Q. NASIR
578
actions on Acoustics, S
32, No. 2, 1984, pp. 304-337.
peech and Signal Processing, Vol.
doi:10.1109/TASSP.1984.1164334
[8] J. M. Cioffi and T. Kailath, “Windowed Fast Transversal
Filters Adaptive Algorithms with Normalization,” IEEE
Transactions on Acoustics, Speech and Signal Processing,
Vol. 33, No. 3, 1985, pp. 607-625.
doi:10.1109/TASSP.1985.1164585
[9] G. Carayannis, D. Manolakis and N. Kalouptsidis, “A Fast
Sequential Algorithm for Least Squares Filtering and Pre-
diction,” IEEE Transactions on Acoustics, Speech and
Signal Processing, Vol. 31, No. 6, 1983, pp. 1394-1402.
doi:10.1109/TASSP.1983.1164224
[10] M. Arezki, A. Benallal, A. Guessoum and D. Berkani, “Im-
provement of the Simplified FTF-Type Algorithm,” Jour-
nal of Computer Science, Vol. 5, No. 5, 2009, pp. 347-
354.
[11] J. M. Cioffi, “Limited Precision Effect in Adaptive Fil-
ransactions on Circuits and Systems, Vol.
pp. 1097-1100.
tering,” IEEE T
34, No. 7, 1987,
doi:10.1109/TCS.1987.1086209
[12] Y. H. Wang, K. Ikeda and K. Nakayama, “A Numerically
Stable Fast Newton-Type Adaptive Filter Based on Order
Recursive Least Squares Algorithm,” IEEE Transactions
on Signal Processing, Vol. 51, No. 9, 2003, pp. 2357-
2368. doi:10.1109/TSP.2003.815357
[13] J. L. Botto and G. V. Moustakides, “Stabilization of Fast
RLS Transversal Filters,” Institute de Recherche en In-
formatique et en Automatique, Paris, 1986.
[14] D. T. M. Slock and T. Kailath, “Numerically Stable Fast
Recursive Least-Squares Transversal Filters,” Proceed-
ings of International Conference on Acoustics, Speech,
and Signal Processing, New York, 11-14 April 1988, pp.
,
1365-1368.
[15] A. P. Clark anl Estimation for an
HF Radio Link,”
d S. Hariharan, “Channe
IEEE Transactions on Communications
Vol. 37, No. 9, 1989, pp. 213-218. doi:10.1109/26.35371
[16] Q. Nasir, “Predictive LMS for Mobile Channel Tra
0
ck-
ing,” Journal of Applied Sciences, Vol. 5, No. 2, 2005, pp.
337-340. doi:10.3923/jas.2005.337.34
C. F. N. Cowan, “Equali-
zation of Time-Variant Communications Channels via
Adaptive Algorithms
nments,” IEEE Tran-
[17] T. Shimamura, S. Semnani and
Channel Estimation Based Approaches,” Signal Process-
ing, Vol. 60, No. 2, 1997, pp. 181-193.
[18] S. Gazor, “Prediction in LMS-Type
for Smoothly Time Varying Enviro
sactions on Signal Processing, Vol. 47, No. 6, 1999, pp.
1735-1739. doi:10.1109/78.765152
[19] A. P. Clark, “Channel Estimation for an HF Radio Link,”
IEEE Proceedings of Communicatio
Processing, Vol. 128, No. 1, 1981, p
ns, Radar and Signal
p. 33-42.
[20] W. C. Jakes, “Microwave Mobile Communication,” Wiley,
New York, 1974.
[21] S. M. Kuo and L. Chen, “Stabilization and Implementa-
tion of the Fast Transversal Filter,” Proceedings of the
32nd Midwest Symposium on Circuits and Systems, Cham-
paign, 14-16 August 1989, pp. 1139-1142.
[22] D. Lin, “On Digital Implementation of the Fast Kalman
Algorithms,” IEEE Transactions on Acoustics, Speech
and Signal Processing, Vol. 32, No. 5, 1984, pp. 998-
1005. doi:10.1109/TASSP.1984.1164427
[23] E. Eleftheriou and D. Falconer, “Restart Methods for
Stabilizing FRLS Adaptive Equa
HF Transmission,” IEEE Globa
lizer Filters in Digital
l Communications Con-
ference, Atlanta, 26-29 November 1984.
[24] J. K. Soh and S. C. Douglas, “Analysis of the Stabilized
FTF Algorithm with Leakage Correction,” Conference Re-
cord of the Thirtieth Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, 3-6 November
1996, pp. 1088-1092. doi:10.1109/97.388912
[25] S. Binde, “A Numerically Stable Fast Transversal Filter
with Leakage Correction,” IEEE Signal Processing Let-
ters, Vol. 2, No. 6, 1995, pp. 114-116.
[26] N. Morrison, “Introduction to Sequential Smoothing and
Prediction,” McGraw Hill, Boston, 1969.
[27] E. Brookner, Tacking and Kalman Filtering Made Easy,”
John Wiley and Sons Inc., Hoboken, 1998.
doi:10.1002/0471224197
Copyright © 2012 SciRes. IJCNS