Advances in Pure Mathematics, 2012, 2, 8-14
http://dx.doi.org/10.4236/apm.2012.21003 Published Online January 2012 (http://www.SciRP.org/journal/apm)
Decomposition of Generalized Mittag-Leffler
Function and Its Properties
Jyotindra C. Prajapati1, Ajay Kumar Shukla2
1Department of Mathematical Sciences, Faculty of Applied Sciences, Charotar University of Science and Technology, Anand, India
2Department of Mathematics, S.V. National Institute of Technology, Surat, India
Email: {jyotindra18, ajayshukla2}@rediffmail.com
Received August 16, 2011; revised September 26, 2011; accepted October 10, 2011
ABSTRACT
The principal aim of the paper is devoted to the study of some special properties of the function for
,
,
q
E

z1
n
.
Authors defined the decomposition of the function
,
,
q
Ez

in the form of truncated power series as Equations (1.7),
(1.8) and their various properties including integral representation, derivative, inequalities and their several special
cases are obtained. Some new results are also established for the function
,
,
q
Ez


Ez

.
Keywords: Generalized Mittag-Leffler Function; Beta Function; Gamma Function; Integral Representation
1. Introduction
In 1903, the Swedish mathematician Gosta Mittag-Lef-
fler introduced the function (Gorenflo
et al. [1])
defined as,

01
n
z
n
n
Ez


0
, (1.1)
where z is a complex variable and is a gamma
function,
. The Mittag-Leffler function is the di-
rect generalisation of the exponential function to which it
reduces for 1
. For 01
, it interpolates be-
tween the pure exponential and a hypergeometric func-
tion 1
1z. Mittag-Leffler function naturally occurs as
the solution of the fractional order differential equations
and (or) fractional order integral equations.
Wiman [2] studied the generalisation of
Ez

, that
is given by

,0
()
,; Re0,
n
Ez





,
Re0 .
n
z
n


,()Ez

(1.2)
which is known as Wiman’s function.
Prabhakar [3] investigated the function as


 
,0
,, ;Re 0,Re
n
n
Ez


  


Gorenflo et al. ([4]), Kilbas and Saigo [5], Kilbas et al.
[6], Miller [7], Saigo and Kilbas [8] have studied several
properties and applications of (1.1)-(1.3).
Recently, Shukla and Prajapati [9] introduced the
function
,
,
q
Ez

,,, which is defined for ;

Re 0

Re 0
, and
Re0
,
0, 1q
 

by:


,
!
0,Re 0.
n
z
nn

(1.3)
,
,0!
n
qn
q
n
z
Ez nn




, (1.4)

where qn
qn

denotes the generalized Poch-
hammer symbol which, in particular, reduces to
1
1
q
qn
rn
r
qq




q if
1q
.
For
, (1.4) reduces to (1.1) which was
studied by Mittag-Leffler in terms of its applications to
the theory of entire functions.
Incidentally, (1.4) is generalization of the exponential
function
z
e, the confluent hypergeometric function
,;z

and the functions which are defined in (1.1)-
(1.3).
Ikehata and Siltanen [10] defined truncated power se-
ries of
Ez
as,


11
1
001
!1
nmnm j
NNn
nN
nm j
mmj
nn
zz
Ez m




 ; (1.5)
C
opyright © 2012 SciRes. APM
J. C. PRAJAPATI ET AL. 9


1
11
nm j
nm j
j
n
z


,
,
q
Ez

1
00
!
nm n
mm
n
z
Ez m



 . (1.6)
Whereas in [10], they have used the functions (1.5) and
(1.6) in the study of electrical impedance tomography.
In this paper, we have defined the decomposition of
the function in the form of truncated power
series
 


,,
1,0
11
01
()
!
()
nm
Nqm
qnN
m
n
Nn
mj
z
Ez mm
m




 1
nm j
qm
nm j
n
z
 
(1.7)
and as a special case for 1
n
:
 




,
1,0
1
01
!
nm
qm
q
m
n
n
mj
z
Ez mm
m




 1
nm j
qm
nm j
n
z
 
(1.8)
where , ;
2nN1,
; ,

Re
0
Re 0
and .

0, 1q
(1.5) and (1.6) are special cases of (1.7) and (1.8),
given by
 
1
nN
nn
Ez
1,1,
1
,1
nN
Ez and
 
1,1
11
,1
nn
EzEz
. (1.9)
In what follows are known formulae, those used
studying properties of the functions
,
,
q
Ez

,

,,
1,
qnN
n
Ez
and

,
1,
q
n
Ez
 

1
,1d,
0, Re0.
b
z z
ab



1
0
tz
ze



Re 0z
 

.
The Beta function (Rainville [11]) is defined by,


1
1
0
where Re
a
Bab z
(1.10)
The Gamma function (Rainville [11]) is defined by,
dtt, where . (1.11)
The relation between Beta and Gamma functions is


where Re
Bab

,,
0, Re0.
ab
ab
ab



(1.12)
The Error function (Rainville [11]) is defined by,


2
0
exp d
zt t
. (1.13)
The complementary Error function (R
defined by,
2
π
erf z
ainville [11]) is
 

2
1e
xpd
π
cz
erfzerfc ztt 
. (1.14)
2
Legendre’s duplication formula (Rainville [11]) is
 
21 1
π22
z
zzz



. (1.15)
The Laplace transform (Sneddon [12]) of the function
2

z is defined as,
Ikehata and Siltanen [10] used following inequality,
f



0
d
sz
Lfzefz z
, where

Re 0s. (1.16)
1Re
N
z

1!1!
mze
z
, where 1N. (1.17)
2. Main Results
THEOREM 1. Integral representations of the function
mN mN

,
1,
q
n
Ez
is given by

,
1,1
1,
10
1d,
1
n
z
nqn nnk
k
nE
zuuu
k
n






(2.1)
where 2n,,
,,
11
qqn
EzEz

,
;

Re 0
,

Re 0
and
0, 1q
.
Proof. Consider the integral,

1
1, d.
zn nnk
Ezuu u

Substituting uzw
,q
0
and using (1.4), we get


0
d
!
m
1
0
()1
nm n
qm nk
zw
m
zw
Using (1.10), the above equation reduces to

w
mm
.

0
1,1
nm n k
m
k
Bm




and use of (1.12), yields



!
qm zn
mm n


,1
1,
0
d
1
.
1
zqnnnk
nm n k
qm
m
Ezuu u
k
zn
nm n k
mnn







 



0
Copyright © 2012 SciRes. APM
J. C. PRAJAPATI ET AL.
Copyright © 2012 SciRes. APM
10
i.e.



,1
d.
nm n k
nnk
uu u


Taking s
1,
00
11
z
qm qn
m
znEz
nm n kk
mnn






ummation over 1k
to 1kn and using (1.8), we arrive at

 
11
d.
z
nnnnk
uu u

This comp
, ,
,, ,
11, 1,
,10
1
1
qq
n q
k
n
EzEz nEz
k
n
 






letes the proof of the theorem.
THEOREM 2. If 2n
0, ;

Re
Re 0
and
0, 1q
, then






111
1, 1
1,11
d
d
nn
qn k
qn
kk
n
zE z zkm
znk
nn
 

!!
km
nn
qm n
zz
mn








 



  


  
 
 

(2.2)
.4) in left-hand side of (2.2), we obtain



Proof. Applying (1
  
22
11
1,
1,11
d
d1! 1!
nn
n
qm qm
2
1!
mmm
n
qn
mmmn
n
zzz
zE zmmm
zmmm
nnn




  







   



 
  
  

mn
qm
. (2.3)
Setting mnk in the first summation and replacing m by in second, right-hand side of (2.3) reduces to






11
.
!
mm
nn
m n
zz
mn







pletes the
Theorem
11
10
1!
nn
qn k q
km
nk m
nk
nn






 



This com proof of the theorem.
Remark on 2. If 1q
, then Theorem 2 leads a paar case of (2.3) rticul
11
11
,,
nn
nn
E z

1
11
1
d
d
k
nn
k
z
zE zzk
z
n










 




 


, (2.4)
w
here 2n,,
;
Re

e 0
and
0
, R
0, 1q
.
;

Re 0
,
Re 0
and
0, 1q
THEOREM 3. If 2n, ,
.


1
,,
11,
,0
Re
1
n
qq
n
k
n
Ez E z
k
n





.
in (2e get
k
z (2.5)
Proo uz .1f. Substitutingw), w

 

1
,,, 1
11,1,
,10
1d
1
nk
qqnqnnnk
k
n
z
EzEznEzww w
k
n
 


 




.
Therefore,
1n

 
1
1, 1
1,
,10
Re d
1
nk
n
n qnnk
k
n
z
Ez nEzww
k
n





.
,,
11
,
Re
qq
zE

J. C. PRAJAPATI ET AL. 11
The simplification of the above inequality gives,

 
,
1,
Re
1
qn
Ez

i.e.
11
,,
11,
,11
1
1Re1
11
nk nk
nn
qqn
kk
n
zz
EzEz
kk nk
nn n








 

 
 

 




1,
,
,1
Re
1
k
nqn
k
n
zE z
k
n








.
This proves the theorem.
Remark on Theorem 3: It is easy to verify the following inequality,
,
11
1
q
Ez

 

,
1,
.
n
q
Ez
k
n



(2.6)
1
,, ,,,
11 1
,,,
01
k
n
qnN qnNq
k
nn n
z
EzE zEz
 
 


THEOREM 4. If n2, ,
;
Re 0
,
Re 0
and , then 0, 1q
 
,,.
11
qqnN
EzE zT

,,
nn

, (2.7)
where






,
1, Re .
qn
z
(2.8)
Proof. From (1.7) and (1.8), we have
1
1
1
1
11
!1
N
nknN
n
qN qN
k
zz
TE
knN
NN N
n










 





1
,,. ,
11 1
,,,001
!
nm
Nn
qm qm
qqnN qn
mmj
nnn
Ez
Ez Ezmm m
 
 





 




.
1
nm j
zz
nmj
n

 


Consider,







11 1
,1
1,
1
1
0
dd
!!
1
mm
nn nn
z z
nN n
qm qm
qn nnjnj
mNj
zu zu
nn
Ezuu uu u
j
mm mm


 
 




 

 




 

,
using (1.10), the above equation reduces to
10
0
1
jm
j
nn






1
11!
nm nj
nqm
mNj
z
jmm
n


 
  


 1,1
j
Bm
n




,
Now, by involving (1.12), we have

1
01
nqm
mj m




1
nm j
z
nmj
n

 


.
by which we write








11
,,. ,,
11 11,
1
010
0
d
!!
1
m
nmn n
z
Nn N
qm qm
qqnN qnqnnnj
j m
zzu
n
EzEz EzEzuuu
j
mm mm
n
 




 






 






 
.
,, ,
m
nn n


Copyright © 2012 SciRes. APM
J. C. PRAJAPATI ET AL.
APM
12
Therefore, further we have,
 







,,. ,
11 1
,,, 0
11
1,
10
0
!
1
!
1
nm
Nqm
qqnN qn
m
,1
d.
nn
m
nm n
z
nk
nN
qm
qn nnnk
km
z
EzE zEzmm
zw
nz Ezzww w
kmm
n
 
 

















e have
n
Using the inequality (1.17), w
 



,
1
,
Re
qn
n
z M
, (2.9)
where
1
1
,,.
11
,, 11
!
N
n
qN
qqnN
nn
z
EzE zE
NN



 




1
11
1,
,1
0
0
1
d
!
m
nm n
nk
nN
qm
qn nnnk
m
zw
nz
M
1
1
k
Ezzww w
mm










.
We see that,
k
n






Copyright © 2012 SciRes.




1
1
1,
10
1,
1,
1
1
Re 1
!
1
Re1 ,
!1
N
nn
nk
nqN qn
k
nknN
nqN qn
k
zw
nz ,1
d ,
1 ,
nnk
M
Ez
kNN
n
zk
EzB
kn
NN n









 


www
N




which on using (1.12), gives
Re 0
,
Re 0
,

Re0
, and
0, 1q,
then



,
1, Re
1
qn
zE z
knN
n




. (2.10)
Inequalities (2.9) and (2.10) lead to the proof of the
Theorem.
Remark on T1q
1
1
knN
n
qN
k
MN

heorem 4. If
 then (2.7)
lity reduces to an interesting inequa
 

1
11
1
kn
n
nN
k
nn
Ez E z
 exp Re
1
Nn
zz
knN
n



ati [9] obtai
. (2.11)
This inequality contains Mittag-Leffler and Exponen-
tial functions.
Recently, Shukla and Prajapned several
properties of the function

,
,e M
q
Ez

. Thittag-Leffler
function
Ez
plays an important role in study of the
ous propional calculus (Shukla and Praja-
pati [13]).
varierties fract
THEOREM 5. If ,,,

;

Re 0
,

 
1
1, 1,
,,
0
1d
zqq
tztEttzEz
 
 



.
(2.12)
Proof. Substituting tzu
in left-hand side of (2.12)
and then using (1.10) and (1.12), we get the required re-
sult.
Special cases of Theorem 5: For

Re0
, from
(2.12), we obtain several particular cases as listed below:
 
11,1
1, 1
0
1d
zt
ztetzEz

, (2.13)



11,1 2
1zz

2, 1
cosh dtt t zEz
, (2.14)
0


11,1 2
2, 2
0
1sinh() d
zt
tt zEz
t
, (2.15)
z


 
1
2
exp dztt z

21
,1
1,1
0
c
zerf zzE
.(2.16)
1z
J. C. PRAJAPATI ET AL. 13
0, ;

Re
THEOREM 6. If ,,

Re 0
,
Re ,

0 and q

0, 1 then


1
1,2
2,
1d
()
zq
tztEt t



  
0
1, , 2
,2,
.
qq
zEzEz

 
 



(2.17)
Proof. Consider the integral,


,21
zqzt



2,
0
Et
t

1d
1t




The above equation reduces to,




 

2
0
121
00
21!
1
2! 1
n
qn
n
n
qn
n
z
znn
zu
zu
nn


 


 
Applying (1.10), (1.12) and further simplifica
the above equation becomes,
d.
z u
tion of




2
2
() n
n
qn zz

1
00
()
21!21 1!
qn
nn
zz
nn nn

 


 
 .
i.e.


01!
nnn


n
qn z
z
.
Therefore,




,
, 1
zqq
zt
EtttzEz
 





. (2.18)
Using Tr 1
,2 1
2,
0
1d
1




heorem 5 fo
, where the Equation
(2.8) leads to



1,
,d
qq
tEtt



,
di
,2 1
2,
00
1d
(1 )
zz
zt
Ett t










fferentiating above equation with respect to z, we get

 

1
1, 21
2,
0
1,
,
1
.

, 2
2, d
qq
q
zEzt ztEtt
zE z
 
 
 




reby, the theorem is completely proved.
The theorem, that follows now, represents the rela-
tionship betweeion

,
,
q
Ez

and the expo-
nential function. ionship presumably play an
imin the study of the fractional diffusion equa-
tion, conduction and mass transfer equation.
THEOREM 7. If ,,

; Re 0
, Re 0
,
Re 0
and
0, 1q, then
z
The
n the fut
This relat
nc
portant role
i.e., heat

2
π
xx t


Proof. Putting
,1 ,
422
,1
,
022
d
qq
t
eE xxEt

 
 



. (2.19)
2
n
z
in (1.15), we have

2π
2

. (2.20
1
22
n
n
n
n







 


)
The left-hand side of (2.19) gives,



2
,1
4
xq
t
n
t
2
1
00
ed
,
!
x
qn
n
4
,
0
deExxx
x
x
nn


which leads to






0
2
!22
n
qn
n
n
nn
t





 
.
Use of (2.20) and further simplification of ab
tion yields
ove equa-

2
n
t
2
0
π
1!
22
qn
n
tn
n





.
This completes the proof.
THEOREM 8. If ,,

; Re 0
, Re 0
,
e 0
and R
0, 1q
then




1,
,
2, ,
,1 ,
d
d
.
q
qq
xE ax
x
xE axEax
 


 




(2.21)
Proof. The left-hand side of (2.21) reduces to,
 


2
1,
,
0
1
d
d!
nn
qn
q
n
an x
xE ax
xnn

 







.
The right-hand side can be expressed as

 
 

2
0
0
!
.
!
qn
n
qn
n
xnn
ax
nn





1nn
nax


nn
Copyright © 2012 SciRes. APM
J. C. PRAJAPATI ET AL.
Copyright © 2012 SciRes. APM
14
Inompleted.
nt notationhe binomiheorem is
Funktionen
Ex
,” Acta
volving (1.4), the proof is c Mathematica, Vol. 29, No. 1,
In a slightly differe, tal t 1905, pp. 191-201. doi:10.1007/BF02403202
[3] T. R. Prabhakar, “A Singular Integral Equation with a
Generalized Mittag-Leffler Function in the Kernel,” Yo-
kohama Mathem, 1971, pp. 7-15.
[4] R. Gorenflo aittag-Leffler Func-

,
1q
z

0!
qn
nn
. (2.22)
If 1q, then (2.22) reduces to simple bino
pression (Rainville [8]) that is,
n
z
atical Journal, Vol. 19
nd F. Mainardi, “On M
mial ex-tion in Fractional Evaluation Processes,” Journal of
Computational and Applied Mathematics, Vol. 118, No.
1-2, 2000, pp. 283-299.
doi:10.1016/S0377-0427(00)00294-6
 
,1
n
nz


0!
nn
. 11zz [5] A. A. Kilbas and M. Saigo, “On Mittag-Leffler Type
Function, Fractional Calculus Operators and Solution of
Integral Equations,” Integral Transforms and Special
Functions, Vol. 4, No. 4, 1996, pp. 355-370.
THEOREM 9. If ,,

;
Re
0, Re 0
Re ,
,

0 and q

0, 1 then

11
,
,
q
tE zt
,
1
q
z
Ls s
doi:10.1080/10652469608819121
[6] A. A. Kilbas, M. Saigo and R. K. Saxena, “Generalised
Mittag-Leffler Function and Generalised Fractional Cal-


. (2.23)
Proof. Applying (2.22) to the left-hand sid23), we
get










e (2.



,
11
1
0
1,
,
1!
!
.
qn
qn
qn
n
n
q
zz
LsLs s
L
n
tE zt




 



 
 


3. Acknowledgements
The authors would like to thank the reviewers for their
valuable suggestions to improve the quality of paper.
REFERE
[1] R. Gorenflo, A. A. Kilbas and S. V. Rogosin, “On th
eralised Mittag-Leffler Type Function,” Integral T
and Special Functions, Vol. 7, No. 3-4, 1998, pp. 215-
0nn
s





1
n
z

s

culus Operators,” Integral Transforms and Special Func-
tions, Vol. 15, No. 1, 2004, pp. 31-49.
doi:10.1080/10652460310001600717
[7] K. S. Miller, “The Mittag-Leffler and R
Integral Transforms and Special Funcelated Functions,”
tions, Vol. 1, No. 1,
1993, pp. 41-49. doi:10.1080/10652469308819007
[8] M. Saigo and A. A. Kilbas, “On Mittag-Leffler Type
Function and Applications,” Integral Transforms and
Special Functions, Vol. 7, No. 1-2, 1998, pp. 97-112.
doi:10.1080/10652469808819189
[9] A. K. Shukla and J. C. Prajapati, “On a Generalization of
Mittag-Leffler Function and Its Properties,” Journal of
Mathematical Analysis and Applications, Vol. 336, No. 2,
2007, pp. 797-811. doi:10.1016/j.jmaa.20
The proof is completed. 07.03.018
[10] Impedance Tomo-
graphy and Mittag-Leffler Function,” Inverse Problems,
Vol. 20, No. 4, 2004, pp. 1325-1348.
M. Ikehata and S. Siltanen, “Electrical
doi:10.1088/0266-5611/20/4/019
[11] E. D. Rainville, “Special Functions,” The Macmillan
Company, New York, 1960.
[12] I. N. Sneddon, “The Use of Integral Transforms,” Ta
NCES
e Gen-
ransforms
224. doi:10.1080/10652469808819200
[2] A. Wiman, “Uber de Fundamental Satz in der Theorie der
ta
McGraw-Hill Publication Co. Ltd., New Delhi, 1979.
[13] A. K. Shukla and J. C. Prajapati, “On Generalized Mit-
tag-Leffler Type Function and Generated Integral Opera-
tor,” Mathematical Sciences Research Journal, Vol. 12,
No. 12, 2008, pp. 283-290.