
U. KULSHRESHTHA ET AL.
114
D-Branes,” Physics Letters, Vol. B404, No. 3-4, 1997, pp.
264-270.
[6] C. Schmidhuber, “D-Brane Actions,” Nuclear Physics,
Vol. B467, No. 1-2, 1996, pp. 146-158.
doi:10.1016/0550-3213(96)00092-2
[7] S. P. de Alwis and K. Sato, “D-Strings and F-Strings
rn-Infeld Action and
(96)00173-3
from String Loops,” Physical Review, Vol. D53, No. 12,
1996, pp. 7187-7196.
[8] A. A. Tseytlin, “Self Duality of Bo
Dirichlet Three-Brane of Type IIB Super String Theory,”
Nuclear Physics, Vol. B469, No. 1-2, 1996, pp. 51-67.
doi:10.1016/0550-3213
nal of Theoretical
[9] U. kulshreshtha and D. S. Kulshreshtha, “Hamiltonian
and Path Integral Formulations of the Nambu-Goto D1
Brane Action with and without a Dilaton Field und
Gauge-Fixing,” International Jour
er
Physics, Vol. 43, No. 12, 2004, pp. 2355-2369.
doi:10.1007/s10773-004-7704-5
[10] U. kulshreshtha and D. S. Kulshreshtha, “Hamiltonian
and Path Integral Formulations of the Born-Infeld-
Nambu-Goto D1 Brane Action with and witho
ton Field under Gauge-Fixing,” ut a Di
International Journal of
la-
Theoretical Physics, Vol. 44, No. 5, 2005, pp. 587-603.
doi:10.1007/s10773-005-3985-6
[11] U. kulshreshtha and D. S. Kulshreshtha, “Hamiltonian
and Path Integral Formulations of the Dirac-Born-Infeld-
Nambu-Goto D1 Brane Action with and without a Dila
ton Field under Gauge-Fixing-
,” European Physica
of Theoreti-
l
Journal, Vol. C29, No. 3, 2003, pp. 453-461.
[12] U. Kulshreshtha and D. S. Kulshreshtha, “Hamiltonian
and Path Integral Quantization of the Conformally Gauge-
Fixed Polyakov D1 Brane Action in the Presence of a
Scalar Dilation Field,” International Journal
cal Physics, Vol. 48, No. 4, 2009, pp. 937-944.
doi:10.1007/s10773-008-9866-z
[13] U. kulshreshtha and D. S. Kulshreshtha, “Conformally
Gauge-Fixed Polyakov D1 Brane Action in the Presence
of a 2-Form Gauge Field: The Instant-Form a
Form Hamiltonian and Path nd Front-
Integral Formulations,”
5-340.
Physics Letters, Vol. B555, No. 3-4, 2003, pp. 255-263.
[14] D. S. Kulshreshtha, “Polyakov D1 Brane Action on the
Light-Front,” Light-Cone 2008: Relativistic Nuclear and
Particle Physics, Mulhouse, 7-11 July 2008.
[15] U. Kulshreshtha and D. S. Kulshreshtha, “Light-Front
Hamiltonian and Path Integral Quantization of the Con-
formally Guage-Fixed Polyakov D1 Brane Action,” Journal
of Modern Physics, Vol. 2, No. 5, 2011, pp. 33
doi:10.4236/jmp.2011.25041
[16] U. Kulshreshtha and D. S. Kulshreshtha, “Light-Front
Hamiltonian and Path Integral Formulations of the Con-
formally Gauge-Fixed Polyakov D1 Brane Action in t
Presence of a Scalar Dilaton he
Field,” Journal of Modern
Physics, Vol. 2, No. 8, 2011, pp. 826-833.
doi:10.4236/jmp.2011.28097
[17] D. S. Kulshreshtha, “Light-Front Quantization of the
Polyakov D1 Brane Action with a Scalar Dilaton Field,”
Light-Cone 2007: Relativistic Hadronic
Physics, Columbus, 14-18 Maand Nuclear
y 2007.
0.
[18] D. S. Kulshreshtha, “String Gauge Symmetries of the
Light-Front Polyakov D1 Brane Action,” Light-Cone In-
ternational Workshop on Relativistic Hadronic and Par-
ticle Physics, Valencia, 14-18 June 201
[19] D. S. Kulshreshtha, “Light-Front Quantization of Con-
formally Gauge-Fixed Polyakov D1-Brane Action in the
presence of a Scalar Axion Field and an
1U Gauge
Field,” Few Body Systems, Vol. 42, No. 1-4, 2011.
[20] P. A. M. Dirac, “Generalized Hamiltonian Dynamics,”
Canadian Journal of Mathematics, Vol. 2, 1950, pp. 129-
148. doi:10.4153/CJM-1950-012-1
[21] M. Henneaux and C. Teitleboim, “Quantization of Gauge
Annals Physics, Vol.
Systems,” Princeton University Press, Princeton, 1992.
[22] P. Senjanovic, “Path Integral Quantization of Field Theo-
ries with Second-Class Constraints,”
100, No. 1-2, 1976, pp. 227-261.
doi:10.1016/0003-4916(76)90062-2
[23] U. Kulshreshtha, “Hamiltonian, Path Integral and BRST
Formulations of the Chern-Simons-Higgs Theory in the
Broken Symmetry Phase,” Physic
6, 2007, pp. 795-802. a Scripta, Vol. 75, No.
31-8949/75/6/009doi:10.1088/00
n
[24] U. Kulshreshtha and D. S. Kulshreshtha, “Gauge-Invari-
ant Reformulation of the Vector Schwinger Model with a
Photon Mass Term and Its Hamiltonian, Path Integral and
BRST Formulations,” International Journal of Moder
Physics, Vol. A22, No. 32, 2007, pp. 6183-6201.
[25] U. Kulshreshtha, “Hamiltonian and BRST Formulations
of the Nelsen-Olesen Model,” International Journal of
Theoretical Physics, Vol. 41, No. 2, 2002, pp. 273-291.
doi:10.1023/A:1014058806710
[26] P. A. M. Dirac, “Forms of Relativistic Dynamics,” Re-
views of Modern Physics, Vol. 21, No. 3, 1949, pp. 392-
399. doi:10.1103/RevModPhys.21.392
[27] S. J. Brodsky, H. C. Pauli and S. S. Pinsky, “Quantum
ian, Path Integral
, 2007, pp.
Chromodynamics and Other Field Theories on the Light-
Cone,” Vol. 301, No. 4-6, 1998, pp. 299-486.
[28] U. Kulshreshtha, “Light-Front Hamilton
and BRST Formulations of the Nelsen-Olsen (Bogo-
mol’nyi) Model in the Light-Cone Gauges,” International
Journal of Theoretical Physics, Vol. 46, No. 10
2516-2530. doi:10.1007/s10773-007-9367-5
[29] U. Kulshreshtha, D. S. Kulshreshtha and J. P. Vary,
“Light-Front Hamiltonian, Path Integral and BRST For-
mulations of the Chern-Simons-Higgs Theory under Ap-
propriate Gauge-Fixing,” Physics Scripta, Vol. 82, No. 5,
2010, p. 055101. doi:10.1088/0031-8949/82/05/055101
[30] U. Kulshreshtha, D. S. Kulshreshtha and J. P. Vary,
“Light-Front Hamiltonian, Path Integral and BRST For-
mulations of the Chern-Simons Theory under Appropriate
Gauge-Fixing,” Journal of Modern Physics, Vol. 1, No. 6,
2010, pp. 385-392.
[31] U. Kulshreshtha, D. S. Kulshreshtha and J. P. Vary,
“Light-Front Hamiltonian, Path Integral and BRST For-
Copyright © 2012 SciRes. JMP