R. HOSHINA, Y. FUJIWARA
232
netic Evidence of ‘American’ and ‘European’ Type Sym-
biotic Algae of Paramecium bursaria Ehrenberg,” Plant
Biology, Vol. 7, No. 5, 2005, pp. 526-532.
doi:10.1055/s-2005-865912
[7] K. V. Kvitko, A. V. Migunova, D. V. Karelov and M. Ju.
Prokosheva, “Molecular Taxonomy of Virus-Sensitive
Chlorella sp.—Symbionts of Paramecium bursaria,” Pro-
tistology, Vol. 2, 2001, pp. 96-104.
[8] B. Linz, A. Linz, A. V. Migunova and K. V. Kvitko,
“Correlation between Virus-Sensitivity and Isoenzyme
Spectrum in Symbiotic Chlorella-Like Algae,” Protistol-
ogy, Vol. 1, 1999, pp. 76-81.
[9] T. Pröschold, T. Darienko, P. C. Silva, W. Reisser and L.
Krienitz, “The Systematics of Zoochlorella Revisited
Employing an Integrative Approach,” Environmental Mi-
crobiology, Vol. 13, No. 2, 2011, pp. 350-364.
doi:10.1111/j.1462-2920.2010.02333.x
[10] M. Summerer, B. Sonntag and R. Sommaruga, “Ciliate-
symbiont Specificity of Freshwater Endosymbiotic Chlor-
ella (Trebouxiophyceae, Chlorophyta),” Journal of Phy-
cology, Vol. 44, No. 1, 2008, pp. 77-84.
doi:10.1111/j.1529-8817.2007.00455.x
[11] K. Vorobyev, E. Andronov and M. Rautian, et al., “An
Atypical Chlorella Symbiont from Paramecium bur-
saria,” Protistology, Vol. 6, 2009, pp. 39-44.
[12] A. E. Douglas and V. A. R. Huss, “On the Characteristics
and Taxonomic Position of Symbiotic Chlorella,” Ar-
chives of Microbiology, Vol. 145, No. 1, 1986, pp. 80-84.
doi:10.1007/BF00413031
[13] S. Kamako, R. Hoshina, S. Ueno and N. Imamura, “Es-
tablishment of Axenic Endosymbiotic Strains of Japanese
Paramecium bursaria and the Utilization of Carbohydrate
and Nitrogen Compounds by the Isolated Algae,” Euro-
pean Journal of Protistology, Vol. 41, No. 3, 2005, pp.
193-202. doi:10.1016/j.ejop.2005.04.001
[14] J. L. Van Etten, “Unusual Life Style of Giant Chlorella
Viruses,” Annual Review of Genetics, Vol. 37, 2003, pp.
153-195. doi:10.1146/annurev.genet.37.110801.143915
[15] J. L. Van Etten, L. C. Lane and R. H. Meints, “Viruses
and Viruslike Particles of Eukaryotic Algae,” Microbi-
ological Reviews, Vol. 55, 1991, pp. 586-620.
[16] T. Yamada, H. Onimatsu and J. L. Van Etten, “Chlorella
Viruses,” Advances in Virus Research, Vol. 66, 2006, pp.
293-336. doi:10.1016/S0065-3527(06)66006-5
[17] R. W. Siegel, “Hereditary Endosymbiosis in Paramecium
bursaria,” Experimental Cell Research, Vol. 19, No. 2,
1960, pp. 239-252. doi:10.1016/0014-4827(60)90005-7
[18] T. R. Cech, “Ribozymes, the First 20 Years (Ribozyme
Mechanisms and Folding),” Biochemical Society Trans-
actions, Vol. 30, 2002, pp. 1162-1166.
doi:10.1042/BST0301162
[19] P. Haugen, D. M. Simon and D. Bhattacharya, “The
Natural History of Group I Introns,” Trends in Genetics,
Vol. 21, No. 2, 2005, pp. 111-119.
doi:10.1016/j.tig.2004.12.007
[20] J. J. Cannone, S. Subramanian, M. N. Schnare, et al.,
“The Comparative RNA Web (CRW) Site: An Online
Database of Comparative Sequence and Structure Infor-
mation for Ribosomal, Intron, and Other RNAs,” BMC
Bioinformatics, Vol. 3, 2002, p. 2.
doi:10.1186/1471-2105-3-2
[21] R. Hoshina and N. Imamura, “Eu-Chlorella Large Sub-
unit rDNA Sequences and Group I Introns in Ribosomal
DNA of the Paramecian Symbiotic Alga NC64A,” Phy-
cological Research, Vol. 56, No. 1, 2008, pp. 21-32.
doi:10.1111/j.1440-1835.2008.00481.x
[22] R. Hoshina and N. Imamura, “Phylogenetically Close
Group I Introns with Different Positions among Parame-
cium bursaria Photobionts Imply a Primitive Stage of In-
tron Diversification,” Molecular Biology and Evolution,
Vol. 26, No. 6, 2009, pp. 1309-1319.
doi:10.1093/molbev/msp044
[23] Z. Li and Y. Zhang, “Prediction the Secondary Structures
and Tertiary Interaction of 211 Group I Inrons in IE Sub-
group,” Nucleic Acid Research, Vol. 33, No. 7, 2005, pp.
2118-2128. doi:10.1093/nar/gki517
[24] D. Bhattacharya, T. Friedland and S. Damberger, “Nu-
clear-Encoded rDNA Group I Introns: Origin and Phy-
logenetic Relationships of Insertion Site Lineages in the
Green Algae,” Molecular Biology and Evolution, Vol. 13,
No. 7, 1996, pp. 978-989.
doi:10.1093/oxfordjournals.molbev.a025666
[25] T. Friedl, A. Besendahl, P. Pfeiffer and D. Bhattacharya,
“The Distribution of Group I Introns in Lichen Algae
Suggests That Lichenization Facilitates Intron Lateral
Transfer,” Molecular Phylogenetics and Evolution, Vol.
14, No. 3, 2000, pp. 342-352.
doi:10.1006/mpev.1999.0711
[26] H. Hosoya, K. Kimura, S. Matsuda et al., “Symbiotic
Algae-Free Strains of Green Paramecium Paramecium
bursaria Produced by Herbicide Paraquat,” Zoological
Science, Vol. 12, No. 6, 1995, pp. 807-810.
doi:10.2108/zsj.12.807
[27] T. Nakayama, S. Watanabe, K. Mitsui, H. Uchida and I.
Inouye, “The Phylogenetic Relationship between the
Chlamydomonadales and Chlorococcales Inferred from
18S rDNA Sequence Data,” Phycological Research, Vol.
44, 1996, pp. 47-55.
doi:10.1111/j.1440-1835.1996.tb00037.x
[28] R. Hoshina, S. Hayashi and N. Imamura, “Intraspecific
Genetic Divergence of Paramecium bursaria and Re-
Construction of Paramecian Phylogenetic Tree,” Acta
Protozoologica, Vol. 45, 2006, pp. 377-386.
[29] M. Nakahara, S. Handa, S. Watanabe and H. Deguchi,
“Choricystis minor as a New Symbiont of Simultaneous
Two-Species Association with Paramecium bursaria and
Implications for Its Phylogeny,” Symbiosis, Vol. 36, 2004,
pp. 127-151.
[30] Y. Kodama and M. Fujishima, “Localization of Perialgal
Vacuoles beneath the Host Cell Surface Is Not a Prereq-
uisite Phenomenon for Protection from the Host’s Ly-
sosomal Fusion in the Ciliate Paramecium bursaria,”
Protist, Vol. 160, No. 2, 2009, pp. 319-329.
doi:10.1016/j.protis.2008.11.003
[31] R. Hoshina and N. Imamura, “Origins of Algal Symbionts
of Paramecium bursaria,” In: M. Fujishima, Ed., Endo-
symbionts in Paramecium, Springer-Verlag, Berlin Hei-
Copyright © 2012 SciRes. AiM