Analyses and Modeling of Laminar Flow in Pipes Using Numerical Approach

Copyright © 2012 SciRes. JSEA

658

sonville, 10-14 August 2008.

[2] A. Nouri-Broujerdi and M. Ziaei-Rad, “Simulation of

Compressible Pipe Flow under Different Thermal Condi-

tions,” 2007 ASME-JSME Thermal Engineering Summer

Heat Transfer Conference, Vancouver, 8-12 July 2007.

[3] A. Nouri-Borujerdi and M. Layeghi, “A Numerical

Analysis of Vapor Flow in Concentric Annular Heat

Pipes,” Transactions of the ASME, Journal of Fluids En-

gineering, Vol. 126, 2004, pp. 442-448.

doi:10.1115/1.1760549

[4] V. M. Soundalgekar and V. G. Divekar, “Laminar Slip-

Flow through a Uniform Circular Pipe with Small Suc-

tion,” Publication de l’Institut Mathematique, Nouvelle

Serie, Vol. 16, No. 30, 1993, pp. 147-157.

[5] T. Zhao and P. Cheng, “A Numerical Solution of Laminar

Forced Convection in a Heated Pipe Subjected to a Re-

ciprocating Flow,” International Journal Heat Mass Trans-

fer, Vol. 38, No. 16, 1995, pp. 3011-3022.

doi:10.1016/0017-9310(95)00017-4

[6] S. K. Karode, “Laminar Flow in Channels with Porous

Walls, Revisited,” Journal of Membrane Science, Vol.

191, No. 1, 2001, pp. 237-241.

doi:10.1016/S0376-7388(01)00546-4

[7] F. A. R. Pereira1, C. H. Ataíde and M. A. S. Barrozo,

“CFD Approach Using a Discrete Phase Model for An-

nular Flow Analysis,” Latin American Applied Research,

Vol. 40, No. 1, 2010.

[8] A. Raoufpanah, “Effect of Slip Condition on the Charac-

teristic of Flow in Ice Melting Process,” International

Journal of Engineering, Vol. 18, No. 3, 2005, pp. 1-9.

[9] A. Nouri-Borujerdi and P. Javidmand, “Critical Mass

Flow Rate through Capillary Tubes,” Proceedings of the

ASME 2010 3rd Joint US-European Fluids Engineering

Summer Meeting and 8th International Conference on

Nanochannels, Microchannels, and Minichannels, Mont-

real, 1-5 August 2010.

[10] A. Nouri and A. Nabovati, “Numerical Study of Viscous

Dissipation in Circular Microchannels,” 8th International

and 12th Annual Mechanical Engineering Conference,

Tarbiat Modarres University, Tehran, 2008.

[11] W, J. Federspie and I. Valenti, “Laminar Flow in Micro-

Fabricated Channels with Partial Semi-Circular Profiles,”

Open Journal of Applied Sciences, Vol. 2, No. 1, 2012,

pp. 28-34. doi:10.4236/ojapps.2012.21003

[12] R. Yang and S. F. Chang, “A Numerical Study of Fully

Developed Laminar Flow and Heat Transfer in a Curved

Pipe with Arbitrary Curvature Ratio,” International Jour-

nal of Heat and Fluid Flow, Vol. 14, No. 2, 1993, pp.

138-145. doi:10.1016/0142-727X(93)90021-E

[13] I. Sarbu and A. Iosif, “Numerical Analysis of the Laminar

Forced Heat Convection between Two Coaxial Cylin-

ders,” International Journal of Energy, Vol. 3, No. 4,

2009.

[14] N. Yucel and N. Dinler, “Numerical Study on Laminar

and Turbulent Flow through a Pipe with Fins Attached,”

An International Journal of Computation and Methodol-

ogy, Vol. 49, No. 2, 2006, pp. 195-214.

[15] M. A. Cade, W. C. P. B. Lima, S. R. Farias Neto and A.

G. B. Lima, “Natural Gas Laminar Flow in Elliptic Cy-

lindrical Pipes: A Numerical Study,” Brazilian Journal of

Petroleum and Gas, Vol. 4, No. 1, 2010, pp. 19-33.

[16] M. Yazdi and A. Bardi, “Estimation of Friction Factor in

Pipe Flow Using Artificial Neural Networks,” Canadian

Journal on Automation, Control & Intelligent Systems,

Vol. 2, No. 4, 2011, pp. 52-56.

[17] A. Mussa, P. Asinari and L.-S. Luo, “Lattice Boltzmann

Simulations of 2D Laminar Flows past Two Tandem

Cylinders,” Elsevier Science, New York, 2008.

[18] M. S. Ghidaoui and A. A. Kolyshkin, “A Quasi-Steady

Approach to the Instability of Time-Dependent Flows in

Pipes,” Journal of Fluid Mechanics, Vol. 465, 2002, pp.

301-330. doi:10.1017/S0022112002001076

[19] G. Catania and S. Sorrentino, “Analysis of Frequency-

Dependent Friction in Transient Pipe Flow Using Non-

Integer Order Derivative Models,” Laboratory of Re-

search and Technology Transfer LAV (Laboratory of

Acoustics and Vibration), University of Bologna, Bolo-

gna, 2007, pp. 1-8.

[20] M. Bahrami, M. M. Yovanovich and J. R. Culham,

“Pressure Drop of Fully-Developed, Laminar Flow in

Micro-Channels of Arbitrary Cross-Section,” Proceed-

ings of ICMM 2005 3rd International Conference on Mi-

crochannels and Minichannels, Toronto, 13-15 June 2005.

[21] Z. G. Makukula, P. Sibanda and S. S. Motsa, “A Novel

Numerical Technique for Two-Dimensional Laminar Flow

between Two Moving Porous Walls,” Hindawi Publish-

ing Corporation Mathematical Problems in Engineering,

Vol. 2010, 2010, Article ID: 528956.

[22] S. Selvarajan, E .G. Tulapurkara and V. V. Ram, “A Nu-

merical Study of Flow through Wavy-Walled Channels,”

International Journal for Numerical Methods in Fluids,

Vol. 26, 1998, pp. 519-531.

doi:10.1002/(SICI)1097-0363(19980315)26:5<519::AID-

FLD630>3.0.CO;2-C

[23] M. S. Favero and K. R. Berquist, “Use of Laminar

Air-Flow Equipment in Microbiology,” Applied Microbi-

ology Copyright @ 1968 American Society for Microbi-

ology, Vol. 16, No. 1, 1968, pp. 182-183.

[24] D. G. Fox, “A Study of the Application of Laminar Flow.

Ventilation to Operating Rooms,” Public Health Mono-

graph No. 78, US Government Printing Office, Washing-

ton, 1969, 58 p.

[25] H.-D. Chen, L. Wen, S.-Y. Zheng, H. Gao, B. Xiong,

H.-N. Bian, Z.-A. Liu and L.-J. Wel, “Application of

Laminar Air Flow Techniques in Burn Treatment,” De-

partment of Burn Surgery, People’s Hospital of Guang-

dong Province, Guangzhou, 2005.