**Journal of Quantum Information Science**

Vol.08 No.01(2018), Article ID:83225,12 pages

10.4236/jqis.2018.81002

One Parameter Family of N-Qudit Werner-Popescu States: Bipartite Separability Using Conditional Quantum Relative Tsallis Entropy

Anantha S. Nayak^{1}, Sudha^{1,2}, A. R. Usha Devi^{2,3}, A. K. Rajagopal^{2,4,5 }

^{1}Department of Physics, Kuvempu University, Shankaraghatta, Shimoga, India

^{2}Inspire Institute Inc., Alexandria, USA

^{3}Department of Physics, Bangalore University, Bangalore, India

^{4}Harish-Chandra Research Institute, Allahabad, India

^{5}Institute of Mathematical Sciences, C.I.T. Campus, Chennai, India

Copyright © 2018 by authors and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Received: February 6, 2018; Accepted: March 20, 2018; Published: March 23, 2018

ABSTRACT

The conditional version of sandwiched Tsallis relative entropy (CSTRE) is employed to study the bipartite separability of one parameter family of N-qudit Werner-Popescu states in their $\mathrm{1:}N-1$ partition. For all N, the strongest limitation on bipartite separability is realized in the limit $q\to \infty $ and is found to match exactly with the separability range obtained using an algebraic method which is both necessary and sufficient. The theoretical superiority of using CSTRE criterion to find the bipartite separability range over the one using Abe-Rajagopal (AR) q-conditional entropy is illustrated by comparing the convergence of the parameter x with respect to q, in the implicit plots of AR q-conditional entropy and CSTRE.

**Keywords:**

Entropic Separability Criterion, q-Conditional Entropies, Non-Commuting Version of Relative Entropy

1. Introduction

Entropic characterization of separability [1] - [21] in mixed composite states has witnessed a considerable interest in recent years [17] - [21] . The identification of a non-commuting generalization of Abe-Rajagopal (AR) q-conditional Tsallis entropy [10] in the form of conditional version of sandwiched Tsallis relative entropy (CSTRE) [19] and its usefulness in identifying a separability range stricter than the separability criterion using AR q-conditional entropy (the so-called AR-criterion) [10] , has given more impetus to this study [19] [20] [21] . It has been established that negative values of CSTRE imply entanglement in chosen bipartitions of any composite state [20] . In noisy one-parameter families of symmetric [20] and non-symmetric [21] multiqubit states the separability range obtained through CSTRE, in addition to being stricter than that through AR-criterion, is shown to match with the separability range obtained through Peres’ Partial Transpose (PPT) criterion [22] [23] . While AR-criterion [10] [11] [12] [17] [18] relies upon the local versus global disorder thus exhibiting its spectral nature, the CSTRE criterion is illustrated to have non-spectral features [19] .

Quite similar to the definition of sandwiched Rényi relative entropy [24] [25] [26] , the sandwiched form of the Tsallis relative entropy is identified to be [19]

${\tilde{D}}_{q}^{T}\left(\rho \mathrm{\left|\right|}\sigma \right)=\frac{\text{Tr}\left\{{\left({\sigma}^{\frac{1-q}{2q}}\rho {\sigma}^{\frac{1-q}{2q}}\right)}^{q}\right\}-1}{q-1}$ (1)

Equation (1) reduces to traditional relative Tsallis entropy ${D}_{q}^{T}\left(\rho \mathrm{\left|\right|}\sigma \right)$

${D}_{q}^{T}\left(\rho \mathrm{\left|\right|}\sigma \right)=\frac{\text{Tr}\left[{\rho}^{q}{\sigma}^{1-q}\right]-1}{q-1}$ (2)

when r and s commute with each other.

The conditional forms of ${\tilde{D}}_{q}^{T}\left(\rho \mathrm{\left|\right|}\sigma \right)$ are defined as [19]

${\tilde{D}}_{q}^{T}\left({\rho}_{AB}\mathrm{\left|\right|}{\rho}_{B}\right)=\frac{{\tilde{Q}}_{q}\left({\rho}_{AB}\mathrm{\left|\right|}{\rho}_{B}\right)-1}{1-q}$ (3)

and

${\tilde{D}}_{q}^{T}\left({\rho}_{AB}\mathrm{\left|\right|}{\rho}_{A}\right)=\frac{{\tilde{Q}}_{q}\left({\rho}_{AB}\mathrm{\left|\right|}{\rho}_{A}\right)-1}{1-q}$ (4)

with ${\tilde{Q}}_{q}\left({\rho}_{AB}\mathrm{\left|\right|}{\rho}_{B}\right)$ , ${\tilde{Q}}_{q}\left({\rho}_{AB}\mathrm{\left|\right|}{\rho}_{A}\right)$ being respectively given by

${\tilde{Q}}_{q}\left({\rho}_{AB}\mathrm{\left|\right|}{\rho}_{B}\right)=\text{Tr}\left\{{\left[{\left({I}_{A}\otimes {\rho}_{B}\right)}^{\frac{1-q}{2q}}{\rho}_{AB}{\left({I}_{A}\otimes {\rho}_{B}\right)}^{\frac{1-q}{2q}}\right]}^{q}\right\}$ (5)

${\tilde{Q}}_{q}\left({\rho}_{AB}\mathrm{\left|\right|}{\rho}_{A}\right)=\text{Tr}\left\{{\left[{\left({\rho}_{A}\otimes {I}_{B}\right)}^{\frac{1-q}{2q}}{\rho}_{AB}{\left({\rho}_{A}\otimes {I}_{B}\right)}^{\frac{1-q}{2q}}\right]}^{q}\right\}$ (6)

In Ref. [20] , it has been proved that negative values of ${\tilde{D}}_{q}^{T}\left({\rho}_{AB}\mathrm{\left|\right|}{\rho}_{B}\right)$ , ${\tilde{D}}_{q}^{T}\left({\rho}_{AB}\mathrm{\left|\right|}{\rho}_{A}\right)$ indicate entanglement in the bipartite state ${\rho}_{AB}$ . When the subsystems ${\rho}_{B}$ or ${\rho}_{A}$ are maximally mixed, Equations (3), (4) reduce to Abe-Rajagopal (AR) q-conditional Tsallis entropies [10] ${S}_{q}^{T}\left(A\mathrm{|}B\right)$ , ${S}_{q}^{T}\left(B\mathrm{|}A\right)$ respectively:

${S}_{q}^{T}\left(A\mathrm{|}B\right)=\frac{1}{q-1}\left[1-\frac{\text{Tr}\text{\hspace{0.05em}}{\rho}_{AB}^{q}}{\text{Tr}\text{\hspace{0.05em}}{\rho}_{B}^{q}}\right]\mathrm{,}$ (7)

${S}_{q}^{T}\left(B\mathrm{|}A\right)=\frac{1}{q-1}\left[1-\frac{\text{Tr}\text{\hspace{0.05em}}{\rho}_{AB}^{q}}{\text{Tr}\text{\hspace{0.05em}}{\rho}_{A}^{q}}\right]\mathrm{.}$ (8)

Quite like the AR q-conditional entropies ${S}_{q}^{T}\left(A\mathrm{|}B\right)$ , ${S}_{q}^{T}\left(B\mathrm{|}A\right)$ , both the conditional versions of sandwiched Tsallis relative entropy ${\tilde{D}}_{q}^{T}\left({\rho}_{AB}\mathrm{\left|\right|}{\rho}_{B}\right)$ , ${\tilde{D}}_{q}^{T}\left({\rho}_{AB}\mathrm{\left|\right|}{\rho}_{A}\right)$ reduce to the respective von-Neumann entropies $S\left(A\mathrm{|}B\right)$ , $S\left(B\mathrm{|}A\right)$ in the limit $q\to 1$ .

Both AR- and CSTRE-criteria have been employed in Refs. [19] [20] to find the $\mathrm{1:}N-1$ separability range of the noisy one parameter families of symmetric N-qubit states involving either W or GHZ states. In Ref. [21] , the $\mathrm{1:}N-1$ separability ranges in two different non-symmetric one-parameter families of N-qubit states are obtained using AR-, CSTRE-criteria and a comparative analysis of these separability ranges is carried out.

The investigation of separability range in one parameter families of mixed states through AR- and CSTRE-criteria has revealed that whenever the marginal is not maximally mixed and hence does not commute with the global density matrix, the CSTRE criterion yields stricter separability range than its commuting version, the AR-criterion [6] [7] [19] [20] [21] . If the marginal is maximally mixed thus commuting with its density matrix, both AR-, CSTRE-criteria are found to yield identical separability ranges [19] [20] [21] . The supremacy of CSTRE criterion over AR-criterion, in the cases where non-maximal marginals occur, is illustrated for symmetric [19] [20] and non-symmetric one-parameter families of multiqubit states [21] . In this work, we wish to examine whether CSTRE criterion remains superior to AR-criterion even for composite states containing qudits. For this purpose, we have considered N-qudit Werner-Popescu states [12] , a special one parameter family of states and examine its $\mathrm{1:}N-1$ separability range using CSTRE criterion. Both AR-, CSTRE-criteria are seen to result in the necessary and sufficient condition for separability in the $\mathrm{1:}N-1$ partition of these states. Further we compare the convergence of the parameter x, obtained through CSTRE criterion with that obtained through AR criterion, with respect to q. It has been observed that the parameter x converges rapidly in the case of AR criterion, in comparison with that in the case of CSTRE criterion, even for finite values of q thus implying the better stochasticity of CSTRE criterion over the AR-criterion.

This article is organized in four sections including the introductory section (Section 1) in which we recall the non-additive entropic separability criteria such as AR-, CSTRE-criteria and discuss the motivation behind this work. Section 2 introduces the N-qudit Werner-Popescu state as a generalization of noisy one-parmeter family of N-qubit GHZ states to its qudit counterpart. Section 3 examines the $\mathrm{1:}N-1$ separability range of one parameter family of N-qudit Werner-Popescu states using different separability criteria. A comparison of the results obtained through AR-, CSTRE criteria is carried out and the superiority of CSTRE criterion is illustrated through the implicit plots of x versus q in both AR-, CSTRE methods (Section 3). Finally Section 4 provides a summary of the results.

2. N-Qudit Werner-Popescu States

The Werner-Popescu state with N-qudits [12] is defined as

$\begin{array}{c}{\rho}_{N}^{d}\left(x\right)=\rho \left({A}_{1}\mathrm{,}\text{\hspace{0.05em}}{A}_{2}\mathrm{,}\text{\hspace{0.05em}}\cdots ,{A}_{N}\right)\\ =\frac{1-x}{{d}^{N}}\left[{I}_{d}\left({A}_{1}\right)\otimes {I}_{d}\left({A}_{2}\right)\otimes \cdots \otimes {I}_{d}\left({A}_{N}\right)\right]+x|{\Phi}_{d}^{N}\rangle \langle {\Phi}_{d}^{N}|\end{array}$

Here $0\le x\le 1$ and ${I}_{d}\left({A}_{i}\right),i=1,\text{\hspace{0.05em}}2,\cdots ,N$ are $d\times d$ unit matrices belonging to the subsystem space of each qudit ${A}_{i},i=1,\text{\hspace{0.05em}}2,\cdots ,N$ . The pure state $|{\Phi}_{d}^{N}\rangle $ is given by

$|{\Phi}_{d}^{N}\rangle =\frac{1}{\sqrt{d}}{\displaystyle \sum _{k=0}^{d-1}}\text{\hspace{0.17em}}{|k\rangle}_{{A}_{1}}\otimes {|k\rangle}_{{A}_{2}}\otimes \cdots \otimes {|k\rangle}_{{A}_{N}}.$ (9)

and it is an analogue of GHZ state to d-level systems. Notice that when $d=2$ , i.e., for qubits, $k=0,1$ and Equation (9) reduces to the N-qubit GHZ state

$|{\text{GHZ}}_{N}\rangle =\frac{1}{\sqrt{2}}\left(|{0}_{1}{0}_{2}\cdots {0}_{N}\rangle +|{1}_{1}{1}_{2}\cdots {1}_{N}\rangle \right)$

The eigenvalues of ${\rho}_{N}^{d}\left(x\right)$ are given by

$\begin{array}{l}{\lambda}_{1}=\frac{1-x}{{d}^{N}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left[\left({d}^{N}-1\right)\text{\hspace{0.17em}}\text{fold}\text{\hspace{0.17em}}\text{degenerate}\text{\hspace{0.05em}}\right]\mathrm{,}\\ {\lambda}_{2}=\frac{1+\left({d}^{N}-1\right)x}{{d}^{N}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.05em}}\text{non-degenerate}\end{array}$ (10)

The focus here is to find the $\mathrm{1:}N-1$ separability range of ${\rho}_{N}^{d}\left(x\right)$ using CSTRE criterion.

3. Bipartite Separability of ${\rho}_{N}^{d}\left(x\right)$ in Its $1:N-1$ Partition

Denoting the first qubit as subsystem A and the remaining $N-1$ qubits as subsystem B, the density matrix of the $N-1$ qubit marginal is given by

${\rho}_{B}==\text{\hspace{0.05em}}Tr{\text{\hspace{0.05em}}}_{{A}_{1}}\text{\hspace{0.05em}}\rho \left({A}_{1},\text{\hspace{0.05em}}{A}_{2},\dots ,{A}_{N}\right)=\text{\hspace{0.05em}}Tr{\text{\hspace{0.05em}}}_{{A}_{1}}\text{\hspace{0.05em}}{\rho}_{N}^{d}(x)$

It can be seen that the eigenvalues ${\eta}_{i}$ of the $N-1$ qubit marginal ${\rho}_{B}$ of ${\rho}_{N}^{d}\left(x\right)$ , obtained by reducing over the first qubit, are given by

$\begin{array}{l}{\eta}_{1}=\frac{1-x}{{d}^{N-1}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left[\left({d}^{N-1}-d\right)\text{-}\text{\hspace{0.05em}}\text{fold}\text{\hspace{0.17em}}\text{degenerate}\right]\text{\hspace{0.05em}}\mathrm{,}\\ {\eta}_{2}=\frac{1+\left({d}^{N-2}-1\right)x}{{d}^{N-1}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left[d\text{-}\text{\hspace{0.05em}}\text{fold}\text{\hspace{0.17em}}\text{degenerate}\right]\end{array}$ (11)

Also, the subsystem ${\rho}_{A}$ , the single qudit marginal of ${\rho}_{N}^{d}\left(x\right)$ , corresponds to the maximally mixed state ${I}_{d}/d$ , ${I}_{d}$ being $d\times d$ unit matrix.

In order to find the separability range of the state ${\rho}_{N}^{d}$ in its $\mathrm{1:}N-1$ partition using CSTRE criterion, one needs to evaluate the eigenvalues ${\gamma}_{i}$ of the sandwiched matrix

$\Gamma ={\left({I}_{A}\otimes {\rho}_{B}\right)}^{\frac{1-q}{2q}}{\rho}_{N}^{d}\left(x\right){\left({I}_{A}\otimes {\rho}_{B}\right)}^{\frac{1-q}{2q}}$ (12)

so that

${\tilde{D}}_{q}^{T}\left({\rho}_{N}^{d}\left(x\right)\mathrm{\left|\right|}{\rho}_{B}\right)=\frac{{\displaystyle {\sum}_{i}{\gamma}_{i}^{q}}-1}{1-q}$ (13)

can be evaluated. Thus, in the evaluation of ${\tilde{D}}_{q}^{T}\left({\rho}_{N}^{d}\left(x\right)\mathrm{\left|\right|}{\rho}_{B}\right)$ , the non-negative eigenvalues ${\gamma}_{i}$ play a crucial role. In order to obtain the form of the eigenvalues ${\gamma}_{i}$ for arbitrary N, an analysis of their form for different $N\left(N=\mathrm{2,3,4,5}\right)$ and $d\left(d=3,4,5,6\right)$ is carried out to arrive at a generalization for any N, d. Table 1 provides the explicitly evaluated non-zero eigenvalues of the sandwiched matrix G for different values of N and d.

It can be readily seen from Table 1 that, there are only three distinct non-zero eigenvalues for the sandwiched matrix G. A careful observation of the eigenvalues ${\gamma}_{i},i=1,2,3$ in Table 1 leads towards the generalization of the eigenvalues of sandwiched matrix G for $N\ge 2$ . The generalized eigenvalues ${\gamma}_{i}$ of the sandwiched matrix G for any $N\ge 2$ are given in the following:

$\begin{array}{l}{\gamma}_{1}=\left(\frac{1-x}{{d}^{N}}\right){\left(\frac{1-x}{{d}^{N-1}}\right)}^{\frac{1-q}{q}},\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left({d}^{N}-{d}^{2}\right)\text{-fold}\text{\hspace{0.17em}}\text{degenerate}\text{\hspace{0.05em}}\\ {\gamma}_{2}=\left(\frac{1-x}{{d}^{N}}\right){\left(\frac{1+\left({d}^{N-2}-1\right)x}{{d}^{N-1}}\right)}^{\frac{1-q}{q}},\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left({d}^{2}-1\right)\text{-fold}\text{\hspace{0.17em}}\text{degenerate}\text{\hspace{0.05em}}\\ {\gamma}_{3}=\left(\frac{1+\left({d}^{N}-1\right)x}{{d}^{N}}\right){\left(\frac{1+\left({d}^{N-2}-1\right)x}{{d}^{N-1}}\right)}^{\frac{1-q}{q}},\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.05em}}\text{non-degenerate}\text{\hspace{0.05em}}\text{.}\end{array}$ (14)

The $\mathrm{1:}N-1$ separability range of ${\rho}_{N}^{d}\left(x\right)$ , for each combination of $N=2,3,4,5$ and $d=3,4,5,6$ obtained using CSTRE approach allows us to generalize this range to any N and d. Table 2 gives the values of x below which the state ${\rho}_{N}^{d}\left(x\right)$ , ( $N=2,3,4,5$ and $d=3,4,5,6$ ) is separable.

Using Table 2, the following $\mathrm{1:}N-1$ separability range is conjectured for the one parameter family of N-qudit Werner-Popescu-states.

$0\le x\le \frac{1}{1+{d}^{N-1}}$ (15)

One can note that the $\mathrm{1:}N-1$ separability range given in Eq.(15) is the same as that obtained in Ref. [12] , using the AR-criterion. In fact, the existence of maximally mixed single qudit density matrix is the reason behind the equivalence of separability ranges in CSTRE and AR-criteria. Such a situation occurs in the case of symmetric one parameter family of noisy GHZ states [20] , psuedopure family containing GHZ states and Werner-like family of states containing GHZ states [21] , while determining their $\mathrm{1:}N-1$ separability range.

Table 1. The non-zero eigenvalues ${\lambda}_{i}$ of the sandwiched matrix ${\left({I}_{A}\otimes {\rho}_{B}\right)}^{\frac{1-q}{2q}}{\rho}_{N}^{d}\left(x\right){\left({I}_{A}\otimes {\rho}_{B}\right)}^{\frac{1-q}{2q}}$ .

Table 2. The comparison of the $\mathrm{1:}N-1$ separability range of the state ${\rho}_{N}^{d}\left(x\right)$ , for various compositions of d and N obtained through CSTRE criterion.

In all these states, the single qudit density matrix turns out to be ${I}_{d}/d$ thus commuting with the corresponding density matrix implying that the in general non-commutative CSTRE approach yields the results equivalent to commutative AR-approach [20] . It is important to notice here that, using algebraic methods [27] [28] it has been shown that Equation (15) is actually the necessary and sufficient condition for separability.

Figure 1 gives an illustration of the monotonic decrease of ${\tilde{D}}_{q}^{T}\left({\rho}_{4}^{\left(3\right)}\left(x\right)\mathrm{\left|\right|}{\rho}_{B}\right)$ with increasing x in the limit $q\to \infty $ .

It can be seen that ${\tilde{D}}_{q}^{T}\left({\rho}_{4}^{\left(3\right)}\left(x\right)\mathrm{\left|\right|}{\rho}_{B}\right)$ is negative for $x>0.5633$ when $q=1$ implying that $\left(\mathrm{0,}\text{\hspace{0.05em}}0.5633\right)$ is the separability range through Von-Neumann conditional entropy, whereas it is negative for $x>0.0357$ in the limit $q\to \infty $ leading to $\left(\mathrm{0,}\text{\hspace{0.05em}}0.0357\right)$ as the separability range through CSTRE-criterion.

Even though the separability range of ${\rho}_{N}^{d}\left(x\right)$ , obtained using both CSTRE and AR-conditional entropy are same, there is a difference in the way the parameter x converges to the value ${x}_{\infty}$ , the value of x for which ${\mathrm{lim}}_{q\to \infty}\text{\hspace{0.05em}}{S}_{q}\left(A|B\right)=0$ , ${\mathrm{lim}}_{q\to \infty}{\tilde{D}}_{q}^{T}\left({\rho}_{N}^{\left(d\right)}\left(x\right)\left|\right|{\rho}_{B}\right)=0$ . Table 3 provides the values of the parameter x at which CSTRE, AR q-conditional entropy becomes zero, when $q=2$ , for different d and N. From Table 3 one can easily note that the

Figure 1. Gives an illustration of the monotonic decrease of ${\tilde{D}}_{q}^{T}\left({\rho}_{4}^{\left(3\right)}\left(x\right)\mathrm{\left|\right|}{\rho}_{B}\right)$ with increasing x in the limit $q\to \infty $ .

Table 3. The comparison of the value of x for $q=2$ , obtained through AR-, CSTRE criteria.

parameter x is rapidly decreasing in AR method even for $q=2$ thus confirming its relatively rapid convergence in comparison with that of CSTRE in the limit $q\to \infty $ .

The rapid convergence of the parameter x with increasing values of q in the case of AR q-conditional entropy is illustrated in Figure 2, Figure 3.

It is also evident from Table 3 that the separability range decreases with the number of subsystems i.e., with the increase of N for any given d. This feature is illustrated in Figure 4, Figure 5.

Similarly a comparison of Figure 4, Figure 5 illustrates that for any given N, the separability range decreases with increasing d. Thus a state of the Werner-Popescu family is entangled throughout the parameter range x if its constituents are qudits with larger d. More qudits in the state implies a single qudit remains entangled with the remaining $N-1$ qudits in the whole parameter range.

4. Summary

In this article, the CSTRE criterion is employed to find out the $\mathrm{1:}N-1$ separability range of N-qudit Werner-Popescu states. It is observed that the $\mathrm{1:}N-1$ separability range obtained through both CSTRE and AR q-conditional entropy criteria match with each other for these states. The maximally mixed and hence commuting nature of the single qudit density matrix with the

Figure 2. The comparison between implicit plots of ${\tilde{D}}_{q}^{T}\left({\rho}_{5}^{\left(3\right)}\left(x\right)\mathrm{\left|\right|}{\rho}_{B}\right)=0$ and ${S}_{q}^{T}\left(A\mathrm{|}B\right)=0$ , as a function of q in the $\mathrm{1:4}$ partition of the 5-qutrit ( $N=5$ , $d=3$ ) state ${\rho}_{5}^{\left(3\right)}\left(x\right)$ . A rapid decrease in the value of x, in comparison with ${\tilde{D}}_{q}^{T}\left({\rho}_{5}^{\left(3\right)}\left(x\right)\mathrm{\left|\right|}{\rho}_{B}\right)$ , can be observed in the case of ${S}_{q}^{T}\left(A\mathrm{|}B\right)$ .

Figure 3. The comparison between implicit plots of ${\tilde{D}}_{q}^{T}\left({\rho}_{4}^{\left(5\right)}\left(x\right)\mathrm{\left|\right|}{\rho}_{B}\right)=0$ and ${S}_{q}^{T}\left(A\mathrm{|}B\right)=0$ , as a function of q for 4-partite ( $N=4$ ), 5-level ( $d=5$ ) Werner-Popescu states ${\rho}_{4}^{\left(5\right)}\left(x\right)$ .

Figure 4. The graph of CSTRE ${\tilde{D}}_{q}^{T}\left({\rho}_{N}^{\left(3\right)}\left(x\right)\mathrm{\left|\right|}{\rho}_{B}\right)=0$ versus x for different values of N when $d=3$ . The decrease of the separability range with N, for any given d is clearly seen.

Figure 5. The graph of CSTRE ${\tilde{D}}_{q}^{T}\left({\rho}_{N}^{\left(4\right)}\left(x\right)\mathrm{\left|\right|}{\rho}_{B}\right)=0$ versus x for different values of N when $d=4$ .

Werner-Popescu state is found to be the reason behind the matching of the $\mathrm{1:}N-1$ separability ranges due to commutative AR-criterion and non-commutative CSTRE criterion. The relatively smoother convergence of the parameter x with respect to increasing q is observed in the case of implicit plots of CSTRE in comparison with the convergence in the case of AR q-conditional entropy thus establishing the supremacy of CSTRE criterion over the AR-criterion. The $\mathrm{1:}N-1$ separability range obtained for N-qudit Werner Popescu states using entropic criteria is seen to match with that obtained using an algebraic necessary and sufficient condition for separability.

Acknowledgements

Anantha S. Nayak acknowledges the support of Department of Science and Technology (DST), Govt. of India through the award of INSPIRE fellowship; A. R. Usha Devi is supported under the University Grants Commission (UGC), India (Grant No. MRP-MAJOR-PHYS-2013-29318).

Cite this paper

Nayak, A.S., Sudha, Usha Devi, A.R. and Rajagopal, A.K. (2018) One Parameter Family of N-Qudit Werner-Popescu States: Bipartite Separability Using Conditional Quantum Relative Tsallis Entropy. Journal of Quantum Information Science, 8, 12-23. https://doi.org/10.4236/jqis.2018.81002

References

- 1. Horodecki, R. and Horodecki, P. (1994) Quantum Redundancies and Local Realism. Physics Letters A, 194, 147-152. https://doi.org/10.1016/0375-9601(94)91275-0
- 2. Cerf, N.J. and Adami, C. (1997) Negative Entropy and Information in Quantum Mechanics. Physical Review Letters, 79, 5194-5197. https://doi.org/10.1103/PhysRevLett.79.5194
- 3. Abe, S. and Rajagopal, A.K. (1999) Quantum Entanglement Inferred by the Principle of Maximum Nonadditive Entropy. Physical Review A, 60, 3461-3466. https://doi.org/10.1103/PhysRevA.60.3461
- 4. Giovannetti, V. (2004) Separability Conditions from Entropic Uncertainty Relations. Physical Review A, 70, Article ID: 012102. https://doi.org/10.1103/PhysRevA.70.012102
- 5. Gühne, O. and Lewenstein, M. (2004) Entropic Uncertainty Relations and Entanglement. Physical Review A, 70, Article ID: 022316. https://doi.org/10.1103/PhysRevA.70.022316
- 6. Horodecki, R., Horodecki, P., and Horodecki, M., (1996) Quantum α-Entropy Inequalities: Independent Condition for Local Realism? Physics Letters A, 210, 377-381. https://doi.org/10.1016/0375-9601(95)00930-2
- 7. Horodecki, R., Horodecki, M. and Horodecki, M. (1996) Information-Theoretic Aspects of Inseparability of Mixed States, Physical Review A, 54, 1838-1843. https://doi.org/10.1103/PhysRevA.54.1838
- 8. Tsallis, C. (1988) Possible Generalization of Boltzmann-Gibbs Statistics. Journal of Statistical Physics, 52, 479-487. https://doi.org/10.1007/BF01016429
- 9. Tsallis, C., Mendes, R.S. and Plastino, A.R. (1998) The Role of Constraints within Generalized Nonextensive Statistics. Physica A, 261, 534-554. https://doi.org/10.1016/S0378-4371(98)00437-3
- 10. Abe, S. and Rajagopal, A.K. (2001) Nonadditive Conditional Entropy and Its Significance for Local Realism. Physica A, 289, 157-164. https://doi.org/10.1016/S0378-4371(00)00476-3
- 11. Tsallis, C., Lloyd, S. and Baranger, M. (2001) Peres Criterion for Separability through Nonextensive Entropy. Physical Review A, 63, Article ID: 042104. https://doi.org/10.1103/PhysRevA.63.042104
- 12. Abe, S. (2002) Nonadditive Information Measure and Quantum Entanglement in a Class of Mixed States of an Nn System. Physical Review A, 65, Article ID: 052323. https://doi.org/10.1103/PhysRevA.65.052323
- 13. Rossignoli, R. and Canosa, N. (2002) Generalized Entropic Criterion for Separability. Physical Review A, 66, Article ID: 042306. https://doi.org/10.1103/PhysRevA.66.042306
- 14. Rossignoli, R. and Canosa, N. (2003) Violation of Majorization Relations in Entangled States and Its Detection by Means of Generalized Entropic Forms. Physical Review A, 67, Article ID: 042302. https://doi.org/10.1103/PhysRevA.67.042302
- 15. Batle, J., Casas, M., Plastino, A.R. and Plastino, A. (2002) Conditional q-Entropies and Quantum Separability: A Numerical Exploration. Journal of Physics A, 35, 10311-10324. https://doi.org/10.1088/0305-4470/35/48/307
- 16. Batle, J., Casas, M., Plastino, A.R. and Plastino, A. (2003) Some Features of the Conditional q-Entropies of Composite Quantum Systems. European Physical Journal B, 35, 391-398. https://doi.org/10.1140/epjb/e2003-00291-3
- 17. Prabhu, R., Usha Devi, A.R. and Padmanabha, G. (2007) Separability of a Family of One-Parameter W and Greenberger-Horne-Zeilinger Multiqubit States Using the Abe-Rajagopal q-Conditional-Entropy Approach. Physical Review A, 76, Article ID: 042337. https://doi.org/10.1103/PhysRevA.76.042337
- 18. Sudha, Usha Devi, A.R. and Rajagopal, A.K. (2010) Entropic Characterization of Separability in Gaussian States. Physical Review A, 81, Article ID: 024303.
- 19. Rajagopal A.K., Sudha, Nayak, A.S. and Usha Devi, A.R. (2014) From the Quantum Relative Tsallis Entropy to Its Conditional Form: Separability Criterion beyond Local and Global Spectra. Physical Review A, 89, Article ID: 012331. https://doi.org/10.1103/PhysRevA.89.012331
- 20. Nayak A.S., Sudha, Rajagopal, A.K. and Usha Devi, A.R. (2016) Bipartite Separability of Symmetric N-Qubit Noisy States using Conditional Quantum Relative Tsallis Entropy. Physica A, 89, 286-295. https://doi.org/10.1016/j.physa.2015.09.086
- 21. Nayak, A.S., Sudha, Usha Devi, A.R. and Rajagopal, A.K. (2017) Biseparability of Noisy Pseudopure, W and GHZ States using Conditional Quantum Relative Tsallis Entropy. Quantum Information Processing, 16, 1-12. https://doi.org/10.1007/s11128-016-1491-9
- 22. Peres, A. (1996) Separability Criterion for Density Matrices. Physical Review Letters, 77, 1413-1415. https://doi.org/10.1103/PhysRevLett.77.1413
- 23. Horodecki, M., Horodecki, P. and Horodecki, R. (1996) Separability of Mixed States: Necessary and Sufficient Conditions. Physics Letters A, 223, 1-8. https://doi.org/10.1016/S0375-9601(96)00706-2
- 24. Wilde, M.M., Winter, A. and Yang, D. (2014) Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy. Communications in Mathematical Physics, 331, 593-622. https://doi.org/10.1007/s00220-014-2122-x
- 25. Müller-Lennert, M., Dupuis, F., Szehr, O. and Tomamichel, M. (2013) On Quantum Rényi Entropies: A New Generalization and Some Properties. Journal of Mathematical Physics, 54, Article ID: 122203. https://doi.org/10.1063/1.4838856
- 26. Tomamichel, M., Berta, M. and Hayashi, M. (2014) Relating Different Quantum Generalizations of the Conditional Rényi Entropy. Journal of Mathematical Physics, 55, Article ID: 082206. https://doi.org/10.1063/1.4892761
- 27. Pittenger, A.O. and Rubin, M.H. (2000) Separability and Fourier Representations of Density Matrices. Physical Review A, 62, Article ID: 032313. https://doi.org/10.1103/PhysRevA.62.032313
- 28. Pittenger, A.O. and Rubin, M.H. (2000) Note on Separability of the Werner States in Arbitrary Dimensions. Optics Communications, 179, 447-449. https://doi.org/10.1016/S0030-4018(00)00612-X