A Hybrid Clonal Selection for the Single Row Facility Layout Problem with Unequal Dimensions 221

Space Allocation,” Operations Research, Vol. 19, No. 1,

1971, p. 249. doi:10.1287/opre.19.1.249

[8] R. M. Karp and M. Held, “Finite-State Processes and Dy-

namic Programming,” SIAM Journal of Applied Mathe-

matics, Vol. 15, No. 3, 1967, pp. 693-718.

[9] J. C. Picard and M. Queyranne, “On the One-Dimensional

Space Allocation Problem,” Operations Research, Vol.

29, No. 2, 1981, pp. 371-391. doi:10.1287/opre.29.2.371

[10] S. S. Heragu and A. Kusiak, “Efficient Models for the

Facility Layout Problem,” European Journal of Opera-

tional Rese arch, Vol. 53, No. 1, 1991, pp. 1-13.

[11] R. F. Love and J. Y. Wong, “On Solving a One-Dimen-

sional Space Allocation Problem with Integer Program-

ming,” INFOR, Vol. 14, 1976, pp. 139-143.

[12] A. R. S. Amaral, “On the Exact Solution of a Facility

Layout Problem,” European Journal of Operational Re-

search, Vol. 173, No. 2, 2006, pp. 508-518.

[13] A. R. S. Amaral, “An Exact Approach for the One-Di-

mensional Facility Layout Problem,” Operations Re-

search, Vol. 56, No. 4, 2008, pp. 1026-1033.

doi:10.1287/opre.1080.0548

[14] A. Amaral, “A New Lower Bound for the Single Row

Facility Layout Problem,” Discrete Applied Mathematics,

Vol. 157, No. 1, 2009, pp. 183-190.

doi:10.1016/j.dam.2008.06.002

[15] G. Suresh and S. Sahu, “Multiobjective Facility Layout

Using Simulated Annealing,” Internati onal Journal of Pro-

duction Economics, Vol. 32, No. 2, 1993, pp. 239-254.

doi:10.1016/0925-5273(93)90071-R

[16] F. Neghabat, “An Efficient Equipment Layout Algorithm,”

Operations Research, Vol. 22, No. 3, 1974, pp. 622-628.

doi:10.1287/opre.22.3.622

[17] Z. Drezner, “A Heuristic Procedure for the Layout of a

Large Number of Facilities,” Management Science, Vol. 7,

No. 33, 1987, pp. 907-915. doi:10.1287/mnsc.33.7.907

[18] S. S. Heragu and A. S. Alfa, “Experimental Analysis of

Simulated Annealing Based Algorithms for the Facility

Layout Problem,” European Journal of Operational Re-

search, Vol. 57, No. 2, 1992, pp. 190-202.

doi:10.1016/0377-2217(92)90042-8

[19] K. R. Kumar, G. C. Hadjinicola and T. L. Lin, “A Heuristic

Procedure for the Single Row Facility Layout Problem,”

European Journal of Operational Research, Vol. 87, No.

1, 1995, pp. 65-73. doi:10.1016/0377-2217(94)00062-H

[20] M. Braglia, “Optimization of a Simulated-Annealing-

Based Heuristic for Single Row Machine Layout Problem

by Genetic Algorithm,” International Transactions in Op-

erational Research, Vol. 1, No. 3, 1996, pp. 37-49.

doi:10.1111/j.1475-3995.1996.tb00034.x

[21] M. Solimanpur, P. Vrat and R. Shankar, “An Ant Algo-

rithm for the Single Row Layout Problem in Flexible Ma-

nufacturing Systems,” Computers & Operations Research,

Vol. 32, No. 3, 2005, pp. 583-598.

doi:10.1016/j.cor.2003.08.005

[22] M. F. Anjos and A. Vannelli, “Computing Globally Opti-

mal Solutions for Single-Row Layout Problems Using Se-

midefinite Programming and Cutting Planes,” INFORMS

Journal on Computing, Vol. 20, No. 4, 2008, pp. 611-617.

doi:10.1287/ijoc.1080.0270

[23] M. F. Anjos and C. Kong, “FLP Database,” 2007.

http://flplib.uwaterloo.ca

[24] P. Hungerlander and F. Rendl, “A Computational Study

for the Single-Row Facility Layout Problem,” 2011.

http://www.optimization-nline.org/DBFILE/2011/05/302

9.pdf

[25] M. F. Anjos, A. Kennings and A. Vannelli, “A Semidefi-

nite Optimization Approach for the Single-Row Layout

Problem with Unequal Dimensions,” Discrete Optimiza-

tion, Vol. 2, No. 2, 2005, pp. 113-122.

doi:10.1016/j.disopt.2005.03.001

[26] S. Kumar, et al., “Scatter Search Algorithm for Single

Row Layout Problem in FMS,” Advances in Production

Engineering and Management, Vol. 3, No. 4, 2008, pp.

193-204.

[27] Y. T. Teo and S. G. Ponnambalam, “A Hybrid ACO/PSO

Heuristic to Solve Single Row Layout Problem,” 4th IEEE

Conference on Automation Science and Engineering,

Washington DC, 23-26 August 2008.

[28] M. T. Lin, “The Single-Row Machine Layout Problem in

Apparel Manufacturing by Hierarchical Order-Based Ge-

netic Algorithm,” International Journal of Clothing Sci-

ence and Technology, Vol. 21, No. 1, 2009, pp. 31-43.

doi:10.1108/09556220910923737

[29] H. Samarghandi and K. Eshghi, “An Efficient Tabu Algo-

rithm for the Single Row Facility Layout Problem,” Euro-

pean Journal of Operational Research, Vol. 205, No. 1,

2010, pp. 98-105. doi:10.1016/j.ejor.2009.11.034

[30] D. Datta, A. R. Amaral and J. R. Figueira, “Single Row

Facility Layout Problem Using a Permutation-Based Ge-

netic Algorithm,” European Journal of Operational Re-

search, Vol. 213, No. 2, 2011, pp. 388-394.

[31] D. Dasgupta, “An Overview of Artificial Immune Sys-

tems and Their Applications,” In: D. Dasgupta, Ed., Arti-

ficial Immune Systems and Their Applications, Springer-

Verlag, Berlin, 1998, pp. 3-18.

[32] O. Engin and A. Doyen, “Artificial Immune Systems and

Applications in Industrial Problems,” Gazi Unive rsity Jour-

nal of Science, Vol. 17, No. 1, 2004, pp. 71-84.

[33] X. Wang, “Clonal Selection Algorithm in Power Filter

Optimization,” Proceedings of the IEEE Mid-Summer

Workshop on Soft Computing in Industrial Applications,

Espoo, 28-30 June 2005, pp. 122-127.

[34] S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, “Opti-

mization by Simulated Annealing,” Science, Vol. 220, No.

4598, 1983, pp. 671-680.

Copyright © 2012 SciRes. IB