
O. O. OLUWOLE    ET  AL. 
806 
 
 
 
 
4. Conclusions 
Conduction heat transfer within ordinary (conventional) 
and interlocking bricks with hollow cavities was investi-
gated. 
In conventional bricks, increasing the number of cavi-
ties played a substantial role in decreasing heat flow into 
the building and hence enhanced thermal insulation. Af-
ter the four-hole arrangement, increasing the number of 
holes only gave marginal thermal resistance over the 
four-hole arrangement. 
In the case of interlocking bricks, it was observed that 
staggered hole arrangement helped in decreasing heat 
flow into the brick wall. Four-staggered-hole arrange-
ment gave the same thermal resistance as an ordered 
eight-hole arrangement. The 8-hole brick arrangement 
may also tend to compromise the strength of the brick. 
REFERENCES 
[1] B. Lacarrière, B. Lartigue and F. Monchoux, “Numerical 
Study of Heat Transfer in a Wall of Vertically Perforated 
Bricks: Influence of Assembly Method,” Energy and 
Buildings, Vol. 35, No. 3, 2003, pp. 229-237. 
doi:10.1016/S0378-7788(02)00049-X 
[2] S. M. Bajorek and J. R. Lloyd, “Experimental Investiga-
tion of Natural Convection in partitioned Enclosures,” 
Journal of Heat Transfer, Vol. 104, No. 3, 1982, pp. 527- 
531. doi:10.1115/1.3245125 
[3] T. Nishimura, M. Shiraishi, F. Nagasawa and Y. Kawa-
mura, “Natural Convection Heat Transfer in Enclosures 
with Multiple Vertical Partitions,” International Journal 
of Heat and Mass Transfer, Vol. 31, No. 8, 1988, pp. 
1679-1686. doi:10.1016/0017-9310(88)90280-3 
[4] D. P. Aviram, A. N. Fried and J. J. Roberts, “Thermal 
Properties of a Variable Cavity Wall,” Building and En-
vironment, Vol. 36, No. 9, 2001, pp. 1057-1072. 
doi:10.1016/S0360-1323(00)00042-1 
[5] J. J. del Coz Diaz, P. J. Garcia Nieto, A. Martin Rodri-
guez, A. L. Martinez-Luengas and C. BetegonBiempica, 
“Non-Linear Thermal Analysis of Light Concrete Hollow 
Brick Walls by the Finite Element Method and Experi-
mental Validation,” Applied Thermal Engineering, Vol. 
26, No. 8-9, 2006, pp. 777-786. 
doi:10.1016/j.applthermaleng.2005.10.012 
[6] J. J. del Coz Díaz, P. J. García Nieto, C. Betegón Biem-
pica and M. P. Prendes Gero, “Analysis and Optimization 
of the Heat-Insulating Light Concrete Hollow Brick 
Walls Design by the Finite Element Method,” Applied 
Thermal Engineering, Vol. 27, No. 8-9, 2007, pp. 1445- 
1456doi:10.1016/j.applthermaleng.2006.10.010 
[7] S. Kumar, “Fly Ash-Lime-Phosphogypsum Hollow Blocks 
for Walls and Partitions,” Building and Environment, Vol. 
38, No. 2, 2003, pp. 291-295. 
doi:10.1016/S0360-1323(02)00068-9 
[8] M. Ciofalo and T. G. Karayiannis, “Natural Convection 
Heat Transfer in a Partially—Or Completely—Partitioned 
Vertical Rectangular Enclosure,” International Journal of 
Heat and Mass Transfer, Vol. 34, No. 1, 1991, pp. 167- 
179. doi:10.1016/0017-9310(91)90184-G 
[9] H. Manz, “Numerical Simulation of Heat Transfer by 
Natural Convection in Cavities of Facade Elements,” En-
ergy and Buildings, Vol. 35, No. 3, 2003, pp. 305-311. 
doi:10.1016/S0378-7788(02)00088-9 
[10] M. M. Al-Hazmy, “Analysis of Coupled Natural Convec-
tion Conduction Effects on the Heat Transport through 
Hollow Building Blocks,” Energy and Buildings, Vol. 38, 
No. 5, 2006, pp. 515-521. 
doi:10.1016/j.enbuild.2005.08.010 
[11] B. J. Lee and S. Pessiki, “Thermal Performance Evalua-
tion of Precast Concrete Three-Wythe Sandwich Wall 
Panels,” Energy and Buildings, Vol. 38, No. 8, 2006, pp. 
1006-1014. doi:10.1016/j.enbuild.2005.11.014 
[12] C. J. Ho and Y. L. Yih, “Conjugate Natural Convection 
Heat Transfer in an Air-Fileld Rectangular Cavity,” In-
ternational Communication in Heat and Mass Transfer, 
Vol. 14, No. 1, 1987, pp. 91-100. 
doi:10.1016/0735-1933(87)90011-X 
[13] T. W. Tong and F. M. Gerner, “Natural Convection in 
Partitioned Air-Filled Rectangular Enclosures,” Interna-
tional Communication in Heat and Mass Transfer, Vol. 
13, No. 1, 1986, pp. 99-108. 
doi:10.1016/0735-1933(86)90076-X 
[14] A. Kangni, B. Yedder and E. Bilgen, “Natural Convection 
and Conduction in Enclosures with Multiple Vertical Par-
titions,” International Journal of Heat and Mass Transfer, 
Vol. 34, No. 1, 1991, pp. 2819-2825. 
doi:10.1016/0017-9310(91)90242-7 
[15] H. Torkoglu and N. Yucel, “Natural Convection Heat 
Transfer in Enclosures with Conducting Multiple Parti-
tions and Side Walls,” Heat and Mass Transfer, Vol. 2, 
No. 1-2, 1996, pp. 1-8. doi:10.1007/s002310050084 
[16] S. Lorente, “Heat Losses through Building Walls with 
Closed, Open and Deformable Cavities,” International 
Journal of Energy Research, Vol. 26, No. 7, 2002, pp. 
611-632. doi:10.1002/er.807 
[17] M. A. Antar and L. C. Thomas, “Heat Transfer through a 
Composite Wall with Enclosed Spaces: A Practical Two- 
Dimensional Analysis Approach,” ASHRAE Transactions, 
Vol. 106, 2001, pp. 318-324. 
[18] M. A. Antar and L. C. Thomas, “Heat Transfer through a 
Composite Wall with an Evacuated Rectangular Gray 
Body Radiating Space: A Numerical Solution,” ASHRAE 
Transactions, Vol. 110, No. 2, 2004, pp. 36-45. 
[19] M. A. Antar, “Multi-Dimensional Effects in Estimating 
the Heat Loss across Building Envelopes,” Proceedings 
of the 2nd International Conference on Thermal Engi- 
neering Theory and Applications, Al-Ain, 3-6 January 
2006. 
 
Copyright © 2012 SciRes.                                                                              JMMCE