Advances in Linear Algebra & Matrix Theory, 2011, 1, 1-7
doi:10.4236/alamt.2011.11001 Published Online December 2011 (http://www.SciRP.org/journal/alamt)
On Real Matrices to Least-Squares g-Inverse and
Minimum Norm g-Inverse of Quaternion Matrices*
Huasheng Zhang
School of Mathematics Science, Liaocheng University, Shandong, China
Email: zhsh0510@yahoo.com.cn
Received November 20, 2011; revised December 24, 2011; accepted December 30, 2011
ABSTRACT
Through the real representations of quaternion matrices and matrix rank method, we give the expression of the real ma-
trices in least-squares g-inverse and minimum norm g-inverse. From these formulas, we derive the extreme ranks of the
real matrices. As applications, we establish necessary and sufficient conditions for some special least-squares g-inverse
and minimum norm g-inverse.
Keywords: Extreme Rank; g-Inverse; Least-Squares g-Inverse; Minimum Norm g-Inverse; Quaternion Matrix
1. Introduction
Throughout this paper, stands for the real number
field, stands for the set of all m matrices
over the quaternion algebra
mn
n
222
01 23
0123
===
,,,.
aa iajakijkijk
aaaa
 
==1,
I, AT, A* and
A
stand for the identity matrix’ the
transpose’ the conjugate transpose and the Moore-Pen-
rose inverse of a quaternion matrix A. In [1], for a qua-
ternion matrix A,
 
m= dim.di
A
A
dim
A
is called the rank of a quaternion matrix A and denoted
by

.rA
The well known Moore-Penrose inverse
A
of
mn
A
is defined to be the unique matrix mn
X
satisfying the following four Penrose equations
1) =,
A
XAA
2) =,
AXX
3)

=,
A
XAX

=.
4)
X
AXA
A matrix X is called a least-squares g-inverse of A if it
satisfies both 1) and 3) in the Penrose equations, and de-
noted by a matrix X is called a minimum norm
g-inverse of A if it satisfies both 1) and 4) in the Penrose
equations, and denoted by The general expres-
sion of

1,3 ;A

1,3

1,4.A
A
and

1,4
A
can be written as

1,3
=
A,
A
ALV (1)

1,4
=A
A
AWR (2)
where , the two matrices V
and W is a arbitrary; see [[2], pp. 44-46].
=,
A
LIAA
=
A
RIAA
For convenience of representation, we suppose
01 23
=
A
AAiAjAk
 (3)
and

1,3 01 23
1,40123
=,
=
A
BBiBjBk
A
CCiCjCk
 
  (4)
where
0123
,,, ,
mn
AAAA
0123
,,, ,
mn
BBBB
0123
,,, .
nm
CCCC
For an arbitrary qu aternion matrix
12 34
=,
M
MMiMjMk

we define a map ()
from to by
mn
44mn

4321
34 12
21 43
1234
=.
MMMM
MM MM
MMM MM
MMMM



(5)
By (5), it is easy to verify that ()
satisfies the fo llow-
ing properties:
a)
==.
M
NMN

b)
=,
M
NMN


=,
M
NMN

=,kMkM k

.
c)

11
==
mnm
n
M
TMTRMR
 


=,
mn
SMS
1
*This research was supported by the Natural Science Foundation of China
(11001115). where
C
opyright © 2011 SciRes. ALAMT
H. S. ZHANG
2
000000
000 000
=,=,
00 000 0
00000 0
000
00 0
=,=,.
000
000
tt
tt
tt
tt
tt
t
t
tt
t
II
I
I
TR
II
II
I
I
Stmn
I
I













d)
 
=4 .rM rM


The least-squares g-inverse and minimum norm
g-inverse have a very wide range of applications in nu-
merical analysis and mathematical statistics and have
been examined by many authors(see, e.g., [3-6]). Haruo
[3] developed some equivalent conditions on least-squares
general inverse in 1990. Tian [4] presented the maximal
and minimal ranks of the Schur complement to least-squares
g-inverse and minimum norm g-inverse in 2004. Tian [5]
establish necessary and sufficient conditions for a matrix
to be the least-squares g-inverse and minimum norm
g-inverse from rank formulas in 2005. Guo, Wei and
Wang [6] derived structures of least squares g-inverses
and minimum norm g-inverse of a bordered matrix in
2006.
Quaternion matrices play an important role in me-
chanics, computer science, quantum physics, signal and
color image processing and so on. More and more inter-
ests of quaternion matrices have been witnessed recently
(e.g. [7-14] ) .
Noticing that the properties of the real matrices in
least-squares general inverse

1,3
A
and minimum norm
g-inverse

1,4
A
(4) have not been considered so far in
the literature. We in this paper use the real representa-
tions of quaternion matrices and matrix rank method to
investigate (4) over . In Section 2, we first give the
expression of the real matrices i and
in (4), then determine the maximal and minimal ranks of
the real matrices i and i in (4). As
applications, we establish necessary and sufficient condi-
tions for a quaternion matrix has a pure real or pure
imaginary
B
B
=0Ci

=0,1,2,3
i
Ci
2,3
,1,
1,3
A
and
1,4
A
. The necessary and suffi-
cient conditions for all
1,
3
A
and

1,4
A
are pure real or
pure imaginary of a quaternion matrix are also presented.
2. Main Results
We begin with the following lemmas which proof just
like those over the complex field.
Lemma 2.1 (see [15]) Let A, B and C be
matrices over . Then
,,mnmkln
a)
  
,= =
AB
rABrArRBrBrRA,
,
L
b)
 

==
AC
A
rrArCLrCrAL
C
 


c)
 

=.
0BC
AB
rrBrCrRA
C
 


Lemma 2.2 (see [16]) Let ,
mn
A
,
mp
B
qn
C
be given. Then
a) The maximal rank of
A
BXC with respect to X is


max= min,;
X
A
rABXCrAB rC








(6)
b) The minimal rank of
A
BXC with respect to X is


min =.
0
X
A
AB
rA BXCrABrr
CC
 

 
 
(7)
Theorem 2.3 Suppose  is a least-

, =1,2,3,4
ij
Xij

44
squares g-inverse of
,
A
where ij A and ,
nm
X

1,3
A
are defined as (3 ) and (4). Then
in (4) can be written as

1,2,3 =0,
i
Bi




0 11223344
1 12214334
21331244
34114322
1
=,
4
1
=,
4
1
=,
4
1
=.
4
BXXXX
BXXXX
B XXXX
BXXXX




2
3
(8)
Written in an explicit form, in (4)
are

=0,1,2,3
i
Bi
 
 
  
††
01 122
††
3344
1
2
12343
4
11
=44
11
44
,,,,
AAAA
BPAQPAQ
PAQ PAQ
V
V
PL PL PL PLV
V






(9)
 
 
  
††
11 22 1
††
4334
2
1
1243 3
4
11
=44
11
44
,,,,
AAAA
BPAQPAQ
PAQ PAQ
V
V
PL PL PL PLV
V






(10)
Copyright © 2011 SciRes. ALAMT
H. S. ZHANG 3

 
  
††
21 324
††
3142
3
1
13 2 44
2
11
=44
11
44
,,,,
AA AA
BPAQPAQ
PAQ PAQ
V
V
PLPL PL PLV
V
  












(11)
 
 
 
††
31 42 3
††
3241
4
1
1432 2
3
11
=44
11
44
1
,,,,
4AAAA
BPAQPAQ
PAQ PAQ
V
V
PL PL PL PLV
V












(12)
where

12
34
=,0,0,0 ,=0,,0,0 ,
=0,0,,0,=0,0,0,,
nn
nn
PIP I
PIP I


12
34
=,0,0,0 ,=0,,0,0 ,
= 0,0,,0,=0,0,0,,
TT
mm
TT
mm
QIQ I
QIQ I
and V1, V2, V3 and V4 are arbitrary real matrices with
compatible sizes.
Proof. Suppose
44 , =1,2,3,4
ij
Xij



,
is a least-
squares g-inverse of
A
X where i.e. ,
nm
ij
 



44
44 44
=,
=.
ij
ij ij
AXAA
AX AX





 
 
Then applying property (c) of ()
above to them
yields





111
44
11
44 44
=,
=;
mnijmnm
mnij mnij
TATXTATTAT
TATXTATX







 
 
n





111
44
11
44 44
=,
=;
mnijmnmn
mnij mnij
RARXRAR RAR
RARX RARX







 
 





111
44
11
44 44
=,
=.
mnijmnmn
mnij mnij
SASXSASSAS
S ASXS ASX







 
 
Hence,
 



1
44
11
44 44
=,
=;
nij m
nij mnij m
AT XTAA
A
TX TATX T






 
 




1
44
11
44 44
=,
=;
nij m
nij mnij m
AR XRAA
A
RX RARX R





 
 




1
44
11
44 44
=,
=,
nij m
nij mnij m
AS XSAA
A
SX SASX S





 
 
which implies that and
11
44 44
,
nij mnijm
TXT RXR


 
 
1
44
nij m
SXS

 are also least-squares g-inverses of
A
. Thus,
11
44 4444
1
44
1
4
ijnijm nijm
nij m
X
TXT RXR
SX S

 





is also a least-squares g-inverse of

,
A
where
11
44 4444
1
44 44
=
ijnijmnijm
ij
nij m
X
TXTRXR
SX SX

 
 

 


 
and
11 11 22 33 44
12 12 21 43 34
13 13 3124 42
14 41 143223
21 2112 34 43
22 11 22 33 44
23 41 143223
24 24421331
31 13 31 2442
32 41 143223
=,
=,
=,
=,
=,
=,
=,
=,
=,
=,
XXXXX
X
XXXX
X XXXX
X
XXXX
X
XXXX
X
XXXX
X
XXXX
X
XXXX
XXXXX
X
XXXX










33 3344 11 22
34 21123443
41 41 143223
42 24421331
43 12 21 43 34
44 3344 11 22
=,
=,
=,
=,
=,
=.
X
XXXX
X
XXX X
X
XXXX
X
XXXX
X
XXXX
X
XXXX






Copyright © 2011 SciRes. ALAMT
H. S. ZHANG
4
Let




11 22 33 44
12 21 43 34
1331 2442
41 143223
1
=4
1
4
1
4
1
,
4
XXXXX
X
XXXi
X
XXXj
X
XXXk




Then, by (5),

1
44 44
11
44 44
1
=4
,
ijnijm
nijm nijm
XXTXT
RXR SXS





 

 
is a least-squares g-inverse of

A
. Hence, by the
property (a) of ()
we know that ˆ
X
a least-squares
g-inverse of A. The above discussion shows that the
least-squares g-inverse of
A
and the least-squares
g-inverse of A are equivalent. Observe that ,
ij
X
i, j =
1,2,3,4 in (8) can be written as
ˆ
=.
iji j
X
PXQ
From (1), the least-squares g-inverse of
A
can be
written as


=A
X
ALV
where and

1234
=,,,VVVVV 4
1234
,,,
p
q
VVVV
are
arbitrary.
Substituting them into (8) yields the four real matrices
B0, B1, B2 and B3 in (9)-(12).
According to Lemma 2 and Theorem 2, we can get the
following extreme ranks formulas for the real matrices in
the least-squares g-inverses.
Theorem 2.4 Suppose that A and

1,3
A
are defined
as (3) and (4). Then
a)



0
0
max=min4,;rBrAArA nm





0
0
min =.rBrAA rA


b)



1
1
max= min4,;rBrAArA nm





1
1
min =.rBrA A rA


c)



2
2
max= min4,;rBrAArA nm





2
2
min =.rBrAA rA


d)



3
3
max=min4,;rBrAArAnm




3
3
min =,rBrAArA


where
01 2
10 0
0123
223
33 1
0123
103 2
0
230 1
210
3
=,=,=,=
000
000
=,=
00 0
000
AAA
AA AA
AAAA
AAA
AAA
A
3
0
1
2
,
A
A
A
A
AA
A
AA
A
AA
AA A
AAAA
A
























,
,
,
and
 

03
12
12
03
01 23
2130
3021
023 013
13 2102
12
20 12 31
310 320
01
3
=,= ,= ,=
=,=
=
A
A
AA
A
A
AA
AA AA
AA
AA
AA
AA
AAA AAA
AA AAA A
AA
AAAA AA
AAA AAA
AAA
A


 

 

 

 

 
 

 








2
103
230
32 1
.
AA A
AAA
AA A






Proof. Applying (6) and (7) to B0 in (9), we get the
following


0
0
max= min,;
min =,
0
m
m
P
rBrPP rI
PP
rBrP PrPrI


















where
 
 
  
††
112 2
††
334
1234
11
=44
11
,
44
=,,,
AAAA
PPAQPAQ
PAQPAQ
PPLPLPLPL




4
.
By Lemma 1, it is not difficult to find that
Copyright © 2011 SciRes. ALAMT
H. S. ZHANG 5











1234
1234
0
1
2
3
0
0000
=4
000 0
00 00
00 0 0
0
000
000
=4
00 0
000
=4,
rP P
PP PPP
A
rrA
A
A
A
A
PPPP
AA
AA
rr
AA
AA
rAArA n
















 









where
0123
,,,
A
AAA
and
A
are defined as above. By
the same manner, we can get extreme ranks of B1, B2 and
B3.
As one of important applications of the maximal and
minimal ranks to real matrices, Theorem 2 can help to
get the necessary and sufficient conditions for the exis-
tence of some special least-squares g-inverses. We show
them in the following.
Corollary 2.5 Suppose 0123
=.
A
AAiAjAk 
Then
a) A quaternion matrix A has a real least-squares
g-inverse if and only if

123
===rAArAArAArA

 .
b) All least-squares g-inverses of quaternion matrix A
are real matrices if and only if

123
===4rAArAArAArA n
,

where 123
,,
A
AA and
A
are def i ned as Theorem 2.
Corollary 2.6 Suppose 01 23
=.
A
AAiAjAk  Then
a) A quaternion matrix A has a pure imaginary least-
squares g-inverse if an d only if

0=.rA ArA


b) All least-squares g-inverses of quaternion matrix A
are pure imaginary matrices if and only if

0=4 ,rAArA n


where 0
A
and
A
are def i ned as Theorem 2.
The following several theorems of minimum norm
g-inverse can be shown by a similar approach, and their
proofs are omi tte d he re.
Theorem 2.7 Suppose is a

44 , =1,2,3,4
ij
Yij


minimum norm g-inverse of

,
A
where
A and
,
nm
ij
Y

1,4
A
are defined as (3) and (4) Then
in (4) can be written as

=0,1,2,3
i
Ci




0 11223344
34
42
23
1122143
2133124
3411432
1
=,
4
1
=,
4
1
=,
4
1
=.
4
CYYYY
CYYYY
CYYYY
CYYYY

 
 
 
Written in an explicit form,
=0,1,
i
Ci 2,3 in (4) are
 
 





2
4
1
2
3
4
,
Q
Q
RQ
RQ
RQ
RQ








††
01 12
††
334
1234
11
=44
11
44
1
,,,
4
A
A
A
A
CPAQPA
PAQPA
WWW W





 





1
34
2
1
3
4
,
Q
Q
RQ
RQ
RQ
RQ








††
11 22
††
43
1243
11
=44
11
44
1
,,,
4
A
A
A
A
CPAQPA
PAQ PA
WWWW



 
 
 





4
2
3
1
2
4
,
A
A
A
A
Q
Q
RQ
RQ
RQ
RQ








††
21 32
††
314
13 24
11
=44
11
44
1
,,,
4
CPAQPA
PA
Q PA
WW W W




 






††
31 42
324
14 32
11
=44
11
44
1
,,,
4
A
A
A
A
CPAQPA
PAQ P
RQ
RQ
WWWW RQ
RQ



3
††
1
4
1
2
3
,
Q
AQ








Copyright © 2011 SciRes. ALAMT
H. S. ZHANG
6
where



12
34
12
34
=,0,0,0 ,=0,,0,0 ,
= 0,0,,0,= 0,0,0,,
=,0,0,0 ,=0,,0,0 ,
= 0,0,,0,= 0,0,0,,
nn
nn
TT
mm
TT
mm
PIP I
PIP I
QIQ I
QIQ I
and W1, W2, W3 and W4 are arbitrary real matrices with
compatible sizes.
According to Lemma 2 and Theorem 3, we can get the
following extreme ranks formulas for the real matrices in
minimum norm g-inverse.
Theorem 2.8 Suppose that A and

1,4
A
are defined
as (3) and (4). Then
a)


0
0
max= min4,4;
A
rCrrAm n
A















0
0
min =.
A
rC rrA
A




b)


1
1
max= min4,4;
A
rCrrAmn
A






1
1
min =.
A
rC rrA
A




c)


2
2
max= min4,4;
A
rCrrAmn
A









2
2
min =.
A
rC rrA
A




d)


3
3
max=min4,4;
A
rCrrAm n
A









3
3
min =,
A
rC rrA
A




where




0012 3
1133 2
22301
33210
=
=,
=,
=,
0
1
2
3
23 01
010 32
0123
32 10
1103 2
0123
3210
2230 1
0123
321 0
223 01
1032
000
000
=,
000
000
=,
=,
=,
=
A
A
AA
A
A
AA A
A
AA AA
A
AA A
AAA A
AAAAA
AAA A
AAAA
AAAAA
AAAA
AAAA
AAAAA
AA A A

















.
As one of important applications of the maximal and
minimal ranks to real matrices, Theorem 4 can help to
get the necessary and sufficient conditions for the exis-
tence of some special minimum norm g-inverse. We
show them in the following.
Corollary 2.9 Suppose 01 23
=.
A
AAiAjAk  Then
a) A quaternion matrix A has a real minimum norm
g-inverse if and only if
123
===
AAA
rrrr
AAA
  
  
  
  
.A
b) All minimum norm g-inverse of quaternion matrix A
are real matrices if and only if

123
===4
AAA
rrr rA
AAA
  
  
  
  
,m
where 123
,,
A
AA and
A
are def i ned as Theorem 4.
Corollary 2.10 Suppose 01 23
=.
A
AAiAjAk  Then
a) A quaternion matrix A has a pure imaginary mini-
mum norm g-inverse if and only if
0=.
A
rr
A




A
,
A
AAAA
AAAAA
AAAAA
AAAAA

b) All minimum norm g-inverse of quaternion matrix A
are pure imaginary matrices if and only if

0=4,
A
rrA
A




m
where 0
A
and
A
are define d as Theorem 4.
Copyright © 2011 SciRes. ALAMT
H. S. ZHANG
Copyright © 2011 SciRes. ALAMT
7
REFERENCES
[1] T. W. Hungerford, “Algebra,” Spring-Verlag Inc., New
York, 1980.
[2] A. Ben-Israel and T. N. E. Greville, “Generalized Inver-
ses: Theory and Applications,” R. E. Krieger Pubilshing
Company, New York, 1980.
[3] H. Yanai, “Some Generalized Forms a Least Squares
g-Inverse, Minimum Norm g-Inverse, and Moore-Penrose
Inverse Matrices,” Computational Statistics & Data Ana-
lysis, Vol. 10, No. 3, 1990, pp. 251-260.
doi:10.1016/0167-9473(90)90005-3
[4] Y. Tian, “More on Maximal and Minimal Ranks of Schur
Complements with Applications,” Applied Mathematics
and Computation, Vol. 152, No. 3, 2004, pp. 675-692.
doi:10.1016/S0096-3003(03)00585-X
[5] Y. Tian, “Schur Complements and Banachiewicz-Schur
Forms,” Electronic Journal of Linear Algebra Society,
Vol. 13, 2005, pp. 405-418.
[6] W. Guo, M. Wei and M. Wang, “On Least Squares g-In-
verses and Minimum Norm g-Inverses of a Bordered Ma-
trix,” Linear Algebra and its Applications, Vol. 416, No.
2-3, 2006, pp. 627-642. doi:10.1016/j.laa.2005.12.015
[7] S. L. Adler, “Quaternionic Quantum Mechanics and Q uan -
tum Fields,” Oxford University Press, Oxford, 1995.
[8] F. Zhang, “Quaternions and Matrices of Quaternions,”
Linear Algebra and its Applications, Vol. 251, No. 15,
1997, pp. 21-57. doi:10.1016/0024-3795(95)00543-9
[9] C. E. Moxey, S. J. Sangwine and T. A. Ell, “Hypercom-
plex Correlation Techniques for Vector Images,” IEEE
Transactions on Signal Processing, Vol. 51, No. 7, 2003,
pp. 1941-1953. doi:10.1109/TSP.2003.812734
[10] N. LE Bihan and J. Mars, “Singular Value Decomposition
of Matrices of Quaternions: A New Tool for Vector-Sensor
Signal Processing,” Signal Processing, Vol. 84, No. 7, 2004,
pp. 1177-1199. doi:10.1016/j.sigpro.2004.04.001
[11] N. Le Bihan and S. J. Sangwine, “Quaternion Principal
Component Analysis of Color Images,” IEEE Interna-
tional Conference on Image Processing (ICIP), Barcelona,
14-17 September 2003, pp. 809-812.
[12] N. Le Bihan and S. J. Sangwine, “Color Image Decom-
position Using Quaternion Singular Value Decomposi-
tion,” IEEE International conference on Visual Informa-
tion Engineering (VIE), Guildford, 7-9 July 2003, pp.
113-116.
[13] S. J. Sangwine and N. Le Bihan, “Quaternion Singular
Value Decomposition Based on Bidiagonalization to a
Real or Complex Matrix Using Quaternion Householder
Transformations,” Applied Mathematics and Computation,
Vol. 182, No. 1, 2006, pp. 727-738.
doi:10.1016/j.amc.2006.04.032
[14] Q. W. Wang, H. S. Zhang and S. W. Yu, “On Solutions to
the Quaternion Matrix Equation AXB + CYD = E,” Elec-
tronic Journal of Linear Algebra, Vol. 17, 2008, pp. 343-
358.
[15] S. K. Mitra, “A Pair of Simultaneous Linear Matrix
Equations and a Matrix Programming Problem,” Linear
Algebra and Its Applications, Vol. 131, No. 1, 1990, pp.
97-123. doi:10.1016/0024-3795(90)90377-O
[16] Y. Tian, “The Maximal and Minimal Ranks of Some
Expressions of Generalized Inverses of Matrices,” South-
east Asian Bulletin Mathematics, Vol. 25, No. 4, 2002, pp.
745-755. doi:10.1007/s100120200015