions,” Ap plied Surf ace Science, Vol. 252, No. 4, 2005, pp.
1124-1132. doi:10.1016/j.apsusc.2005.02.032
[23] J. A. Wang, L. F. Chen, L. E. Noreña, J. Navarrete, M. E.
Llanos, J. L. Contreras and O. Novaro, “Mesoporous
Structure, Surface Acidity and Catalytic Properties of the
Pt/Zr-MCM-41 Catalysts Promoted by 12-Tungstopho-
sphoric Acid,” Microporous and Mesoporous Materials,
Vol. 112, No. 1-3, 2008, pp. 61-76.
doi:10.1016/j.micromeso.2007.09.015
[24] C. A. Emeis, “Determination of Integrated Molar Ex-
tinction Coefficients for Infrared Absorption Bands of
Pyridine Adsorbed on Solid Acid Catalysts,” Journal of
Catalysis, Vol. 141, No. 2, 1993, pp. 347-354.
doi:10.1006/jcat.1993.1145
[25] T. Barzzetti, E. Selli, D. Moscotti and L. Forni, “Pyridine
Copyright © 2012 SciRes. WJNSE