T. WANG ET AL. 161
Accelerated in a Direction Perpendicular to Their Planes.
I,” Proceedings of the Royal Society A, Vol. 201, No.
1065, 1950, pp. 192-196. doi:10.1098/rspa.1950.0052
[4] D. H. Sharp, “An Overview of Rayleigh-Taylor Instabil-
ity,” Physica D, Vol. 12, No. 1-3, 1984, pp. 3-18.
doi:10.1016/0167-2789(84)90510-4
[5] S. Chandrasekhar, “Hydrodynamic and Hydromagnetic
Stability,” Oxford University Press, London, 1961.
[6] G. Dimonte and M. B. Schneider, “Turbulent Rayleigh-
Taylor Instability Experiments with Variable Accelera-
tion,” Physical Review E, Vol. 54, No. 4. 1996, pp. 3740-
3743. doi:10.1103/PhysRevE.54.3740
[7] Y. A. Kucherenko1, A. P. Pylaev, V. D. Murzakov, et al.,
“Experimental Study into the Asymptotic Stage of the
Separation of the Turbulized Mixtures in Gravitationally
Stable Mode,” In: R. Young, J. Glimm and B. Boston, Eds.,
Proceedings of the 5th International Workshop on Com-
pressible Turbulent Mixing, Stony Brook University Press,
New York, 1996.
[8] J. W. Jacobs and J. M. Sheeley, “Experimental Study of
Incompressible Richtmyer-Meshkov Instability,” Physics
of Fluids, Vol. 8, No. 2, 1996, pp. 405-415.
doi:10.1063/1.868794
[9] E. E. Meshkov, N. V. Nevmerzhitsky, V. A. Pavlovskii,
et al., “Jelly Technique Applications in Evolution Study
of Hydrodynamic Instabilities on Unstable Plane and Cy-
lindrical Surfaces,” In: R. Young, J. Glimm and B. Bos-
ton, Eds., Proceedings of the 5th International Workshop
on Compressible Turbulent Mixing, Stony Brook Univer-
sity Press, New York, 1996.
[10] L. Houas, G. Jourdan, L. Schwaederlé, et al., “A New Large
Cross-Section Shock Tube for Studies of Turbulent Mix-
ing Induced by Interfacial Hydrodynamic Instability,” Shock
Waves, Vol. 13, No. 5, 2003, pp. 431-434.
doi:10.1007/s00193-002-0173-y
[11] S. H. R. Hosseini and K. Takayama, “Experimental Study
of Richtmyer-Meshkov Instability Induced by Cylindrical
Shock Waves,” Physics of Fluids, Vol. 17, No. 8, 2005, p.
084101. doi:10.1063/1.1964916
[12] P. M. Rightley, P. Vorobieff, R. Martin, et al., “Experi-
mental Observations of the Mixing Transition in a Shock-
Accelerated Gas Curtain,” Physics of Fluids, Vol. 11, No.
1, 1999, pp. 186-200. doi:10.1063/1.869911
[13] B. J. Balakumar, G. C. Orlicz, C. D. Tomkins, et al., “Si-
multaneous Particle-Image Velocimetry-Planar Laser-In-
duced Fluorescence Measurements of Richtmyer-Meshkov
instability Growth in a Gas Curtain with and without Re-
shock,” Physics of Fluids, Vol. 20, No. 12, 2008, p. 124103.
doi:10.1063/1.3041705
[14] J. W. Jacobs, “The Dynamics of Shock Accelerated Light
and Heavy Gas Cylinders,” Physics of Fluids, Vol. 5, No.
9, 1993, pp. 2239-2247. doi:10.1063/1.858562
[15] C. D. Tomkins, K. P. Prestridge, P. M. Rightley, et al., “A
Quantitative Study of the Interaction of Two Richtmyer-
Meshkov Unstable Gas Cylinders,” Physics of Fluids, Vol.
15, No. 4, 2003, pp. 986-1004. doi:10.1063/1.1555802
[16] S. Kumar, P. Vorobieff, G. Orlicz, et al., “Complex Flow
Morphologies in shock-Accelerated Gaseous Flows,” Phy-
sica D, Vol. 235, No. 1-2, 2007, pp. 21-28.
doi:10.1016/j.physd.2007.04.023
[17] S. Gupta, S. Zhang and N. J. Zabusky, “Shock Interaction
with a Heavy Gas Cylinder: Emergence of Vortex Bilay-
ers and Vortex- Accelerated Baroclinic Circulation Gen-
eration,” Laser and Particle Beams, Vol. 24, No. 3, 2003,
pp. 443-448.
[18] S. Zhang, N. J. Zabusky, G. Z. Peng, et al., “Shock gases
Cylinder Interactions: Dynamically Validated Initial Con-
ditions Provide Excellent Agreement between Experiments
and Numerical Simulations to Late-Intermediate Time,”
Physics of Fluids, Vol. 16, No. 5, 2004, pp. 1203-1216.
doi:10.1063/1.1651483
[19] S. Andronov and E. E. Meshkov, “Computational and Ex-
perimental Studies of Hydro-Dynamic Instabilities and
Turbulent Mixing,” Los Alamos National Laboratory, Los
Alamos, 1995.
[20] B. Goodwin an S. Weir, “Rayleigh-Taylor Instability Ex-
periments in a Cylindrically Convergent Geometry,” Los
Alamos National Laboratory, Los Alamos, 1996.
[21] K. O. Mikaelian, “Rayleigh-Taylor and Richtmyer-Meshkov
Instabilities and Mixing in Stratified Spherical Shells,”
Physical Review A, Vol. 42, No. 6, 1990, pp. 3400-3420.
doi:10.1103/PhysRevA.42.3400
[22] K. O. Mikaelian, “Rayleigh-Taylor and Richtmyer-Meshkov
Instabilities and Mixing in Stratified Cylindrical Shells,”
Physics of Fluids, Vol. 17, No. 9, 2005, pp. 094105.
doi:10.1063/1.2046712
[23] N. C. Hearn, T. Plewa, R. P. Drake, et al., “Flash Code
Simulation of Rayleigh-Taylor and Richtmyer-Meshkov
Instabilitites in Laser-Driven Experiments,” Astrophysics
and Space Science, Vol. 307, No. 1-3, 2007, pp. 227-231.
doi:10.1007/s10509-006-9226-5
[24] H. Lee, H. Jin, Y. Yu, et al., “On Validation of Turbulent
Mixing Simulations for Rayleigh-Taylor Instability,” Phy-
sics of Fluids, Vol. 20, No. 1, 2008, p. 012102.
doi:10.1063/1.2832775
[25] A. Marocchino, S. Atzeni and A. Schiavi, “Numerical Stu-
dy of the Ablative Richtmyer-Meshkov Instability of La-
ser-Irradiated Deuterium and Deuterium-Tritium Targets,”
Physics of Plasmas, Vol. 17, No. 11, 2010, p. 112703.
doi:10.1063/1.3505112
[26] L. Biferale, F. Mantovani and M. Sbragaglia, “High Re-
solution Numerical Study of Rayleigh-Taylor Turbulence
Using a Thermal Lattice Boltzmann Scheme,” Physics of
Fluids, Vol. 22, No. 11, 2010, p. 115112.
doi:10.1063/1.3517295
[27] L. F. Wang, W. H. Ye, W. S. Don, et al., “Formation of
Large-Scale Structures in Ablative Kelvin-Helmholtz In-
stability,” Physics of Plasmas, Vol. 17, No. 12, 2010, p.
122308. doi:10.1063/1.3524550
[28] M. A. Ullah, W. B. Gao and D. K. Mao, “Numerical Simu-
lations of Richtmyer-Meshkov Instabilities Using Conser-
vative Front-Tracking Method,” Applied Mathematics and
Mechanics, Vol. 32, No. 1, 2011, pp. 119-132.
doi:10.1007/s10483-011-1399-x
[29] T. Wang, J. S. Bai, P. Li, et al., “The Numerical Study of
Shock-Induced Hydrodynamic Instability and Mixing,”
Chinese Physics B, Vol. 18, No. 3, 2009, pp. 1127-1135.
doi:10.1088/1674-1056/18/3/048
Copyright © 2012 SciRes. WJM