U. KULSHRESHTHA ET AL.

114

D-Branes,” Physics Letters, Vol. B404, No. 3-4, 1997, pp.

264-270.

[6] C. Schmidhuber, “D-Brane Actions,” Nuclear Physics,

Vol. B467, No. 1-2, 1996, pp. 146-158.

doi:10.1016/0550-3213(96)00092-2

[7] S. P. de Alwis and K. Sato, “D-Strings and F-Strings

rn-Infeld Action and

(96)00173-3

from String Loops,” Physical Review, Vol. D53, No. 12,

1996, pp. 7187-7196.

[8] A. A. Tseytlin, “Self Duality of Bo

Dirichlet Three-Brane of Type IIB Super String Theory,”

Nuclear Physics, Vol. B469, No. 1-2, 1996, pp. 51-67.

doi:10.1016/0550-3213

nal of Theoretical

[9] U. kulshreshtha and D. S. Kulshreshtha, “Hamiltonian

and Path Integral Formulations of the Nambu-Goto D1

Brane Action with and without a Dilaton Field und

Gauge-Fixing,” International Jour

er

Physics, Vol. 43, No. 12, 2004, pp. 2355-2369.

doi:10.1007/s10773-004-7704-5

[10] U. kulshreshtha and D. S. Kulshreshtha, “Hamiltonian

and Path Integral Formulations of the Born-Infeld-

Nambu-Goto D1 Brane Action with and witho

ton Field under Gauge-Fixing,” ut a Di

International Journal of

la-

Theoretical Physics, Vol. 44, No. 5, 2005, pp. 587-603.

doi:10.1007/s10773-005-3985-6

[11] U. kulshreshtha and D. S. Kulshreshtha, “Hamiltonian

and Path Integral Formulations of the Dirac-Born-Infeld-

Nambu-Goto D1 Brane Action with and without a Dila

ton Field under Gauge-Fixing-

,” European Physica

of Theoreti-

l

Journal, Vol. C29, No. 3, 2003, pp. 453-461.

[12] U. Kulshreshtha and D. S. Kulshreshtha, “Hamiltonian

and Path Integral Quantization of the Conformally Gauge-

Fixed Polyakov D1 Brane Action in the Presence of a

Scalar Dilation Field,” International Journal

cal Physics, Vol. 48, No. 4, 2009, pp. 937-944.

doi:10.1007/s10773-008-9866-z

[13] U. kulshreshtha and D. S. Kulshreshtha, “Conformally

Gauge-Fixed Polyakov D1 Brane Action in the Presence

of a 2-Form Gauge Field: The Instant-Form a

Form Hamiltonian and Path nd Front-

Integral Formulations,”

5-340.

Physics Letters, Vol. B555, No. 3-4, 2003, pp. 255-263.

[14] D. S. Kulshreshtha, “Polyakov D1 Brane Action on the

Light-Front,” Light-Cone 2008: Relativistic Nuclear and

Particle Physics, Mulhouse, 7-11 July 2008.

[15] U. Kulshreshtha and D. S. Kulshreshtha, “Light-Front

Hamiltonian and Path Integral Quantization of the Con-

formally Guage-Fixed Polyakov D1 Brane Action,” Journal

of Modern Physics, Vol. 2, No. 5, 2011, pp. 33

doi:10.4236/jmp.2011.25041

[16] U. Kulshreshtha and D. S. Kulshreshtha, “Light-Front

Hamiltonian and Path Integral Formulations of the Con-

formally Gauge-Fixed Polyakov D1 Brane Action in t

Presence of a Scalar Dilaton he

Field,” Journal of Modern

Physics, Vol. 2, No. 8, 2011, pp. 826-833.

doi:10.4236/jmp.2011.28097

[17] D. S. Kulshreshtha, “Light-Front Quantization of the

Polyakov D1 Brane Action with a Scalar Dilaton Field,”

Light-Cone 2007: Relativistic Hadronic

Physics, Columbus, 14-18 Maand Nuclear

y 2007.

0.

[18] D. S. Kulshreshtha, “String Gauge Symmetries of the

Light-Front Polyakov D1 Brane Action,” Light-Cone In-

ternational Workshop on Relativistic Hadronic and Par-

ticle Physics, Valencia, 14-18 June 201

[19] D. S. Kulshreshtha, “Light-Front Quantization of Con-

formally Gauge-Fixed Polyakov D1-Brane Action in the

presence of a Scalar Axion Field and an

1U Gauge

Field,” Few Body Systems, Vol. 42, No. 1-4, 2011.

[20] P. A. M. Dirac, “Generalized Hamiltonian Dynamics,”

Canadian Journal of Mathematics, Vol. 2, 1950, pp. 129-

148. doi:10.4153/CJM-1950-012-1

[21] M. Henneaux and C. Teitleboim, “Quantization of Gauge

Annals Physics, Vol.

Systems,” Princeton University Press, Princeton, 1992.

[22] P. Senjanovic, “Path Integral Quantization of Field Theo-

ries with Second-Class Constraints,”

100, No. 1-2, 1976, pp. 227-261.

doi:10.1016/0003-4916(76)90062-2

[23] U. Kulshreshtha, “Hamiltonian, Path Integral and BRST

Formulations of the Chern-Simons-Higgs Theory in the

Broken Symmetry Phase,” Physic

6, 2007, pp. 795-802. a Scripta, Vol. 75, No.

31-8949/75/6/009doi:10.1088/00

n

[24] U. Kulshreshtha and D. S. Kulshreshtha, “Gauge-Invari-

ant Reformulation of the Vector Schwinger Model with a

Photon Mass Term and Its Hamiltonian, Path Integral and

BRST Formulations,” International Journal of Moder

Physics, Vol. A22, No. 32, 2007, pp. 6183-6201.

[25] U. Kulshreshtha, “Hamiltonian and BRST Formulations

of the Nelsen-Olesen Model,” International Journal of

Theoretical Physics, Vol. 41, No. 2, 2002, pp. 273-291.

doi:10.1023/A:1014058806710

[26] P. A. M. Dirac, “Forms of Relativistic Dynamics,” Re-

views of Modern Physics, Vol. 21, No. 3, 1949, pp. 392-

399. doi:10.1103/RevModPhys.21.392

[27] S. J. Brodsky, H. C. Pauli and S. S. Pinsky, “Quantum

ian, Path Integral

, 2007, pp.

Chromodynamics and Other Field Theories on the Light-

Cone,” Vol. 301, No. 4-6, 1998, pp. 299-486.

[28] U. Kulshreshtha, “Light-Front Hamilton

and BRST Formulations of the Nelsen-Olsen (Bogo-

mol’nyi) Model in the Light-Cone Gauges,” International

Journal of Theoretical Physics, Vol. 46, No. 10

2516-2530. doi:10.1007/s10773-007-9367-5

[29] U. Kulshreshtha, D. S. Kulshreshtha and J. P. Vary,

“Light-Front Hamiltonian, Path Integral and BRST For-

mulations of the Chern-Simons-Higgs Theory under Ap-

propriate Gauge-Fixing,” Physics Scripta, Vol. 82, No. 5,

2010, p. 055101. doi:10.1088/0031-8949/82/05/055101

[30] U. Kulshreshtha, D. S. Kulshreshtha and J. P. Vary,

“Light-Front Hamiltonian, Path Integral and BRST For-

mulations of the Chern-Simons Theory under Appropriate

Gauge-Fixing,” Journal of Modern Physics, Vol. 1, No. 6,

2010, pp. 385-392.

[31] U. Kulshreshtha, D. S. Kulshreshtha and J. P. Vary,

“Light-Front Hamiltonian, Path Integral and BRST For-

Copyright © 2012 SciRes. JMP