Journal of Applied Mathematics and Physics
Vol.07 No.05(2019), Article ID:92709,11 pages
10.4236/jamp.2019.75078
N-Order Fixed Point Theory for N-Order Generalized Meir-Keeler Type Contraction in Partially Ordered Metric Spaces
Shiyun Wang*, Jingwen Zhang
Department of Science, Shenyang Aerospace University, Shenyang, China
Copyright © 2019 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
Received: April 26, 2019; Accepted: May 26, 2019; Published: May 29, 2019
ABSTRACT
This paper concerns N-order fixed point theory in partially ordered metric spaces. For the sake of simplicity, we start our investigations with the tripled case. We define tripled generalized Meir-Keeler type contraction which extends the definition of [Bessem Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. 72 (2010), 4508-4517]. We then discuss the existence and uniqueness of tripled fixed point theorems in partially ordered metric spaces. For general cases, we generalized our results to the N-order case. The results will promote the study of N-order fixed point theory.
Keywords:
Tripled Fixed Point, Meir-Keeler Type Contraction, Partially Ordered Set, N-Order Fixed Point
1. Introduction and Preliminaries
Banach contraction principle [1] is classical and powerful in fixed point theory. It has been widely generalized (see [2] [3] [4] and others). Recently, fixed point theory in partially ordered metric spaces has been presented by many scholars: Ran and Reurings [5] , Agarwal et al. [6] , Bhsakar and Lakshmikantham [7] , Samet [8] , Berinde and Borcut [9] , Amini-Harandi [10] , etc., considered some coupled and tripled fixed point theorems. For more fixed point theorems in partially ordered metric spaces, one can refer to [11] [12] [13] and others.
This paper focuses on the tripled and N-order fixed point theory. For convenience, we denote . Let denote a partially ordered set endowed a metric d (i.e., is a metric space). Our work is carried out on the following two preliminaries: a result about fixed point in partially ordered metric space in [6] and a definition of generally Meir-Keeler type function for the case of coupled fixed points in [8] .
Lemma 1.1 ( [6] ). Let be a partially ordered metric space and suppose the metric space is complete. Assume there is a nondecreasing function with as for each . If is a nondecreasing mapping with
Assume that either
1) is continuous or,
2) If a nondecreasing sequence , then .
If with then has a fixed point. If for each , there exists which is comparable to x and y, then the fixed point of is unique.
Definition 1 ( [8] ) Let be a partially ordered metric space and be a mapping. F is called generalized Meir-Keeler type function if for all there exists such that
(1.1)
Let be a partially ordered set with a metric d on X, and be a given mapping. Let be the partial order on : . We employ the notion of tripled fixed point introduced by Samet and Vetro which is investigated by Amini-Harandi [10] .
Definition 2 ( [11] ) An element is called a tripled fixed point of if
In this paper, we first define N-order generalized Meir-Keeler type contraction by adding some parameters (see Definition 3 and Definition 5), which is an extension of Definition 1. Then we use a simple approach introduced by [10] to discuss N-order fixed point theorems. We start our discussions with the tripled case. Section 2 devotes to tripled fixed point theorems. Section 3 devotes to N-order fixed point theory. Section 4 gives two examples to illustrate the results obtained in Section 2.
2. Tripled Fixed Point Theory
Recalling that is a partially ordered set with a metric d on X and . Let be the metric and be the partially order on . For each , we define
and
Now, we define tripled generalized Meir-Keeler type contraction which is a useful tool for the following theorems in this section.
Definition 3 Let be a partially ordered metric space and be a mapping. F is called a tripled generalized Meir-Keeler type contraction if for all there exists such that
(2.1)
where are constants with .
Theorem 2.1 Let be a partially ordered metric space. Let be the given constants with . If is a tripled generalized Meir-Keeler contraction mapping, then
for all .
Proof. Let such that . Then it follows that
Setting
we have
By being a tripled generalized Meir-Keeler type contraction, then
. □
Let be a mapping. We say F is nondecreasing in each of its variables if
and
By the monotone property of F, we can get
(2.2)
For all , , we define:
(2.3)
with .
In order to investigate the tripled fixed point of F, we introduce a mapping which is defined by
(2.4)
Obviously, by the definition of , we have
(2.5)
Simultaneously, by (2.3) and (2.4), we have
with , and we have
Theorem 2.2 Let be a partially ordered metric space and be the given constants with . Let be nondecreasing in each of its variables and be a tripled generalized Meir-Keeler type contraction. There exist with . Then, for , we have
1) ;
2) ;
3) .
Proof. We first prove 1). Since , due to the monotone property of F and (2.2), we have , and . By and (2.4), 1) holds for . Now we assume 1) holds for , i.e.
Then, we obtain
which means . Using the same strategy, we have and . Hence we have , that is, 1) holds for . Simultaneously, we can also obtain that and .
Now, we prove 2). We consider
It follows from Theorem 2.1 and 1) that
and
Thus,
Last, we prove 3). From 2), we know that exists. If , we suppose that
(2.6)
Then it follows that
By (2.6), we have
which implies that there exists such that
(2.7)
Since F is a tripled generalized Meir-Keeler type contraction, we get
(2.8)
By (2.7), we also have
and
Then, we get
(2.9)
and
(2.10)
From (2.8)-(2.10), we get
This is a contradiction. The proof is completed.
From the definition of T, we observe that the fixed point of T is exactly the tripled fixed point of F, that is,
We will obtain the tripled fixed point theorems by investigating the fixed point of T.
Theorem 2.3 Let be a partially ordered metric space and is a complete metric space. Let be the given constants with . Let be nondecreasing in each of its variables and be a tripled generalized Meir-Keeler contraction. be a mapping defined as (2.4) satisfying that there exists with . Then, there exists which is a tripled fixed point of F, if either
1) F is continuous or
2) a nondecreasing sequence , then .
Furthermore, if
3) for , there exists that is comparable to and , we get the uniqueness of tripled fixed point of F and .
Proof. Since is a complete metric space, it is obvious that the metric space is complete. By Theorem 2.2, T is non-decreasing. Meanwhile, by Theorem 2.1 and (2.5), for each with , we have
By Lemma 1.1, we deduce that T has a unique fixed point denoted by , then is the unique tripled fixed point of F.
However, we can check that is also a tripled fixed point of F. In fact, since is the tripled fixed point of F, i.e., , we have
which implies that is also a tripled fixed point of F. By the uniqueness, we get . □
Corollary 1 Suppose that all the hypotheses of Theorem 2.3 are satisfied, then the tripled fixed point can be deduced by
(2.11)
Proof. By examining the proof of Theorem 2.3, is actually the fixed point of T on . According to the proof of Lemma 1.1 in [6] , we have
By the definition of , we can easily get (2.11). □
Theorem 2.4 In addition to the hypotheses of Theorem 2.3 except (3), we have by adding the hypotheses (3*): in X are comparable.
Proof. Without the restriction of the generality, we assume that . Setting and , it’s easy to see that . From Theorem 1.1, we have as , which implies that
i.e.,
(2.12)
By the similar strategy, setting and , we can get
(2.13)
It follows from the triangular inequality that
Taking the limit as , by (2.11), (2.12) and (2.13), we get .
Similarly, by setting
and
we can get two equalities,
(2.14)
and
(2.15)
respectively. Then it follows from (2.11), (2.14) and (2.15) that
We get . Hence we have . □
3. N-Order Fixed Point Theorems
Let be a partially ordered set with a metric d on X. Let , be the metric on and be the partially order. For each , we define
and
Definition 4 [11] Let X be a non-empty set and be a given mapping. An element is called a N-order fixed point of F if
We introduce generally N-order generalized Meir-Keeler type contraction.
Definition 5 Let be a partially ordered metric space and be a mapping. F is called a N-order generalized Meir-Keeler contraction if for all there exists such that for
(3.16)
where are constants with .
Substituting the tripled case with N-order case in the discussions of Section 3, by the similar strategy, we can obtain the same results with Theorem 2.1, Theorem 2.2, Theorem 2.3, Corollary 1 and Theorem 2.4.
4. The Examples
This section provides two examples to illustrate Theorem 2.3 and Theorem 2.4.
Example 1 This example is aroused by [13] . Let , and , defined by
It is easy to check that F satisfies all the hypotheses of Theorem 2.3 with
and is the unique tripled fixed point of F.
Example 2 Let
For , and . is defined by
(4.1)
It is easy to check that:
1) F is continues on ;
2) F is a tripled generally Meir-Keeler type contraction. In fact, we can deduce that
3) Setting , then we have . Clearly, we have ;
4) Setting , there are no elements in which are comparable to and .
The above 4) implies that F doesn’t satisfy all the hypotheses of Theorem 2.3. However, the above 1)-3) imply that F satisfies all the hypotheses of Theorem 2.4, then F has the unique tripled fixed point with .
5. Conclusion
In this paper, we extend the definition generalized Meir-Keeler type contraction to N-ordered case. And we use it to discuss N-order fixed point theorems. In future work, we will study N-ordered fixed point theory with invariant set.
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant No. 11701390).
Conflicts of Interest
The authors declare no conflicts of interest regarding the publication of this paper.
Cite this paper
Wang, S.Y. and Zhang, J.W. (2019) N-Order Fixed Point Theory for N-Order Generalized Meir-Keeler Type Contraction in Partially Ordered Metric Spaces. Journal of Applied Mathematics and Physics, 7, 1174-1184. https://doi.org/10.4236/jamp.2019.75078
References
- 1. Bananch, S. (1922) Sur les opérations dans les ensembles anstraits et application qux équations intégrales. Fundamenta Mathematicae, 3, 133-181. https://doi.org/10.4064/fm-3-1-133-181
- 2. Branciari, A. (2022) A Fixed Point Theorem for Mappings Satisfying a General Contractive Condition of Integral Type. International Journal of Mathematics and Mathematical Sciences, 29, 531-536. https://doi.org/10.1155/S0161171202007524
- 3. Meir, A. and Keeler, E. (1969) A Theorem on Contraction Mappings. Journal of Mathematical Analysis and Applications, 58, 326-329. https://doi.org/10.1016/0022-247X(69)90031-6
- 4. Suzuki, T. (2007) Meir-Keeler Contrctions of Integral Type Are Still Meir-Keeler Contrctions. International Journal of Mathematics and Mathematical Sciences, 2007, Article ID: 39281. https://doi.org/10.1155/2007/39281
- 5. Ran, A.C.M. and Reurings, M.C.B. (2004) A Fixed Point Theorem in Partially Ordered Sets and Some Applications to Matrix Equations. Proceedings of the American Mathematical Society, 132, 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
- 6. Agarwal, R.P., EI-Gebeily, M.A. and O’Regan, D. (2008) Generalized Contractions in Partially Ordered Metric Spaces. Applicable Analysis, 87, 1-8. https://doi.org/10.1080/00036810701556151
- 7. Gnana Bhaskar, T. and Lakshmikantham, V. (2006) Fixed Point Theorems in Partially Ordered Metric Spaces and Applications. Nonlinear Analysis, 65, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
- 8. Samet, B. (2010) Coupled Fixed Point Theorems for a Generalized Meir-Keeler Contraction in Partially Ordered Metric Spaces. Nonlinear Analysis, 72, 4508-4517. https://doi.org/10.1016/j.na.2010.02.026
- 9. Borcut, M. and Berinde, V. (2011) Tripled Fixed Point Theorems for Contractive Type Mappings in Partially Ordered Metric Spaces. Nonlinear Analysis, 74, 4889-4897. https://doi.org/10.1016/j.na.2011.03.032
- 10. Amini-Harandi, A. (2013) Coupled and Tripled Fixed Point Theory in Partially Prdered Metric Spaces with Application to Initial Value Problem. Mathematical and Computer Modelling, 57, 2343-2348. https://doi.org/10.1016/j.mcm.2011.12.006
- 11. Samet, B. and Vetro, C. (2010) Coupled Fixed Point, F-Invariant Set and Fixed Point of N-Order. Annals of Functional Analysis, 1, 46-56. https://doi.org/10.15352/afa/1399900586
- 12. Sintunavarat, W., Kumam, P. and Cho, Y.J. (2012) Coupled Fixed Point Theorems for Nonlinear Contractions without Mixed Monotone Property. Fixed Point Theory and Applications, 2012, 170. https://doi.org/10.1186/1687-1812-2012-170
- 13. Berinde, V. and Borcut, M. (2011) Tripled Fixed Point Theorems for Contractive Type Mappings in Partially Ordered Metric Spaces. Nonlinear Analysis, 74, 4889-4897. https://doi.org/10.1016/j.na.2011.03.032