Journal of Applied Mathematics and Physics
Vol.06 No.10(2018), Article ID:87728,11 pages
10.4236/jamp.2018.610168
On Tachibana and Vishnevskii Operators Associated with Certain Structures in the Tangent Bundle
Lovejoy S. Das1, Mohammad Nazrul Islam Khan2
1Department of Mathematics, Kent State University, Tuscarawas, New Philadelphia, OH, USA
2Department of Computer Engineering, College of Computer, Qassim University, Buraidah, KSA
Copyright © 2018 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
Received: July 17, 2018; Accepted: October 7, 2018; Published: October 10, 2018
ABSTRACT
The aim of the present work is to study the complete, vertical and horizontal lifts using Tachibana and Visknnevskii operators along generalized almost r-contact structure in tangent bundle. We also prove certain theorems on Tachibana and Visknnevskii operators with Lie derivative and lifts.
Keywords:
Tangent Bundle, Vertical Lift, Complete Lift, Lie Derivative, Tachibana Operator, Vishnevskii Operator
1. Introduction
Let M be an n-dimensional differentiable manifold and let be its tangent bundle. Then is also a differentiable manifold [1] . Let and be the expressions in local coordinates for the vector field X and the 1-form in M. Let be local coordinates of point in induced naturally from the coordinate chart in M.
The complete, vertical and horizontal lifts of tensor field have vital role in differential geometry of tangent bundle. In 2016, [2] studied Tachibana and Vishneveskii operators applied to vertical and horizontal lifts in almost paracontact structure on the tangent bundle T(M). The generalized almost r-contact structure in tangent bundle and integrability of structure is studied by the second author [3] .
This paper is organized as follows: Section 2 describes some basic definitions and notations. Section 3 deals with the study of Tachibana and Vishnevskii operators for generalized almost r-contact structure in tangent bundle.
2. Preliminaries
2.1. Vertical Lifts
If f is a function in M, we write for the function in obtained by forming the composition of and , so that
(1)
where is composition of f and pi.
Thus, if a point has induced coordinates then
(2)
Thus the value of is constant along each fibre and equal to the value . We call the vertical lift of the function f.
Vertical lifts to a unique algebraic isomorphism of the tensor algebra into the tensor algebra with respect to constant coefficients by the conditions (Tensor product of P and Q)
(3)
P, Q and R being arbitrary elements of .
Furthermore, the vertical lifts of tensor fields obey the general properties [4] [5] :
(a)
(b)
(c)
2.2. Complete Lifts
If f is a function in M, we write for the function in defined by [1]
and call the complete lift of the function f. The complete lift of a function f has the local expression
with respect to the induced coordinates in , where denotes .
Suppose that . We define a vector field in by
f being an arbitrary function in M and call the complete lift of X in .
The complete lift of X with components in M has components
with respect to the induced coordinates in .
Suppose that Then a 1-form in defined by
X being an arbitrary vector field in M. We call the complete lift of .
The complete lifts to a unique algebra isomorphism of the tensor algebra into the tensor algebra with respect to constant coefficients, is given by the conditions
P, Q and R being arbitrary elements of .
Moreover, the complete lifts of tensor fields obey the general properties [1] [4] :
(a)
(b)
(c)
(d)
2.3. Horizontal Lifts
The horizontal lift of to the tangent bundle by
(4)
where
Let . Then the horizontal lift of X defined by
(5)
in , where
The horizontal lift of X has the components
(6)
with respect to the induced coordinates in , where .
The horizontal lift of a tensor field S of arbitrary type in M to is defined by
(7)
for all . We have
or
(8)
In addition, the horizontal lifts of tensor fields obey the general properties [4] [6] :
(a)
(b)
(c)
Let X be a vector field in an n-dimensional differentiable manifold M. The differential transformation is called Lie derivative with respect to X if
(a)
(b)
The Lie derivative of a tensor field F of type (1, 1) with respect to a vector field X is defined by
(9)
where is Lie bracket [1] page 113.
Let M be an n-dimensional differentiable manifold. Differential transformation of algebra defined by
(10)
is called as covariant derivation with respect to vector field X if
(a)
(b)
and a transformation defined by
(11)
is called affine connection [1] .
Proposition 1. For any [4]
(a)
(b)
(c)
(d)
where denotes the curvature tensor of the affine connection .
Proposition 2. For any and is the horizontal lift of the affine connection to [1]
(a)
(b)
(c)
(d)
3. Tachibana and Vishnevskii Operators for Generalized Almost R-Contact Structure in Tangent Bundle
Let M be a differentiable manifold of class. Suppose that there are given a tensor field of type (1, 1), a vector field and a 1-form satisfying [7] [8] [9]
(a)
(b)
(c)
(d) (12)
where and denote the Kronecker delta while a and are non-zero complex numbers. The manifold M is called a generalized almost r-contact manifold with a generalized almost r-contact structure or in short with -structure.
Let us suppose that the base space M admits the Lorentzian almost r-para-contact structure. Then there exists a tensor field of type (1, 1), vector fields and 1-forms such that Equation (12) are satisfied. Taking complete lifts of Equation (12) we obtain the following:
(a)
(b)
(c)
(d) (13)
Let us define an element of by
(14)
then in the view of Equation (13), it is easily shown that
which givess that is GF structure in [10] .
Now in view of the Equation (15), we have
(a)
(b) (15)
for all .
3.1. Tachibana Operator
Let be a tensor fieldof type (1, 1) i.e. and be a tensor algebra over R. A map is called a Tachibana operator or operator on M if [2] [11]
(a) is linear with respect to constant coefficient,
(b) for all r and s,
(c) for all ,
(d) for all
where is Lie derivation with respect to Y,
(e) (16)
for all and , where , the module of pure tensor fields of type on M with respect to the affinor field [12] [13] .
Theorem 3. For Tachibana operator on the operator Lie derivation with respect to defined by and , we have
(a)
(b)
(c)
(d) (17)
where , a tensor field , a vector field and a 1-form .
Proof. For and , we get
(a)
(18)
(b) (19)
(c) (20)
(d) (21),
Corollary 1. If we put i.e. , , then we have
(a)
(b)
(c)
(d) (22)
3.2. Vishnevskii Operator
Let is a linear connection and be a tensor field of type (1, 1) on M. If the condition (d) of Tachibana operator replace by
(d’) (23)
, is a mapping wih linear connection . A map , which satisfies conditions (a), (b), (c), (e) of Tachibana operator and the condition (d’), is called Vishnevskii operator on M [2] [14] .
Theorem 4. For Vishnevskii operator on M and the horizontal lift of an affine connection in M to , defined by (14), we have
(a)
(b)
(c)
(d) (24)
where , a tensor field , vector fields and a 1-form .
Proof.
(a) (25)
(b) (26)
(c) (27)
(d) (28)
Corollary 2. If we put i.e. , , then we have
(a)
(b)
(c)
(d) (29)
4. Conclusion
The generalized almost r-contact structure on Tachibana and Visknnevskii operators in tangent bundle are introduced. We deduced the theorems on Tachibana and Visknnevskii operators with respect to Lie derivative and lifting theory.
Acknowledgements
We thank the Editor and the referee for their comments.
Conflicts of Interest
The authors declare no conflicts of interest regarding the publication of this paper.
Cite this paper
Das, L.S. and Khan, M.N.I. (2018) On Tachibana and Vishnevskii Operators Associated with Certain Structures in the Tangent Bundle. Journal of Applied Mathematics and Physics, 6, 1968-1978. https://doi.org/10.4236/jamp.2018.610168
References
- 1. Yano, K. and Ishihara, S. (1973) Tangent and Cotangent Bundles. Marcel Dekker. Inc. New York.
- 2. Cayir, H. (2016) Tachibana and Vishnevskii Operators Applied to and in Almost Paracontact Structure on Tangent Bundle . New Trends in Mathematical Sciences, 4, 105-115. https://doi.org/10.20852/ntmsci.2016318821
- 3. Khan, M.N.I. (2017) A Note on Certain Structures in the Tangent Bundle. Far East Journal of Mathematical Sciences, 101, 1947-1965.
- 4. Omran, T., Sharffuddin, A. and Husain, S.I. (1984) Lift of Structures on Manifold. Publications De L’institut Mathmatique (Beograd) (N.S.), 36, 93-97.
- 5. Khan, M.N.I. (2014) Lifts of Hypersurfaces with Quarter-Symmetric Semi-Metric Connection to Tangent Bundles. Afrika Matematika, 25, 475-482. https://doi.org/10.1007/s13370-013-0150-x
- 6. Das, L.S. and Khan, M.N.I. (2005) Almost R-Contact Structures on the Tangent Bundle. Differential Geometry-Dynamical Systems, 7, 34-41.
- 7. Das, L.S. and Nivas, R. (2006) On Certain Structures Defined on the Tangent Bundle. Rocky Mountain Journal of Mathematics, 36, 1857-1866. https://doi.org/10.1216/rmjm/1181069348
- 8. Vanzura, J. (1970) Almost R-Contact Structure. Annali Della Scuola Normale, Superiore Di Pisa, 26, 97-115.
- 9. Blair, D.E. (1976) Contact Manifolds in Riemannian Geometry. Vol. 509, Springer Verlag, New York. https://doi.org/10.1007/BFb0079307
- 10. Das, L.S., Nivas, R. and Khan, M.N.I. (2009) On Submanifolds of Co-Dimension 2 Immersed in a Hsuquaternion Manifold. Acta Mathematica Academiae Paedagogicae Nyregyhziensis, 25, 129-135.
- 11. Magden, A. (2004) On Applications of the Tachibana Operator. Applied Mathematics and Computation, 147, 45-55. https://doi.org/10.1016/S0096-3003(02)00649-5
- 12. Tekkoyun, M. (2006) On Lifts of Paracomplex Structures. Turkish Journal of Math, 30, 197-210.
- 13. Khan, M.N.I. (2016) Lift of Semi-Symmetric Non-Metric Connection on a Khler Manifold. Afrika Matematika, 27, 345-352. https://doi.org/10.1007/s13370-015-0350-7
- 14. Salimov, A.A. (2013) Tensor Operators and Their Applications. Nova Science Publ. New York.