F. A. ALAZABI, M. A. ZOHDY

38

Figure 6. Noise effect on nonlinear HIV-1 model for firs

sign for uncertain and nonlinear HIV-1 infection models.

REFERENCES

[1] D. M. Bortz ativity Analysis of

1

t

and second strategies respectively.

We have found suitable nonlinear controller strategy to

cause reduction of virus concentration to an undetectable

level. Different strategies were considered to evaluate the

control effectiveness. Additional noise into the HIV-1

system’s dynamics was simulated to further test the

nonlinear control strategies stochastic behavior.

nd P. W. Nelson, “Sensi a

Nonlinear Lumped Parameter Model of HIV Infection

Dynamics,” Bulletin of Mathematical Biology, Vol. 66,

No. 5, 2004, pp. 1009-1026.

doi:10.1016/j.bulm.2003.10.01

chenzle “Analysis of a [2] N. I. Stilianakis, K. Dietz and D. S

Model for the Pathogenesis of AIDS,” Mathematical Bio-

sciences, Vol. 145, No. 1, 1997, pp. 27-46.

doi:10.1016/S0025-5564(97)00018-7

[3] A. S. Perelson and P. W. Nelson, “Mathematical Analysis

of HIV-1 Dynamics in Vivo,” Society for Industrial and

Applied Mathematics Review, Vol. 41, No. 1, 1999, pp. 3-

44. doi:10.1137/S0036144598335107

[4] M. A. Stafford, L. Corey, Y. Cao, E. S. Daar, D. D. Ho

and A. S. Perelson, “Modeling Plasma Virus Concentra-

tion during Primary HIV Infection,” Journal of Theoreti-

cal Biology, Vol. 203, No. 3, 2000, pp. 285-301.

doi:10.1006/jtbi.2000.1076

[5] A. S. Perelson, A. U. Neumann, M. Markowitz, M. Mar-

kowitz, J. M. Leonard and D. D. Ho, “HIV-1 Dynamics

in Vivo: Virion Clearance Rate, Infected Cell Lifespan,

and Viral Generation Time,” Science, Vol. 271, No. 5255,

1996, pp. 1582-1586. doi:10.1126/science.271.5255.1582

[6] V. Gajic, “Optimal Control of HIV-Virus Dynamics,” An-

nals of Biomedical Engineering, Vol. 37, No. 6, 2009, pp.

1251-1261. doi:10.1007/s10439-009-9672-7

[7] S. Ge, Z. Tian and T. Lee, “Nonlinear Control of Dy-

namic Model of HIV-1,” IEEE Transaction on Biomedi-

cal Engineering, Vol. 52, No. 6, 2005, pp. 353-361.

doi:10.1109/TBME.2004.840463

[8] M. Brandt and G. Chen, “Feedback Control of a Biody-

namical Model of HIV-1,” IEEE Transaction on Biomedi-

cal Engineering, Vol. 48, No. 7, 2001, pp. 754-759.

doi:10.1109/10.930900

[9] I. Craig and X. Xia, “Can HIV/AIDS Be Controlled,” IEEE

Control Systems Magazine, Vol. 25, No. 1, 2005, pp. 80-

83. doi:10.1109/MCS.2005.1388805

[10] E. Sontag, “Some New Directions in Control Theory In-

spired by Systems Biology,” Systems Biology, Vol. 1, No.

1, 2004, pp. 9-18. doi:10.1049/sb:20045006

[11] H. Chang and A. Astolfi, “Immune Response’s Enhance-

ment via Controlled Drug Scheduling,” IEEE Conference

on Decision and Control, New Orleans, 12-14 December

2007, pp. 3919-3924. doi:10.1109/CDC.2007.4434462

[12] L. Praly and Y. Wang, “Stabilization in Spite of Matched

Un-Modeled Dynamics and an Equivalent Definition of

Input-to-State Stability,” Mathematics of Control, Signals

and Systems, Vol. 9, No. 1, 1996, pp. 1-33.

doi:10.1007/BF01211516

[13] R. Sepulchre, M. Jankovic and P. Kokotovic, “Construc-

v

tive Nonlinear Control,” Springer-Verlag, Berlin, 1997.

[14] L. Faubourg and J. Pomet, “Design of Control Lyapno

Functions for ‘Jurdjevic-Quinn’ Systems,” Satbility and

Stabilization of Nonlinear Systems, Vol. 246, 1999, pp.

137-150. doi:10.1007/1-84628-577-1_7

[15] A. Bacciotti, “Local Stabilizability of Nonlinear Control

stability,”

Systems,” World Scientific, Singapore, 1992.

[16] V. Jurjevic and J. Quinn, “Controllability and

Journal of Differential Equations, Vol. 28, No. 3, 1978,

pp. 381-389. doi:10.1016/0022-0396(78)90135-3

[17] R. Outbib and G. Sallet, “Stabilizability of the Angular

Velocity of a Rigid Body Revisited,” Systems and Con-

trol Letters, Vol. 18, No. 2, 1992, pp. 93-98.

doi: 10.1016/0167-6911(92)90013-I

[18] A. Knorr and R. Srivastava, “Evaluation of HIV-1 Kinetic

Models using Quantitative Discrimination Analysis,” Bio-

informatics, Vol. 21, No. 8, 2004, pp. 1668-1677.

doi:10.1093/bioinformatics/bti230

Copyright © 2012 SciRes. IJMNTA