Advances in Linear Algebra & Matrix Theory, 2012, 2, 1-11
http://dx.doi.org/10.4236/alamt.2012.21001 Published Online March 2012 (http://www.SciRP.org/journal/alamt)
Schur Complement of con-s-k-EP Matrices
Bagyalakshmi Karuna Nithi Muthugobal
Ramanujan Research Centre, Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, India
Email: bkn.math@gmail.com
Received February 8, 2012; revised March 8, 2012; accepted March 15, 2012
ABSTRACT
Necessary and sufficient conditions for a schur complement of a con-s-k-EP matrix to be con-s-k-EP are determined.
Further it is shown that in a con-s-k-EPr matrix, every secondary sub matrix of rank “r” is con-s-k-EPr. We have also
discussed the way of expr essing a matrix of r ank r as a produ ct of con- s-k-EP r matrices. Necessary and sufficient condi-
tions for produ c t s of con -s- k-EPr partitioned matrices to be con-s-k-EPr are given.
Keywords: con-s-k-EP Matrices; Partitioned Matrices; Schur Complements
1. Introduction
Let be the space of n × n complex matrices of order n.
Let be the space of all complex n-tuples. For
nn
nn
C
n
C
A
C
, let
A
, AT, A*, AS, S
A,
A
, R(A), N(A) and
ρ(A) denote the conjugate, transpose, conjugate transpose,
secondary transpose, conjugate secondary transpose, Moo-
re-Penrose inverse, range space, null space and rank of A,
respectively . A solution X of the equation AXA = A is called
generalized inverses of A and is denoted by
A
. If
nn
A
C
, then the unique solution of the equations AXA
= A, XAX = X, *
[] ,
A
XAX*
[][2]XAXA is called
the moore penrose inverse of A and is denoted by
A
.
A matrix A is called con-s-k-EPr if

Ar
and
N(A) = N (ATVK) or R(A) = R (KVAT). Throughout this
paper let “k” be the fixed product of disjoint transposi-
tion in Sn = {1, 2, ···, n} and K be the associated per-
mute- tion matrix . Let us define the function
. A matrix A = (aij)

 
,,,
k1 k2kn
kxx xx
Cnxn is
s-k symmetric if
 
ij nkj 1,nki 1
for i, j = 1, 2, · · · , n.
A matrix ACnxn is said to be con-s-k-EP if it satisfies
the condition or equivalently N(A)
= N (ATVK). In addition to that A is con-s-k-EP
aa

0
s
AxA k ()x0
KVA
is con-EP or AVK i s c o n - E P a n d A i s con-s-k-EP
A
T
is con-s-k-EP. Moreover A is said to be con-s-k-EPr if A is
con-s-k-EP and of rank r. For further properties of
con-s-k-EP matrices one may ref er [1].
In this paper we derive the necessary and sufficient
conditions for a schur complement of a con-s-k-EP ma-
trix to be con-s-k-EP. Further it is shown that in a con-
s-k-EPr matrix, every secondary submatrix of rank r is
con-s-k-EPr. We have also discussed the way of express-
ing a matrix of rank r as a product of con-s-k-EPr matri-
ces. Necessary and sufficient conditions for products of
con-s-k-EPr partitioned matrices to be con-s-k-EPr are
given. In this sequel, we need the following theorems.
Theorem 1.1 [2]
Let nxn
A,B C
, then
1)

for all {1}
TT
NANBRBRAB BAA
AA
  
2)

for all {1}

TT
NANBRBRAB AAB
AA
Theorem 1.2 [3]
Let,
A
B
MCD
, then
 
 
AABMA CAABMA
M
MA CAMA





,,
and .
 

TT
TT
NANC NANB
NMANCNMA NB
Also,
 
 
MD ABMA
M
DC M DMA
 


 
 



,,
and ,
,,
.




T
TT T
T
TT T
NA NC
NA NBNMA NC
NMA NBNDNB
ND NCNMD NB
NMDNC
When
M
A

, then and
AB
MCCAB



TTT T
TTT T
A
PAA PC
MBPA BPC



,
C
opyright © 2012 SciRes. ALAMT
B. K. N. MUTHUGOBAL
2
where,

TT TT
P
AABBAA ACC

 .
Theorem 1.3 [4]
Let ,nn
A
BC
and nn
UC
be any nonsingular ma-
trix, then,
1)

() ()TT
RA RBRUAURUBU 
 
TT
 
2)
() ()NA NBNUAUNUBU
2. Schur Complements of con-s-k-EP Matrices
In this section we consider a 2r × 2r matrix M Partitioned
in the form,
A
B
MCD

(2.1)
where A, B, C and D are all square matrices. If a parti-
tioned matrix M of the form 2.1 is con-s-k-EP, then in
general, the schur complement of C in M, that is (M/C) is
not con-s-k-EP. Here, necessary and sufficient conditions
for (M/C) to be con-s-k-EP are obtained for the class
 
M
C

and
 
M
C

, analogous to that
of results in [5] . Now we consider the matrix


M
AMB
S
M
CMB


(2.2)
the matrix formed by the Schur complements of M over
A, B, C and D respectively. This is also a partitioned ma-
trix. If a partitioned matrix S of the form 2.2 is con-s-
k-EP, then in general, Schur complement of (M/C) in S,
that is [S/(M/C)] is not con-s-k-EP. Here, the necessary and
sufficient conditions for [S/(M/C)] to be con-s-k-EP
are obtained for the class

SM

C
and

SM

C
, analogous to that of results in [5]
As an application, a decomposition of a partitioned
matrix into a sum of con-s-k-EPr matrices is obtained.
Further it is shown that in a con-s-k-EPr matrix, every
secondary sub matrix of rank r, is con-s-k-EPr. Through-
out this section let k = k1k2 with.
1
2
0
0
K
KK

(2.3)
where K1 and K2 are the permutation matrices relative to
k1 and k2 and let “V” be the permutation matrix with
units in its secondary diagonal of order 2r × 2r parti-
tioned in such a way that
0
0
v
v
V

(2.4)
Theorem 2.5
Let S be a matrix of the form 2.2 with
NN
M
CMA and

N
S/N( )
M
CM

D,
then the following are equivalent:
1) S is a con-s-k-EPr matrix with k = k1k2 and V= 0
0
ν
ν
.
2) (M/C) is a con-s-k-EP,
S/M C
is con-s-k2-EP.

TT
M
CMNND and
 
TT
SMC MANN


.
3) Both the matrices
 
0MC
MAS MC




and


0
MC MD
SMC






are con-s-k-EPr.
Proof:
Since S is con-s-k-EPr with k=k1k2, KVS is Con-EP
and where K1 and K2 are permutation
matrices associated with k1 and k2 and .
1
2
KKo
oK

oν
Vνo



Consider

IMAMC
POI




,


SMC
IO
Q
M
DI






and

OSMC
LMC O




.
Clearly P and Q are non singular.
Now,








 
1
2
1
2
11
IO
OSMC
KO
OνIMAMC
KVPQL OK νOMDS MCIMCO
OI
IMAMCMDSMC MAMCOSMC
OKν
KνOMC O
MDS MCI
KνMC KνMDS MC



 

 





 



 







  


 

  



  
22
SMC
KνMA MCMCKνSMCMAMC MDSMCSMC
 
 
 

 
 


 
Copyright © 2012 SciRes. ALAMT
B. K. N. MUTHUGOBAL 3
Since,

NMC NMA
have
, by Theorem 1.1 we

-
M
A= MAM CM C,
that is,

22
-
KνMA=Kν
M
AMC MC.
Since,

NS MCN MD
 ,
we have by Theorem 1.1
 
M
DMDSMC SMC


.
That is,
  
11
KνMD Kν
M
DSMCSMC


.
Also,

 

2
2.
KνSMC
M
AMC MDSMCSMC
KνMB




Since,


SMCMBMAMC MD


 ,
therefore,

 




11
22
1
2
1
2
KνMC KνMD
KVPQL KνMA KνMB
OKνMA MB
KνOMCMD
K
OMAM
Oν
OKMCMD
νO
KVS















B
)).
)
L
as


OMC
L
SMC O






Thus KVS is factorized as KVS = KVPQL.
Hence and
()(ρKVS ρL()(NKVS NL
But S is con-s-k-EP. Therefore, KVS is con-EP (By
Theorem 2.11 [1]).
()() ()(
TT
N KVSN KVSN LNS VK
Therefore, by using Theorem 1.1 again we get,
TT
SVKSVKLL
holds for every . L
We choose




 
 
1
2
2
1
12
12
T
T
T
TT
TT
TT
TT
M
AMBKO
Oν
SVK
M
CMD OK
νO
MA MCOνK
νKO
MB MD
MC νKMAνK
MD νKMBνK




















As the equation (at the bottom of this page).
and since

 
 
11
1
1
T
T
T
ρKνMCρKν
M
C
ρMC νKρMC
NMCN MC νK






Hence, (M/C) is con-s-k-EP.
From
 
11 ,
TT
MD νKMDν
K
MC MC
is follows that

 
1
11
() T
TT
NMCN MD νK
NMCνKNMDν
K




 
(using (M/C) is con-s-k-EPr).
Therefore
 
TT
NMC NMD.
After substituting
 
M
BMCMAMCMS


 D
and using
  
22
TT
MA νKMAν
K
MC MCSS


in
  
22
TT
MB νKMBνKMC MCSS


 
 
 
 




 
  
 
12
12
12
12
12
12
1
TT
TT
TT
TT
TT
TT
TT
T
MC νKMAνK
SVK SVKLL
MD νKMBνK
OMC
MC νKMAνKOSMC
MC O
SMC OMD νKMBνK
MC νKMC MC AνKSMCSMC
MD νKMCMC BνKSMCSMC
MC νKMC














 












 
 
1
11
11
T
TT
TT
νKMC MC
KνMC KνMCMCMC
NMC NKνMCNMC νK


 

Copyright © 2012 SciRes. ALAMT
B. K. N. MUTHUGOBAL
4
We get,
   
22
TT
MB νKMBν
K
MC MCSS




 
2
2
T
T
MCMAMCMBνK
MC
MA MCMBνKMCMC
S
S
SS








 

 
22
2
2
T
T
T
T
MC νKMAMCMBν
K
MC νKMC MC
MA MCMBνKMC MC
S
SSS





   




 
 
2
2
2
T
T
T
SMC νK
SMC ν
K
SMC SMC
NS MCNSMCνK


   



By Theorem 1.1
and since

 
2
TT
ρKνSMC ρSMCρSMC

we get,


2
T
NKνSMC NSMC




2
NSMCν
K
NS MC


SMC
is con-s-k2-EPr.
Further
  
 







 
22
2
22
22
TT
T
TT
TT
TT
MA νKMAν
K
SMC SMC
NS MCNMAνK
NKνSMC NMAνK
NSMCνKNMAνK
NS MCNMA











Thus 2) holds 2) 1). Since
NMC NMA,
 
TT
NMC NMD,
NS MCNMD

 and

TT
NS MCNMA


holds, according to the
assumption by applying Theorem 1.2,
K
VS is given
by the formula





 





















111
11 2
221
221 2
† †
††
112
† †
1 2
KνMC KνMCKνMD
KνMC KνMD KνMC
KνMCKνMA KνMC
KVS
KνMC KνMA KνMC KνMC
KνMCMCMDMCMA KνMCMCMDMCνK
MCM AKνMCMCνK
S
S
SS
SS
SS




 
 

 
 
 
 
 
(2.6)










































11
1
1
2
††
11 12
1
2
21 2
2
1
2
21
KνMC KνMC
KνMC MC
KνMCMC MDMC
MDMC νK
MA KνMCKνMD MCKνMDMC ν
K
MA KνMC
KVS KVS
KνMA MC
KνMAKνMC KνMA MC
MDMC νK
MDMCMDKνMC
KνMB MC
KνMBMCMA KνMC
S
S
SS
S
S
S
S

 











2
νK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Copyright © 2012 SciRes. ALAMT
B. K. N. MUTHUGOBAL 5
According to Theorem 1.1 the assumptions N(M/C)
N(M/A) and
  
TT
M
CMD MNN SC

is invariant for every choice of

M
C
Hence
 


 

22
211
KνMB KνMC
KνMC KνMC KνMD
S 

Therefore
 




2
2211
KνMC
KνMB KνMA KνMC Kν
M
D
S












21 1
22
KνMAKνMC Kν
M
D
KνMB KνMC
S




 

2
2
KνMB MCMD
KνMB MC
S



 
M
AMC MDMBMCS

Further using





2
22 2
KνMA
KνMCKν
M
CKvMASS  

and
 





1111
KνMD KνMC Kν
M
CKvMD.
That is

 

2
22
2
KνMA
KνSMCSMC νKKν
2
M
A
KK νMCMCMA
SS


  

 
M
AMCMCMSS

A
and
  

11 11
1
KνMD KνMC MC νKKν
M
D
KνMC MCMD

M
DMCMCMD,

K
VS
K
VS reduces to the form,
As the Equation (a) below.
Again using







1
12 2
KνMD
KνMD KνMCKνMC
SS


and








2211
KνMA KνMAKνMC Kν
M
C
that is,
 
M
DMDMCMCSS
 
 
and

††
,
M
AMAMCMCKVSKVS
reduces to the form
As the Equation (b) below.
Since,
M
C is con-s-k1-EP
1
Kν
M
C is
con-EP.
Therefore we have
 
 
11
11
KνMC KvMC
K
vMC KvMC
 
 
 
 
Similarly, since
M
CS
is con-s-k2-EPr. We
have,






22
21
KνMC KνMC
KνMC KνMC
S
SS


 
 
Thus

††
K
VS KVSKVSKVS
††
K
VSS VKS VKKVS
KVSSVKSS
KVSSS SKV



S is con-s-k-EP (by Theorem 2.11 [1]).
Thus 1) holds 2)
3)
 
2
22
0KνMC
KνMA KνMC
S




is con-EP if and only if
1
Kν
M
C and
2
Kν
M
CS
are con-EP.
Therefore,
 
1
2
0
00
00
MC
K
MA MC
KS
ν
ν









 

 







11
22
0
0
KνMCKνMC
KVS KVS
KνMC KνMC
SS







(a)
 







11
22
0
0
KνMCKνMC
KVS KVS
KνMC KνMC
SS







(b)
Copyright © 2012 SciRes. ALAMT
B. K. N. MUTHUGOBAL
6
is con-EP if and only if
1
Kν
M
C and

2
Kν
M
Care
con-EP.

 
0MC
MA MC
S




is con-s-k-EP if and only if

M
C is con-s-k1-EP and

M
CS
is con-s-k2-EP .
Further

NMC NMA
and
 
TT
NMCNMDS


Also


11
2
0
KνMC KνMD
KνSMC



is con-EP if
and only if and

2
KνSMC
and con-EP.
Therefore,


0
MC MD
SMC






is con-s-k-EP if
and only if

M
Cis con-s-k1-EP and

SMC


is
con-s-k2-EP further

TT
NMC NMD
and
 
T
NS MCNMD

 .
This proves the equivalence of 2) and 3). The proof is
complete.
Theorem 2.7
Let S be a matrix of the form (2.2) with

TT
NMC NMD
and
 
TT
NMCNMAS

 , then the following are
equivalent.
1) S is con-s-k-EP with k = k1k2 where
1
2
0
0
K
K
K



and
0
0
Vν
ν



2)

M
C is con-s-k1-EP. Further and
M
CS

is con-s-k2-EP. Further
NMC NMA and
 
NMCNMDS

3) Both the matrices

 
0MC
MA MC
S






and


0
MC MD
SMC






are con-s-k-EP.
Proof
This follows from Theorem 2.5 and from the fact that
S is con-s-k-EP S
T is con-s-k-EP.
In particular, when

T
M
DMA, we got the fol-
lowing.
Corollary 2.8
Let S =


T
M
AMB
MCM A




with

NMC NMA and
 
T
A.
uiva
NMCNMS

Then the following are eqlent.
1) S is a con-s-k-EP matrix.
d 2) (M/C) is con-s-k1-EP an

M
CS


is con-s-
k2
e matrix
-EP.
3) Th
 
0MC
MA MC
S






is con-s-k- EP.
Rons taken on S in Theorem 2.6 and Theo-
emark 2.9
The conditi
rem 2.7 are essential. This is illustrated in the following
example.
Let
A
B
MCD



1
0
11
A

,
11
01
B


,11
01
C


,10
11
D


10 11
11 01
1110
0111
M






 
11 12
,
21 11
MA MB
 

 
 
,
 
121 1
,
112 1
MCMD




,

M
AMB
S
M
CMD



1112
21 11
121 1
11 21
S













1000
01 00
0010
0001
K













0001
0010
01 00
1000
V













0001
0010
01 00
1000
KV













Now
KVS is symmetric of rank 3 s-k-EP.
11 21
121 1
21 11
1112
KVS
 












,
KVS is con-EPS is con-

1
M
CM MDMCB MAS



11
21
MA



,

12
11
MB 


Copyright © 2012 SciRes. ALAMT
B. K. N. MUTHUGOBAL 7

11
21
MD



,

112
1
11
3
MC




33
03
SMC 




Hence

2
03
33
KνSMC 




is con-EP,
that is

S
MC
is con-s-k2-EP.
, Also

1
12
11 KνM

11
1 2
MCC
 
 

 
is
con-EP.
1
Kν
M
C is con-EP
M
C is con-s-
EP. ver
k1-
Moreo

C NMA
NM and
 
TT
NMC . But NMD
 
NS MDNMD
 and

T
NS MCNMA


Further
.
T

 
1200
011 00
1133
21 03
KV MAS MC
MC











is not
con-EP.
Therefore,


0


MCMD
SMC

is not con-s-k-EP.
Thus the Theorem 2.5 as well as
the corollary 2.8 fail.
Rrem 2.5 and Theorem 2.7 that
P matrix of the form 2.2 and k = k1k2
ivalent.
nd the Theorem 2.7 a
emarks 2.10
We conclude from Theo
for a con-s-k-E
where 1
2
k0
0k
K


and 0
0
ν
νν



the following
are equ

 
,NMC NMA
NS MCNMD


2.11
 
 
,
T
TT
NMC NMD
NS MCNMA


T
2.12
However this fails if we omit the condition t
con-s-k-EP. hat S is
For example,
Let
A
B
D
MC


, where
, ,
1
1
,
1
01
A

0
10
B


10
01
C


11
01
D


11 01
01 10
10 11
01 01
M
 
 
 




01
,,, 10
ABCDM A



,

02
10
MB



,

11
11
MC 



,

10
12
MD 



M
AMB
S
M
CMD



010 2
111 0
11 10
11 12
S

 
 
 





10 00
01 00
00 10
00 01
K






00 01
00 10
01 00
10 00
V













11 12
11 10
1010
0102
KVS








is not con-EP.
Therefore S is not con-s-k-EP.
Here

11
KνMC

111

 P. is con-E
M
C is con-s-k-EP.
 

11
T
KνMD KνMD,

11
T
T
KνMDMDνK,
11
T
MD νKA ν
K
,
νMC ν
M
A,
and
 
TT
νMC ν
M
D.
He
SMC
is iependent of the choice of ndnce

M
C
.
Now
Copyright © 2012 SciRes. ALAMT
B. K. N. MUTHUGOBAL
Copyright © 2012 SciRes. ALAMT
8
Let S be of the form 2.2 with
 
.ρSρ
M
Cr
Then S is con-s-k-EPr and K and V are of the form 2.3
and 2.4 if and only if (M/C) is con-s-k1-EPr and

SMCMBMAMC MD

 
02 01
,
10 10
MB MA
 

 
 
,
 
††
12
T
MAMC νKMCMDνK.
 
1
101 1
1
,
121 1
2
MD MC
 

 


Proof
Let S be of the form 2.2 and let k= k1k2 with
and then
1
2
0
0
k
Kk



0
0
ν
νν


01
11
SMC






11
22
KνMC Kν
M
D
KVS KνMAKν
M
B



.

2
11
01
KνSMC





is not con-EP.
Since
,ρSρ
M
Cr

SMC 

is not con-s-
Also,
k2-EP.
1
ρKVS ρKν
M
Cr
by [ 6]
 
TT
NS MCNMD
. But
,NMC NMA

TT
NMC NMD
and
 
NCNMD
.
Thus, 2.12 ho lds while 2.1 fails.
Remark 2.13 r a con-s-k-EP mar-
2.6 gives
S M
 
1
200
KVSKνMC
KνSMC SMC
1.
 

It is clear by Remark 2.10 that fo

By Theorem 1.1 these relation equivalent to
22 ,KνMA Kν
M
AMC
trix S, formula
K
VS if and only if either
2.
of the form 2.2 with K and V are of
d 2.4 respectively, for wh ich
11 or 2.12 holds.
Corollary 2.14
Let S be a matrix
 
11
KνMD Kν
M
CMCMD and
 
22
KνMBKν
M
AMC MD

K
VS
the forms 2.3 an is
given by the formula then S is con-s-k-EP if and only if
both (M/C) and

SMC

and con-s-k-EP
Proof
This follows em 2.5 and using
. Let us consider the matrices

0
IMAMC
P
I




from TheorRemark
ow we proceed to prove the most important
Th
2.13. N

0
I
MC MD
Q
I




and

00
0
LMC



eorem.
Theorem 2.15

 

 

 
 

††
1
2
1
2
††
1
2
11
22
00
00
0
0000
00
000
0
0
Kν
I
MA MCIMCMD
KVPLQ MC
KνII
KνMA MCMCIMCMD
KνMC I
MAMCMCMAMC MCMCMC
Kν
KνMCMC MCMD
KνMC KνMC MCMD
KνMA MCMCK










 






 

 









 
 


11
22
1
2
00
00
νMA MCMD
KνMC KνMD
KνMA KνMB
KMAMB
ν
KMCMD
ν
KVS
















B. K. N. MUTHUGOBAL 9
Thus KVS can be factorized as KVS = KVPLQ. Since
KVP = (KVQ)T.
We have KVPTVK=Q. Therefore,


T
T
T
K
VSKVPLKVP VK
K
VP LKVKVP
K
VP KVL KVP
[since LVK = KVL].
Since (M/C) is con-s-k1-EPr. We have k1v(M/C) is
con-EPr.
Therefore
(Theorem 2.11 of [1])
By Theorem 1.3
assume that S is con-s-k-EPr.
Since S is con-s-k-EPr, KVS is con-EPr. Since KVS =
KVPLQ, one choic e o f

() T
NLN LVK

T
NKVL NKVL
 
TT
NKVP KVLKVPNKVP KVLKVP


T

()
T
NKVSN KVS




T
NS NSVK



S is con-s-k-EP (Theorem 2.11 of [1]).
Since

ρSr, S is con-s-k-EPr.
Conversely, let us
 
11
00
0
K
VSQPVK KVS
MC




is con-EP

()
T
NKVSN KVS


By Theorem 1.1
T

.
T
K
VS KVSKVSKVS
That is,
 
 
 
 
11
22
νMAKν
11
22
T
T
MC KνMD
KMB
KνMC KνMD
KνMAKνMB





Kν

1
00
0
QMC




 
 
1
2
11
KνMC Kν
2
M
D
PνMA
VK KKν
M
B



As the equation (at the bottom of this page).
or conversely,





11
TT
KνMC Kν
M
CMCMC





21
TT
KνMC Kν
M
CMCMD and





11
TT
KνMC Kν
M
CMCMC From
it follows that
 

1
T
NMCN KνMC
 
1
T
NMCNMC ν
K
MC
is con-s-k-EP.
Since
.ρ
M
Cr
M
C is con-s-k-EPr.
From





21
TT
KνMA Kν
M
CMCMD
it follows that.
Now,













2
1
††
1
††
1
1
1
T
T
T
T
TT
T
TT
T
KνMA MC
MD MCKνMC MC
MCMC MCKν
MDMCMC MCνK
MD MCνK
KνMCMD






(By theorem 2.11 [)
T
MD
1]

††
21
T
KνMA MCMCMDν
K


 
12
T
MA MCνKKνMCMD
 
12
T
νKMCMDνK
MA MC
Mark 2.16
hen (M/A) is non singlular, KV(M/A) is automti-
cally con-EPr and (M/A) is con-s-k-EPr and Theorem 2.15
reo the following.
Let S be of the form 2.2 with C non singular and
Wa
duces t
Corollary 2.17
[]ρSρ
M
C. Then S is con-s-k-EP with K = k1k2
and


1
2
0
0
ν
T
νMAMCν
K
ν


MC
MDνK


.










 







11 1
22 11
TT TT
TT TT
KνMC KνMC Kν
MC MC
1
KνMA
M
CMCMD
KνMDKνMB KνMDMC MCKν
M
CMCMD
 
 
 
 

Copyright © 2012 SciRes. ALAMT
B. K. N. MUTHUGOBAL
10
Remark 2.18
When k(i) = i, we have K1 = K2 = I, then the Theorem
2.15 reduces to the result for con-s-EP matrices.
When KV = I then Theorem 2.15 reduces to Theorem
3 of [5].
Remark 2.19
Theorem 2.15 fails if we relax the condition on the
rank of S.
For example, let us consider the matrix S and K given
in Remark 2.10, 2
But
[][]ρKVSρS
.



11,ρKVM CρMC



1
() ()ρKVS ρKνMA ρSρ.
M
A
KVS is not con-EP
Therefore S is not Con-s-k-EP.
However,

1
100111
01 1011
011 111
10 1111
KVM C



 





is con-EP.
Therefore (M/C) is con-s-k1-EP and

111
1
11
2
MC




,

1
1
11
1
11
2
A MCνK





,
M

110
MC MDνK

.
210


= K1K2, where
Thus the theorem fails.
Corollary 2.20
Les S be a 2r x 2r matrix of rank r. Thus S is
con-s-k-EPr with K
1
2
0
0
K
K



and V = 0
0
ν
ν



every secondary sub
matrix of S of rank r is con-s-k-EPr.
trix then KVS is an
co ix by Theorem 2.11 [1]. Let
Proof
Suppose S is con-s-k-EPr ma
n-EPr matr
1
Kν
M
C
such thatbe any Principal submatrix of KVS

1
[]ρKVS ρKν,
M
Cr

tation matrix P such that, then there exists a permu-
  
 
11
22
TTKνMC Kν
M
D
KVSPKVSPMA νKνK
M
B

with

1.ρKVSρKν
M
Cr


By [4]

T
K
VS
2.15 that
is
con-EP . Now we conclude from Theorem
r
1
Kν
M
C is con-EPr. That is (M/C) isr
Si
s under which a partitioned matrix is
de
k-EP matrices ale-
mentary summands of S if
S = S1 + S2 and
con-s-k1-EP
nce [M/C] is arbitrary it follows that every secondary
submatrix of rank r is con-s-k-EPr. The converse is ob-
vious.
The condition
composed into complementary sum and S of con-s-
re given. S1 and S2 and called comp
12
.ρSρSρS
Theorem 2.21
Let S be of the form 2.2 with
,ρSρMC ρSMC

(SMCMBMAMCMD
 where
and K is of the form 2.3 and V is of the fo rm 2.4. If ( M/C)
is con-s-k1-EP and
SMC
is con-s-k2-EP matrices
such that
 
††
12
T
MA MCνKMCMDνKand
 
21
T
MDS MCνKSMCMCνK


th
Proof
Let us consider the matrices,
en S can be decomposed into complementary sum-
mands of con-s-k-EP matrices.
 

1
M
CMCMCMD
S
M
AMC MCMAMC MD

and





0IMCMC





2
)
MD
SMA
SM
C
IMCMC







.
toTaking in account that
 
M
CNMAMCMA
 
CvKNMA MCMCvKand
T
NM 11











11
††
1
††
S
MCMAMCMD MAM
MAMC MDMAMCMCMC MD
MA MCMDMAMCMC
MAMC MMAMCMD





††
CMDMC MCMCMD
MC MD
0
MC MC
D
Copyright © 2012 SciRes. ALAMT
B. K. N. MUTHUGOBAL 11
ain by [6] that We obt
 
1.ρSρ
M
C Since (M/C) is con-s-k1-EP and









††
1
1
1
T
T
C MC
MCMC νK
MA MCνK
MC MDνK
at is S is con-s-k1-EP.
††
1
M AMCMνK
MA MC
2
MC MCMCMD νK
We have by Theorem 2.15, th1

Since
 
,ρSρMC ρSMC
Theorem 1 of [6], gives
 
,NS MCNIMCMCMD




 
T
T
NS MCNMCIMCMC



 
and


0
IMCMC MDSMC
IMC MC





 

Therefore,
2
SSMC
0.
Thus by [7] we get
 
2.ρSρSMC

Thus
12
.ρSρSρS
Further using
 
11
MC MCKνKν
M
CMC
We obtain,

   
 
 
2
††
11
† †
† †
11
11
(
T
TT
TT
TT
T
IMCMCMDSMCνK
IMCMCSMC MAνKSMCvAνKIMC MC
S MCvAIMCMCKνSMC vAKνMC MC Kν
SMCMAKνKνMC MC






 
 
 
 








 
 
 
 


 







1
 

AIMCC νK

1
1
T T
T
T
T
SMCMAKνIMCMC
M
 





 




REFERENCES
[1] S. Krishnamoorthy, K. Gunasekaran and B. K. N. Mut-
hugobal, “con-s-k-EP Matries,” Journal of Mathematical
Sciences and Engineering Applications, Vol. 5, No. 1,
2011, pp. 353-364.
[2] C. R. Rao and S. K. Mitra, “Generalized Inverse of Ma-
trices and Its Applications,” Wiley and Sons, New York,
1971.
[3] ar
ix Equations,” Mathematical Proceedings of the
, Vol. 521, 1959,
[4] T. S. Baskett and I. J. Katz, “Theorems on Products of
EPr Matrices,” Linear Algebra and Its Applicationsol.
2, No. 1, 1969, pp. 87-103.
A. R. Meenakshi, “On Schur Complements in an EP Ma-
trix, Periodica, Mathematica Hungarica,” Periodica
Mathematica Hungarica, Vol. 16, No. 3,, pp. 193-
200.
[6] D. H. Carlson, E. Haynesworth and T. H. Markham, “A
ation of the Schur Complme nt by Means of t he
nrose Inverse,” SIAM Journal on Applied Ma-
, 1974, pp. 169-175.
[7] Greviue, “Generalized Invers
Theory and Applications,” Wiley and Sons, New York,
[8] y, K. Gunasekaran and B. K. N. Mut-
hugobal, “On Sums of con-s-k-EP Matrix Thai Journal
atics, in Press, 2012.
SM
C M

R. Penrose, “On Best Approximate Solutions of Line
Matr , No. Cambridge Philosophical Society
pp. 17-19.
, V
[5]
1985
Generaliz e
Moore-Pe
thematics, Vol. 26, No. 1
A. B. Isral and T. N. E.es
1974.
S. Krishnamoorth,”
of Mathem
Copyright © 2012 SciRes. ALAMT