Analyses and Modeling of Laminar Flow in Pipes Using Numerical Approach
Copyright © 2012 SciRes. JSEA
658
sonville, 10-14 August 2008.
[2] A. Nouri-Broujerdi and M. Ziaei-Rad, “Simulation of
Compressible Pipe Flow under Different Thermal Condi-
tions,” 2007 ASME-JSME Thermal Engineering Summer
Heat Transfer Conference, Vancouver, 8-12 July 2007.
[3] A. Nouri-Borujerdi and M. Layeghi, “A Numerical
Analysis of Vapor Flow in Concentric Annular Heat
Pipes,” Transactions of the ASME, Journal of Fluids En-
gineering, Vol. 126, 2004, pp. 442-448.
doi:10.1115/1.1760549
[4] V. M. Soundalgekar and V. G. Divekar, “Laminar Slip-
Flow through a Uniform Circular Pipe with Small Suc-
tion,” Publication de l’Institut Mathematique, Nouvelle
Serie, Vol. 16, No. 30, 1993, pp. 147-157.
[5] T. Zhao and P. Cheng, “A Numerical Solution of Laminar
Forced Convection in a Heated Pipe Subjected to a Re-
ciprocating Flow,” International Journal Heat Mass Trans-
fer, Vol. 38, No. 16, 1995, pp. 3011-3022.
doi:10.1016/0017-9310(95)00017-4
[6] S. K. Karode, “Laminar Flow in Channels with Porous
Walls, Revisited,” Journal of Membrane Science, Vol.
191, No. 1, 2001, pp. 237-241.
doi:10.1016/S0376-7388(01)00546-4
[7] F. A. R. Pereira1, C. H. Ataíde and M. A. S. Barrozo,
“CFD Approach Using a Discrete Phase Model for An-
nular Flow Analysis,” Latin American Applied Research,
Vol. 40, No. 1, 2010.
[8] A. Raoufpanah, “Effect of Slip Condition on the Charac-
teristic of Flow in Ice Melting Process,” International
Journal of Engineering, Vol. 18, No. 3, 2005, pp. 1-9.
[9] A. Nouri-Borujerdi and P. Javidmand, “Critical Mass
Flow Rate through Capillary Tubes,” Proceedings of the
ASME 2010 3rd Joint US-European Fluids Engineering
Summer Meeting and 8th International Conference on
Nanochannels, Microchannels, and Minichannels, Mont-
real, 1-5 August 2010.
[10] A. Nouri and A. Nabovati, “Numerical Study of Viscous
Dissipation in Circular Microchannels,” 8th International
and 12th Annual Mechanical Engineering Conference,
Tarbiat Modarres University, Tehran, 2008.
[11] W, J. Federspie and I. Valenti, “Laminar Flow in Micro-
Fabricated Channels with Partial Semi-Circular Profiles,”
Open Journal of Applied Sciences, Vol. 2, No. 1, 2012,
pp. 28-34. doi:10.4236/ojapps.2012.21003
[12] R. Yang and S. F. Chang, “A Numerical Study of Fully
Developed Laminar Flow and Heat Transfer in a Curved
Pipe with Arbitrary Curvature Ratio,” International Jour-
nal of Heat and Fluid Flow, Vol. 14, No. 2, 1993, pp.
138-145. doi:10.1016/0142-727X(93)90021-E
[13] I. Sarbu and A. Iosif, “Numerical Analysis of the Laminar
Forced Heat Convection between Two Coaxial Cylin-
ders,” International Journal of Energy, Vol. 3, No. 4,
2009.
[14] N. Yucel and N. Dinler, “Numerical Study on Laminar
and Turbulent Flow through a Pipe with Fins Attached,”
An International Journal of Computation and Methodol-
ogy, Vol. 49, No. 2, 2006, pp. 195-214.
[15] M. A. Cade, W. C. P. B. Lima, S. R. Farias Neto and A.
G. B. Lima, “Natural Gas Laminar Flow in Elliptic Cy-
lindrical Pipes: A Numerical Study,” Brazilian Journal of
Petroleum and Gas, Vol. 4, No. 1, 2010, pp. 19-33.
[16] M. Yazdi and A. Bardi, “Estimation of Friction Factor in
Pipe Flow Using Artificial Neural Networks,” Canadian
Journal on Automation, Control & Intelligent Systems,
Vol. 2, No. 4, 2011, pp. 52-56.
[17] A. Mussa, P. Asinari and L.-S. Luo, “Lattice Boltzmann
Simulations of 2D Laminar Flows past Two Tandem
Cylinders,” Elsevier Science, New York, 2008.
[18] M. S. Ghidaoui and A. A. Kolyshkin, “A Quasi-Steady
Approach to the Instability of Time-Dependent Flows in
Pipes,” Journal of Fluid Mechanics, Vol. 465, 2002, pp.
301-330. doi:10.1017/S0022112002001076
[19] G. Catania and S. Sorrentino, “Analysis of Frequency-
Dependent Friction in Transient Pipe Flow Using Non-
Integer Order Derivative Models,” Laboratory of Re-
search and Technology Transfer LAV (Laboratory of
Acoustics and Vibration), University of Bologna, Bolo-
gna, 2007, pp. 1-8.
[20] M. Bahrami, M. M. Yovanovich and J. R. Culham,
“Pressure Drop of Fully-Developed, Laminar Flow in
Micro-Channels of Arbitrary Cross-Section,” Proceed-
ings of ICMM 2005 3rd International Conference on Mi-
crochannels and Minichannels, Toronto, 13-15 June 2005.
[21] Z. G. Makukula, P. Sibanda and S. S. Motsa, “A Novel
Numerical Technique for Two-Dimensional Laminar Flow
between Two Moving Porous Walls,” Hindawi Publish-
ing Corporation Mathematical Problems in Engineering,
Vol. 2010, 2010, Article ID: 528956.
[22] S. Selvarajan, E .G. Tulapurkara and V. V. Ram, “A Nu-
merical Study of Flow through Wavy-Walled Channels,”
International Journal for Numerical Methods in Fluids,
Vol. 26, 1998, pp. 519-531.
doi:10.1002/(SICI)1097-0363(19980315)26:5<519::AID-
FLD630>3.0.CO;2-C
[23] M. S. Favero and K. R. Berquist, “Use of Laminar
Air-Flow Equipment in Microbiology,” Applied Microbi-
ology Copyright @ 1968 American Society for Microbi-
ology, Vol. 16, No. 1, 1968, pp. 182-183.
[24] D. G. Fox, “A Study of the Application of Laminar Flow.
Ventilation to Operating Rooms,” Public Health Mono-
graph No. 78, US Government Printing Office, Washing-
ton, 1969, 58 p.
[25] H.-D. Chen, L. Wen, S.-Y. Zheng, H. Gao, B. Xiong,
H.-N. Bian, Z.-A. Liu and L.-J. Wel, “Application of
Laminar Air Flow Techniques in Burn Treatment,” De-
partment of Burn Surgery, People’s Hospital of Guang-
dong Province, Guangzhou, 2005.