Journal of Applied Mathematics and Physics
Vol.04 No.06(2016), Article ID:67827,11 pages
10.4236/jamp.2016.46120
Boundedness for Commutators of Calderón-Zygmund Operator on Herz-Type Hardy Space with Variable Exponent
Omer Abdalrhman1,2*, Afif Abdalmonem1,3, Shuangping Tao1
1College of Mathematics and Statistics, Northwest Normal University, Lanzhou, China
2College of Education, Shendi University, Shendi, Sudan
3Faculty of Science, University of Dalanj, Dalanj, Sudan

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/



Received 25 May 2016; accepted 26 June 2016; published 29 June 2016
ABSTRACT
Our aim in this paper is to prove the boundedness of commutators of Calderón-Zygmund operator with the Lipschitz function or BOM function on Herz-type Hardy space with variable exponent.
Keywords:
Commutator, Variable Exponent, Herz-Taype Hardy Spaces, BMO, Calderón-Zygmund Operator

1. Introduction
In 2012, Hongbin Wang and Zongguang Liu [1] discussed boundedness Calderón-Zygmund operator on Herz- type Hardy space with variable exponent. M. Luzki [2] introduced the Herz space with variable exponent and proved the boundedness of some sublinear operator on these spaces. Li’na Ma, Shuhai Li and Huo Tang [3] proved the boundedness of commutators of a class of generalized Calderón-Zygmund operators on Labesgue space with variable exponent by Lipschitz function. Mitsuo Izuki [4] proved the boundedness of commutators on Herz spaces with variable exponent. Lijuan Wang and S. P. Tao [5] proved the boundedness of Littlewood- Paley operators and their commutators on Herz-Morrey space with variable exponent. In this paper we prove the boundedness of commutators of singular integrals with Lipschitz function or BMO function on Herz-type Hardy space with variable exponent.
In this section, we will recall some definitions.
Definition 1.1. Let T be a singular integral operator which is initially defined on the Schwartz space
. Its values are taken in the space of tempered distributions
such that for x not in the support of f,
(1.1)
where f is in
, the space of compactly bounded function.
Let
Here the kernel k is function in
away from the diagonal
and satisfies the standard estimate
(1.2)
and
(1.3)
provided that 
(1.4)
provided that
such that is called standard kernel and the class of all kernels that
satisfy (1.2), (1.3), (1.4) is denoted by
. Let T be as in (1.1) with kernel
. If T is bounded from Lp to Lp with
, then we say that T is Calderón-Zygmund operator.
Let Ω be a measurable set in 

Definition 1.2. [4] Let 


The space 
The Lebesgue space 

We denote

Then 



Let M be the Hardy-Littlewood maximal operator. We denote 



Let
Proposition 1.1. See [1] . If 


then, we have
Proposition 1.2. [6] Suppose that


for all balls 

Definition 1.3. [7] Let




where

The non-homogeneous Herz space with variable exponent 

where

Definition 1.4. [1] Let






with norm

Definition 1.5. [1] Let

A function g on 

1)
2)
3)
What’s more, when

Definition 1.6. [7] 

Definition 1.7. For

2. Main Result and Proof
In order to prove result, we need recall some lemma.
Lemma 2.1. ( [3] ) Let



Lemma 2.2. ( [8] ) Let



where
Lemma 2.3. ( [2] ) Let


Lemma 2.4. ( [2] ) Let 


where

Lemma 2.5. ( [4] ) Let


Lemma 2.6. ( [9] ) Let 
Theorem 2.1. Let




where 



Proof: we suffices to prove homogeneous case. Let





We have


By virtue of Lemma 2.1, we can easily see that
First we estimate F1. For each 

Thus by Lemma 2.3, Lemma 2.4 and Proposition 1.2, we get

When 


where 


Now we estimate F3. For each

Using the Lemma 2.3 and Lemma 2.4 and Proposition 1.2, we obtain

When 


When 


Combining (2.10)-(2.14), we get
Theorem 2.2. Let




constants, then 


Proof: we suffices to prove homogeneous case. Let





We have
By inequality (2.5)we have
Firstly we estimate F2 by Lemma 2.6 we can see
Now we consider the estimates of F1. Note that for each


Thus by Lemma 2.5 we get

Thus by Lemma 2.3, Lemma 2.4 and noting that 

When 


when 


Finally we consider the estimates of F3. Note that for each



Thus by Proposition 1.2, and Lemma 2.5, we get

Thus by Lemma 2.3, Lemma 2.4 and noting that 

When 


when 


combining (2.14)-(2.24) the prove is completed.
Acknowledgements
This paper is supported by National Natural Foundation of China (Grant No. 11561062).
Cite this paper
Omer Abdalrhman,Afif Abdalmonem,Shuangping Tao, (2016) Boundedness for Commutators of Calderón-Zygmund Operator on Herz-Type Hardy Space with Variable Exponent. Journal of Applied Mathematics and Physics,04,1157-1167. doi: 10.4236/jamp.2016.46120
References
- 1. Wang, H.B. and Liu, Z.G. (2012) The Herz-Type Hardy Space with Variable Exponent and Their Applications. Taiwanese Journal of Mathematics, 16, 1363-1389.
- 2. Izuki, M. (2010) Boundedness of Sublinear Operators on Herz Spaces with Variable Exponent and Application to Wavelet Characterization. Analysis Mathematica, 36, 33-50.
http://dx.doi.org/10.1007/s10476-010-0102-8 - 3. Ma, L.N., Li, S.H. and Tang, H. (2012) Boundedness of Commutators of a Class of Generalized Calderón-Zygmund Operators on Labesgue Space with Variable Exponent. Pure Mathematics, 2, 78-81.
http://dx.doi.org/10.12677/pm.2012.22013 - 4. Izuki, M. (2010) Boundedness of Commutators on Herz Spaces with Variable Exponent. Rendiconti del Circolo Matematico di Palermo, 59, 199-213.
http://dx.doi.org/10.1007/s12215-010-0015-1 - 5. Wang, L.J. and Tao, S.P. (2014) Boundedness of Littlewood-Paley Operators and Their Commutators on Herz-Morrey Space with Variable Exponent. Journal of Inequalities and Applications, 227, 1-17.
http://dx.doi.org/10.1186/1029-242x-2014-227 - 6. Capone, C., Cruz-Uribe, D. and Fioenza, A. (2007) The Fractional Maximal Operator and Fractional Integerals on Variable in Lp Space. Revista Matemática Iberoamericana, 23, 743-770.
http://dx.doi.org/10.4171/RMI/511 - 7. Stein, E.M. (1970) Singular Integral and Differentiability Properties of Functions. Princeton University Press, Princeton.
- 8. Kovácik, O. and Rákosnk, J. (1991) On Spaces and . Czechoslovak Mathematical Journal, 41, 592-618.
- 9. Cruz-Uribe, D., Fiorenza, A., Martell, J.M. and Pérez, C. (2006) The Boundedness of Classical Operators on Variable Lp Spaces. Annales Academiae Scientiarum Fennicae. Mathematica, 31, 239-264.
NOTES
*Corresponding author.
























