P. MOHAMMADMORADI, M. RASAEI

56

rithm to reconstruction of non-stationary images and 3D

pore space structures. The later will be based on 2D real

thin section images.

REFERENCES

[1] G. Arpat and J. Caers, “A Multiple-Scale, Pattern-Based

Approach to Sequential Simulation,” GEOSTAT 2004

Proceedings, 7th International Geostatistics Congress,

Banff, October 2004.

[2] S. Strebelle, “Conditional Simulation of Complex Geo-

logical Structures Using Multiple-Point Statistics,” Mathe-

matical Geology, Vol. 34, No. 1, 2002, pp. 1-21.

doi:10.1023/A:1014009426274

[3] A. G. Journel and T. Zhang, “The Necessity of a Multi-

ple-Point Prior Model,” Mathematical Geology, Vol. 38,

No. 5, 2006, pp. 591-610.

[4] J. Ortiz, “Characterization of High Order Correlation for

Enhanced Indicator Simulation,” PhD Thesis, University

of Alberta, Edmonton, 2003.

[5] J. Boisvert, M. J. Pyrcz and C. V. Deutsch, “Multiple-

Point Statistics for Training Image Selection,” Natural

Resources Research, Vol. 16, No. 4, 2007, pp. 313-321.

[6] K. G. Boogaart, “Some Theory for Multiple Point Statis-

tics: Fitting, Checking and Optimally Exploiting the

Training Image,” International Association for Mathe-

matical Geology XIth International Congress, 2006.

[7] F. Guardiano and M. Srivastava, “Multivariate Geostatis-

tics: Beyond Bivariate Moments,” In: A. Soares, Ed.,

Geostatistics Troia, Kluwer Academic Publications,

Dordrecht, 1993, pp. 133-144.

doi:10.1007/978-94-011-1739-5_12

[8] S. Strebelle, “Sequential Simulation Drawing Structures

from Training Images,” Ph.D. Thesis, Stanford University,

Stanford, 2000.

[9] J. Straubhaar, P. Renard, G. Mariethoz, R. Froidevaux

and O. Besson, “An Improved Parallel Multiple-Point

Algorithm Using a List Approach,” Mathematical Geo-

sciences, Vol. 43, No. 3, 2011, pp. 305-328.

doi:10.1007/s11004-011-9328-7

[10] J. Caers, “Geostatistics: From Pattern Recognition to

Pattern Reproduction,” Developments in Petroleum Sci-

ence, Vol. 51, 2003, pp. 97-115.

doi:10.1016/S0376-7361(03)80010-9

[11] X. Y. Liu, C. Y. Zhang, Q. S. Liu and J. Birkholzer,

“Multiple-Point Statistical Prediction on Fracture Net-

works at Yucca Mountain,” Environmental Geology, Vol.

57, No. 9, 2004, pp. 1361-1370.

[12] M. J. Ronayne, S. M. Gorelick and J. Caers, “Identifying

Discrete Geologic Structures That Produce Anomalous

Hydraulic Response: An Inverse Modeling Approach,”

Water Resources Research, Vol. 44, 2008, Article ID:

W08426, 16 p. doi:10.1029/2007WR006635

[13] M. Stien, P. Abrahamsen, R. Hauge and O. Kolbjørnsen,

“Modification of the Snesim Algorithm,” EAGE, Petro-

leum Geostatistics, 2007.

[14] M. Huysmans and A. Dassargues, “Application of Multi-

ple-Point Geostatistics on Modelling Groundwater Flow

and Transport in a Cross-Bedded Aquifer,” GEOENV VII

—Geostatistics for Environmental Application, Vol. 16,

2010, pp. 139-150.

[15] H. Okabe and J. Blunt, “Pore Space Reconstruction Using

Multiple-Point Statistics,” Journal of Petroleum Science

and Engineering, Vol. 46, No. 1-2, 2005, pp. 121-137.

doi:10.1016/j.petrol.2004.08.002

[16] T. Zhang, P. Switzer and A. Journel, “Filter-Based Clas-

sification of Training Image Patterns for Spatial Simula-

tion,” Mathematical Geology, Vol. 38, 1, 2006, pp. 63-80.

doi:10.1007/s11004-005-9004-x

[17] M. Honarkhah and J. Caers, “Stochastic Simulation of

Patterns Using Distance-Based Pattern Modeling,” Mathe-

matical Geosciences, Vol. 42, No. 5, 2010, pp. 487-517.

doi:10.1007/s11004-010-9276-7

[18] M. Honarkhah and J. Caers, “Classifying Existing and

Generating New Training Image Patterns in Kernel

Space,” 21st SCRF ALIATE Meeting, Stanford University,

2008.

[19] S. Chatterjee, R. Dimitrakopoulos and H. Mustapha, “Di-

mensional Reduction of Pattern-Based Simulation Using

Wavelet Analysis,” Mathematical Geosciences Work to

be Submitted, 2011.

[20] Shannon, “A Mathematical Theory of Communication,”

Bell System Technical Journal, Vol. 27, 1948, pp. 379-

423, 623-656.

Copyright © 2012 SciRes. GM