
T. V. Anuradha / Natural Science 2 (2010) 464-468
Copyright © 2010 SciRes. OPEN ACCESS
467
467
Figure 6. The dark field TEM image of TiO2
(anatase) obtained from the mesolamellar com-
posite after heat treatment at 335 oC for 1 h.
Figure 7. The mechanism underlying the syn-
thesis of mesolamellar composite of titanium
nitride and CTAB in the medium enriched
with F- ions.
interdigitation of the surfactant tails allows the surfactant
headgroups to be spaced well apart. The above lamellar
composite has resulted in the formation of anatase form
of titania upon heat treatment at 335oC for 1h with the
average particle size less than 10 nm.
5. ACKNOWLEDGEMENTS
The support of the Council for Scientific & Industrial Research (India)
to T. V. Anuradha through a Senior Research Fellowship is gratefully
acknowledged.
REFERENCES
[1] Huang, Y. and Sachtler, W.M.H. (1997) Preparation of
mesostructured lamellar zirconia. Chemistry Communi-
cation, 1181-1182.
[2] Tanev, P.T. and Pinnavaia, T.J. (1996) Biomimetic tem-
plating of porous lamellar silicas by vesicular surfactant
assemblies. Science, 271(5253), 1267-1269.
[3] Fernado Henrique, P.S. and Pastore, H.O. (1996) Chem-
istry Communication, 7, 833-835.
[4] Feng, P., Xia, Y., Feng, J., Bu, X. and Stucky, G.D. (1997)
Synthesis and characterization of mesostructured alu-
minophosphates using the fluoride route. Chemistry
Communication, 949-950.
[5] Luan, Z., Zhao, D., He, H., Klinowski, J. and Kevan, L.
(1998) Tubular aluminophosphate mesoporous materials
containing framework silicon, vanadium and Manganese.
Journal of Physics and Chemistry B., 102(20), 1250-
1259.
[6] Kimura, T., Sugahara, Y. and Kuroda, K. (1999) Synthe-
sis and characterization of lamellar and hexagonal
mesostructured aluminophosphates using alkyltrimethy-
lammonium cations as structure directing agents. Chemi-
cal Materials, 11, 508-518.
[7] Froba, M. and Tiemann, M. (1998) Chemical Materials,
10(11), 3475-3483.
[8] Sayari, A., Moudrakovski, I., Reddy, J.S., Rateliffe, C.I.,
Ripmeester, J.A. and Preston, K.F. (1996) Chemical Ma-
terials, 8, 2080.
[9] Tiemann, M., Schulz, M., Jager, C. and Froba, M. (2001)
Mesoporous aluminophosphate molecular sieves synthe-
sised under non-aqueous conditions. Chemical Materials,
13(9), 2885-2891.
[10] Kaskel, S. and Schlichte, K. (2001) Porous silicon nitride
as a superbase catalyst, Journal of Catalysis, 201,
270-274.
[11] Kaskel, S., Farrusseng, D. and Schlichte, K. (2000) Syn-
thesis of mesoporous silicon imido nitride with high sur-
face area and narrow pore size distribution. Chemistry
Communication, 2481-2482.
[12] Anuradha, T.V. and Ranganathan, S. (1999) A compari-
son of the efficiency of three different synthetic routes
viz. sol-gel method involving templating, mechano-
chemical synthesis and combustion synthesis for the
production of nanostructured TiO2. Nanostructured Ma-
terials, 12, 1063-1073.
[13] Anuradha, T.V. and Ranganathan, S. (2000) Proceedings
of International Symposium on Amorphous and Nano-
crystalline Materials (Satellite Meeting of NANO-2000),
Inoue, A., Ed., Japan Society for the Promotion of Sci-
ence, 1.
[14] Tolbert, S.H., Sieger, P., Stucky, G.D., Aubin, S.M.J., Wu,
C-.C. and Hendrickson, D.N. (1997) Control of inorganic
layer thickness in self-assembled iron oxide/surfa- ctant
composites. Journal of American Chemical Society,
119(37), 8652-8661.