G. G. SLADE ET AL.

Copyright © 2012 SciRes. WJM

89

doi:10.1103/PhysRevLett.62.2755

[5] T. Dauxois, M. Peyrard and A. R. Bishop, “Entropy-

Driven DNA Denaturation,” Physical Revie w E , Vol. 47,

No. 1, 1993, pp. 44-47. doi:10.1103/PhysRevE.47.R44

[6] M. Joyeux and S. Buyukdagli, “Dynamical Model Based

on Finite Stacking Enthalpies for Homogeneous and In-

homogeneous DNA Thermal Denaturation,” Physical Re-

view E, Vol. 72, No. 5, 2005, Article ID: 051902.

doi:10.1103/PhysRevE.72.051902

[7] M. Peyrard, S. Cuesta-López and G. James, “Nonlinear

Analysis of the Dynamics of the DNA Breathing,” Jour-

nal of Biological Physics, Vol. 35, No. 1, 2009, pp. 73-89.

doi:10.1007/s10867-009-9127-2

[8] E. Zamora-Sillero, A. V. Shapovalov and F. J. Esteban,

“Formation, Control, and Dynamics of N Localized

Structures in the Peyrard-Bishop Model,” Physical Re-

view E, Vol. 76, No. 6, 2007, Article ID: 066603.

doi:10.1103/PhysRevE.76.066603

[9] S. Zdravkovic and M. V. Sataric, “DNA Dynamics and

Big Viscosity,” International Journal of Modern Physics

B, Vol. 17, No. 31-32, 2003, pp. 5911-5923.

doi:10.1142/S0217979203023513

[10] J. De Luca, E. Drigo Filho, A. Ponno and J. R. Ruggiero,

“Energy Localization in the Peyrard-Bishop DNA Mo-

del,” Physical Review E, Vol. 70, No. 2, 2004, Article ID:

026213. doi:10.1103/PhysRevE.70.026213

[11] M. Peyrard, “Nonlinear Dynamics and Statistical Physics

of DNA,” Nonlinearity, Vol. 17, No. 2, 2004, pp. 1-40.

doi:10.1088/0951-7715/17/2/R01

[12] G. Weber, “Sharpe DNA Denaturation Do to Solvent

Interaction,” Europhysics Letters, Vol. 73, No. 5, 2006, p.

806. doi:10.1209/epl/i2005-10466-6

[13] N. F. Ribeiro and E. Drigo Filho, “Using a One-Dimen-

Sional Lattice Applied to the Thermodynamic Study of

DNA,” Journal of Physics: Conference Series, Vol. 246,

2010, Article ID: 012037.

doi:10.1088/1742-6596/246/1/012037

[14] G. G. Slade, E. Drigo Filho and J. R. Ruggiero, “Stability

of Breathres in Simple Mechanical Models for DNA,”

Journal of Physics: Conference Series, Vol. 246, 2010,

Article ID: 012039.

doi:10.1088/1742-6596/246/1/012039

[15] S. W. Englander, N. R. Kallenbach, A. J. Heeger, J. A.

Krumhansl and A. Litwin, “Nature of the Open State in

Long Polynucleotide Double Helix—Possibility of Soli-

ton Excitations,” Proceedings of the National Academy of

Sciences, Vol. 77, No. 12, 1980, pp. 7222-7226.

doi:10.1073/pnas.77.12.7222

[16] J. L. Leroy, M. Kochoyan, T. Huynh-Dinh and M.

Guéron, “Characterization of Base-Pair Opening in the

Deoxynucleotide Duplexes Using Catalyzed Exchange of

the Imino Proton,” Journal of Molecular Biology, Vol.

200, No. 2, 1988, pp. 223-238.

doi:10.1016/0022-2836(88)90236-7

[17] M. Peyrard, S. Cuesta-López and D. Angelov, “Experi-

mental and Theoretical Studies of Sequence Effects on

the Fluctuation and Melting of Short DNA Molecules,”

Journal of Physics: Condesed Matter, Vol. 21, No. 3,

2009, Article ID: 034103.

doi:10.1088/0953-8984/21/3/034103

[18] J. M. Silva, E. Drigo Filho and J. R. Ruggiero, “Localiza-

tion and Delocalization of Energy in a Peyrard-Bishop

Chain,” The European Physical Journal E: Soft Matter

and Biological Physics, Vol. 29, No. 2, 2009, pp. 245-251.

doi:10.1140/epje/i2009-10475-9

[19] B. S. Alexandrov, L. T. Wille, K. Ø. Rasmussen, A. R.

Bishop and K. B. Blagoev, “Bubble Statistics and Dy-

namics in Double-Stranded DNA,” Physical Review E,

Vol. 74, No. 5, 2006, Article ID: 050901.

doi:10.1103/PhysRevE.74.050901

[20] N. Theodorakopoulos, “Thermodynamic Instabilities in

One-Dimensional Particle Lattices: A Finite-Size Scaling

Approach,” Physical Review E, Vol. 68, No. 2, 2003, Ar-

ticle ID: 026109. doi:10.1103/PhysRevE.68.026109

[21] S. Buyukdagli and M. Joyeux, “Theoretical Investigation

of Finite Size Effects at DNA Melting,” Physical Review

E, Vol. 76, No. 2, 2007, Article ID: 021917.

doi:10.1103/PhysRevE.76.021917

[22] D. J. Scalapino and M. Sears, “Statistical Mechanics of

One-Dimensional Ginzburg-Landau Fields,” Physical Re-

view B, Vol. 6, No. 9, 1972, pp. 3409-3416.

doi:10.1103/PhysRevB.6.3409

[23] G. Chen, “The Exact Solutions of the Schrodinger Equa-

tion with the Morse Potential via Laplace Transforms,”

Physical Review A, Vol. 326, No. 1-2, 2004, pp. 55-57.

doi:10.1016/j.physleta.2004.04.029

[24] E. D. Filho and R. M. Ricotta, “Morse Potential Energy

Spectra through the Variational Method and Supersym-

metry,” Physics Letters A, Vol. 269, No. 5-6, 2000, pp.

269-276. doi:10.1016/S0375-9601(00)00267-X

[25] R. A. S. Silva, E. D. Filho and J. R. Ruggiero, “A Model

Coupling Vibrational and Rotational Motion for DNA

Molecule,” Journal of Biological Physics, Vol. 34, No. 5,

2008, pp. 511-519. doi:10.1007/s10867-008-9111-2

[26] C. Tsitouras, “A Tenth Order Sympletic Runge-Kutta-

Nystrom Method,” Celestial Mechanics and Dynamical

Astronomy, Vol. 74, No. 4, 1999, pp. 223-230.

doi:10.1023/A:1008346516048