Journal of Modern Physics
Vol.07 No.14(2016), Article ID:71642,10 pages
10.4236/jmp.2016.714173

Kähler Dark Matter, Dark Energy Cosmic Density and Their Coupling

Mohamed S. El Naschie

Department of Physics, Faculty of Science, Alexandria University, Alexandria, Egypt

Copyright © 2016 by author and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Received: October 19, 2016; Accepted: October 28, 2016; Published: October 31, 2016

ABSTRACT

We utilize homology and co-homology of a K3-Kähler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) ordinary energy; 2) pure dark energy and 3) dark matter. In addition, the fundamental coupling of dark matter to pure dark energy is analyzed in detail for the first time. Finally, the so-obtained results are shown to be in astounding agreement with all previous theoretical analysis as well as with actual accurate cosmic measurements.

Keywords:

Kähler Topology, Dark Matter, E-Infinity, Super Strings, Golden Mean Computer, Kerr Black Hole Geometry, Accelerated Cosmic Expansion, Fractal Cantorian Spacetime

1. Introduction and Background Information

In many previous publications [1] - [80] , we considered the major problems of dark energy as well as the related quest to elucidate the missing mass of the universe which was dubbed “Dark Matter” [6] [38] [39] . In short it was found that a highly accurate estimate of these densities may be found by equating the Lorentzian Gamma factor of Einstein’s equation of maximal energy (E = mc2 as given for where m is the mass and c is the velocity of light) to the ratio of the Betti number b2 of Einstein’s 4D smooth manifold (b2 = 1) and that of a K3-Kähler manifold = 22 [81] - [108] . Thus inserting in E leads to an ordinary energy density [2] [44]

(1)

This is almost 4.5% of Einstein’s classical energy density E = mc2 from which one is naturally led to conclude that the “hidden” or missing energy density of the universe must be equal to 1 − (1/22) = 21/22 i.e. 95.5% of that of Einstein’s maximal energy in an astounding agreement with the highly accurate measurements of COBE, WMAP, Type L2 Supernova and Planck [1] - [10] . Furthermore, comparing the result with other theoretical derivations, for instance the exact transfinite one obtained from the multiplicative five dimensional value of a zero set quantum particle and additive five dimensional value of an empty set quantum wave [24] [27] namely

(2)

we find that setting the transfinite irrational tail equal zero leads to the very same result obtained using the Betti numbers b2 of the said K3 Kähler manifold [2] [44] . From the above it was concluded sometime ago that b2 measures the amount of “space” voids in the manifold [10] [24] [28] [50] [52] . Consequently since the classical Einstein spacetime manifold is a smooth voidless manifold for which b2 = 1 and K3-Kähler manifold is a highly non-smooth four dimensional structure with b2 = 22, we see that the topological index b2 is a quite accurate measure for the fractal ruggedness involved for any manifold [81] - [86] . Therefore the used ratio will account for the reduction of and its dissection into two components as expressed in the by now reasonably well known equation

(3)

In the preceding equation E(D) makes no distinction between the dark matter and the pure dark energy components of E(D). By contrast in the present derivation we show how the topology of K3-Kähler and its various Betti numbers can discriminate between not only ordinary and dark energy but also between dark matter and pure dark energy. This remarkable result will be achieved here by utilizing the signature of K3- Kähler and the entire set of all non-zero Betti numbers [24] [81] - [86] . In addition we will be able to reveal the subtle coupling between dark matter and pure dark energy [2] - [35] .

2. Analysis

The present analysis rests almost entirely on the intuitively understandable fact that similar to the distinction between the zero set and the various empty set with increasing degree of emptiness used in E-Infinity theory [83] - [103] the various topological Betti numbers measure subtly different degrees of ruggedness caused by the “voids” in the manifold [96] [101] [116] . In the spirit of the above, the heuristic dissection of E (Einstein)

(4)

may be rewritten to become

(5)

In turn this may be interpreted in terms of the topological invariant of our K3- Kähler, namely [81] - [91]

(6)

to mean that

(7)

This is a new profound confirmation of our previous result and reinforces the confidence in the K-(or K3) Kähler gained from its use in superstring theory and E-Infinity theory alike [2] - [108] . In particular one should note that the negative sign of the signature can be interpreted as a clear hint that pure dark energy works in the opposite direction to dark matter and ordinary energy [1] - [80] . It is also note worthy to observe that the above result agrees almost completely with that obtained from the geometry of Kerr black holes [8] .

3. The Coupling of Dark Matter to Pure Dark Energy

There is a subtle point in the previous integer approximation of the triple partitions of E-Einstein. The point is that the ordinary energy part E(O) = mc2/22 and the total dark energy part E(D) = mc2/22 may be found directly from the exact transfinite value and by setting k = 0 and revealing E(O) to be and E(D) to be of the total energy [2] - [10] . However doing the same for the triple dissection, we do not find E(DM) to be equal to 22% nor E(PDF) to be as should be because and [1] - [15] . Thus while our “integer” solution is quite close to the exact value they are not exact nor can they be made exact by setting small irrational tails such as k equal zero similar to the analysis involving two components dissection [1] - [80] .

The deeper reason for this mathematical “anomaly” is that the “mathematics” is trying to tell us something of physical value and meaning. This “something” is actually that dark matter and pure dark energy are subtly coupled as the following computation will reveal. To do that we introduce the irrational transfinite correction coupling constant.

Rewriting our previous triadic E using we find:

(8)

The remarkable fact is that in the above formalism everything falls in place and we find our exact solution that was found long ago using elaborate and occasionally terse reasoning namely that [8] [24]

(9)

exactly as obtained in numerous previous publications [1] - [80] and in full agreement with actual cosmic measurements [1] - [80] . In view of the above one could understand the huge difficulties of detecting dark matter to the extent of doubting its very real existence [132] . The present Author is however of the opinion that there is sufficient observation and theoretical underpinning to convince us that dark energy and dark matter are real [24] .

4. Conclusion

By design or providence, superstring theory struck a lucky accord with nature by hitting on the marvelous K3-Kähler manifold. However, the inherent inconsistency of using a classical continuum in the form of vibrating and rotating strings coupled to a fundamental discrete ten dimensional network spacetime might be the reason of the failure of string theory in utilizing this K3-Kähler to its utmost capacity. By contrast when introducing a fuzzy-fractal version of K3-Kähler, we are able to use it beyond the compactification procedure of superstring theory to model spacetime itself. Proceeding in this way, a theory was developed which is essentially an E-Infinity-like theory with a twist. In this theory, the fundamental invariants of K3-Kähler, namely the Betti numbers, the signature and the Euler invariants, play a pivotal role not only in deriving the actually measured cosmic ordinary and dark energy density i.e. E(O) and E(D) but also of discriminating between pure dark energy E(PDE) and dark matter E(DM) as well as revealing its coupled nature.

Cite this paper

El Naschie, M.S. (2016) Kähler Dark Matter, Dark Energy Cosmic Density and Their Coupling. Journal of Modern Physics, 7, 1953-1962. http://dx.doi.org/10.4236/jmp.2016.714173

References

  1. 1. El Naschie, M.S. (2013) Journal of Quantum Information Science, 3, 23-26.
    http://dx.doi.org/10.4236/jqis.2013.31006

  2. 2. El Naschie, M.S. (2013) International Journal of Modern Nonlinear Theory & Application, 2, 43-54.
    http://dx.doi.org/10.4236/ijmnta.2013.21005

  3. 3. El Naschie, M.S. (2013) Journal of Modern Physics, 4, 354-356.
    http://dx.doi.org/10.4236/jmp.2013.43049

  4. 4. El Naschie, M.S. (2014) Journal of Quantum Information Science, 4, 83-91.

  5. 5. El Naschie, M.S. (2013) Open Journal of Microphysics, 3, Article ID: 35744.
    http://dx.doi.org/10.4236/ojm.2013.33012

  6. 6. Lahanas, A.B., Mavromatos, N.E. and Nanopoulosd, D.V. (2003) International Journal of Modern Physics D, 12, 1529.
    http://dx.doi.org/10.1142/S0218271803004286

  7. 7. El Naschie, M.S. and Helal, A. (2013) International Journal of Astronomy and Astrophysics, 3, 318-343.
    http://dx.doi.org/10.4236/ijaa.2013.33037

  8. 8. El Naschie, M.S. (2015) Natural Science, 7, 210-225.
    http://dx.doi.org/10.4236/ns.2015.74024

  9. 9. Marek-Crnjac, L., El Naschie, M.S. and He, J.-H. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 78-88.
    http://dx.doi.org/10.4236/ijmnta.2013.21A010

  10. 10. El Naschie, M.S. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 107-121.
    http://dx.doi.org/10.4236/ijmnta.2013.22014

  11. 11. Lahanas, A.B., Mavromatos, N.E. and Nanopoulosd, D.V. (2007) Physics Letters B, 649, 83-90.
    http://dx.doi.org/10.1016/j.physletb.2007.03.058

  12. 12. El Naschie, M.S. (2014) American Journal of Astronomy & Astrophysics, 2, 72-77.
    http://dx.doi.org/10.11648/j.ajaa.20140206.13

  13. 13. El Naschie, M.S. (2013) International Journal of Astronomy and Astrophysics, 3, Article ID: 40590.
    http://dx.doi.org/10.4236/ijaa.2013.34056

  14. 14. El Naschie, M.S. (2013) Journal of Modern Physics and Applications, 2, No. 1.

  15. 15. El Naschie, M.S. (2014) Open Journal of Fluid Dynamics, 4, 15-17.
    http://dx.doi.org/10.4236/ojfd.2014.41002

  16. 16. El Naschie, M.S. (2014) International Journal of Modern Nonlinear Theory and Application, 3, 1-5. http://dx.doi.org/10.4236/ijmnta.2014.31001

  17. 17. El Naschie, M.S., Marek-Crnjac, L., Helal, M.A. and He, J.-H. (2014) Applied Mathematics, 5, 1780-1790.
    http://dx.doi.org/10.4236/am.2014.512171

  18. 18. El Naschie, M.S. (2015) The Open Astronomy Journal, 8, 1-17.
    http://dx.doi.org/10.2174/1874381101508010001

  19. 19. El Naschie, M.S. (2014) Journal of Modern Physics Applications, 6, 1-10.

  20. 20. El Naschie, M.S. (2014) Journal of Quantum Information Science, 4, 284-291.
    http://dx.doi.org/10.4236/jqis.2014.44023

  21. 21. El Naschie, M.S. (2014) Journal of Applied Mathematics and Physics, 2, 803-806.
    http://dx.doi.org/10.4236/jamp.2014.28088

  22. 22. Helal, M., Marek-Crnjac, L. and He, J.-H. (2013) Open Journal of Microphysics, 3, 141-145.
    http://dx.doi.org/10.4236/ojm.2013.34020

  23. 23. El Naschie, M.S. (2014) International Journal of Astronomy and Astrophysics, 4, 80-90.
    http://dx.doi.org/10.4236/ijaa.2014.41009

  24. 24. Marek-Crnjac, L. and He, J.-H. (2013) International Journal of Astronomy and Astrophysics, 3, 464-471. http://dx.doi.org/10.4236/ijaa.2013.34053

  25. 25. El Naschie, M.S. (2014) Problems of Nonlinear Analysis in Engineering Systems, 20, 79-98.

  26. 26. El Naschie, M.S. (2013) American Journal of Modern Physics, 2, 357-361
    http://dx.doi.org/10.11648/j.ajmp.20130206.23

  27. 27. El Naschie, M.S. (2013) Journal of Modern Physics, 4, 591-596.
    http://dx.doi.org/10.4236/jmp.2013.45084

  28. 28. El Naschie, M.S. (2014) World Journal of Mechanics, 4, 153-156.
    http://dx.doi.org/10.4236/wjm.2014.46017

  29. 29. El Naschie, M.S. (2015) Open Journal of Applied Sciences, 5, 313-324.
    http://dx.doi.org/10.4236/ojapps.2015.57032

  30. 30. El Naschie, M.S. (2014) Journal of Modern Physics, 5, 743-750.
    http://dx.doi.org/10.4236/jmp.2014.59084

  31. 31. El Naschie, M.S. (2013) Gravitation and Cosmology, 19, 151-155.
    http://dx.doi.org/10.1134/S0202289313030031

  32. 32. El Naschie, M.S. (2014) Journal of Applied Mathematics and Physics, 2, 634-638.
    http://dx.doi.org/10.4236/jamp.2014.27069

  33. 33. El Naschie, M.S. (2016) Quantum Matter, 5, 1-4.
    http://dx.doi.org/10.1166/qm.2016.1247

  34. 34. Marek-Crnjac, L. and El Naschie, M.S. (2013) Applied Mathematics, 4, 22-29.
    http://dx.doi.org/10.4236/am.2013.411A2005

  35. 35. El Naschie, M.S. (2014) World Journal of Condensed Matter Physics, 4, 74-77.
    http://dx.doi.org/10.4236/wjcmp.2014.42011

  36. 36. El Naschie, M.S. (2015) Natural Science, 7, 287-298.
    http://dx.doi.org/10.4236/ns.2015.76032

  37. 37. He, J.H. and Marek-Crnjac, L. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 55-59.
    http://dx.doi.org/10.4236/ijmnta.2013.21006

  38. 38. Sidharth, B.G. (2003) Chaos, Solitons & Fractals, 18, 197-201.
    http://dx.doi.org/10.1016/S0960-0779(02)00632-X

  39. 39. Sidharth, B. and Altaisky, M.V. (2012) Frontiers of Fundamental Physics 4. Springer, Berlin.

  40. 40. El Naschie, M.S. (2015) World Journal of Condensed Matter Physics, 5, 249-260.
    http://dx.doi.org/10.4236/wjcmp.2015.54026

  41. 41. El Naschie, M.S. (2015) International Journal of Astronomy & Astrophysics, 5, 243-247.
    http://dx.doi.org/10.4236/ijaa.2015.54027

  42. 42. El Naschie, M.S. (2015) Natural Science, 7, 483-487.
    http://dx.doi.org/10.4236/ns.2015.710049

  43. 43. El Naschie, M.S. (2015) Journal of Modern Physics, 6, 1321-1333.
    http://dx.doi.org/10.4236/jmp.2015.69137

  44. 44. He, J.H. and Marek-Crnjac, L. (2013) Fractal Spacetime and Noncommutative Geometry in Quantum & High Energy Physics, 3, 130-137.

  45. 45. El Naschie, M.S. (2014) International Journal of Astronomy and Astrophysics, 4, 332-339.
    http://dx.doi.org/10.4236/ijaa.2014.42027

  46. 46. El Naschie, M.S. (2013) Journal of Quantum Information Science, 3, 55-57.
    http://dx.doi.org/10.4236/jqis.2013.32011

  47. 47. El Naschie, M.S. (2013) International Journal of Astronomy and Astrophysics, 3, 205-211.
    http://dx.doi.org/10.4236/ijaa.2013.33024

  48. 48. El Naschie, M.S. (2015) Open Journal of Microphysics, 5, 11-15.
    http://dx.doi.org/10.4236/ojm.2015.52002

  49. 49. El Naschie, M.S. (2015) World Journal of Nano Science and Engineering, 5, 57-67.
    http://dx.doi.org/10.4236/wjnse.2015.53008

  50. 50. El Naschie, M.S. (2015) Advances in Pure Mathematics, 5, 560-570.
    http://dx.doi.org/10.4236/apm.2015.59052

  51. 51. Marek-Crnjac, L. (2015) Natural Science, 7, 581-598.
    http://dx.doi.org/10.4236/ns.2015.713058

  52. 52. El Naschie, M.S. (2015) Open Journal of Philosophy, 5, 123-130.
    http://dx.doi.org/10.4236/ojpp.2015.51014

  53. 53. El Naschie, M.S. (2015) Open Journal of Philosophy, 5, 319-326.
    http://dx.doi.org/10.4236/ojpp.2015.56040

  54. 54. El Naschie, M.S. (2013) Journal of Modern Physics, 4, 1417-1428.
    http://dx.doi.org/10.4236/jmp.2013.410170

  55. 55. El Naschie, M.S. (2014) World Journal of Nuclear Science and Technology, 4, 216-221.
    http://dx.doi.org/10.4236/wjnst.2014.44027

  56. 56. El Naschie, M.S. (2014) Journal of Electromagnetic Analysis and Applications, 6, 233-237.
    http://dx.doi.org/10.4236/jemaa.2014.69023

  57. 57. Capozziello, S. (2002) International Journal of Modern Physics D, 11, 483-491.
    http://dx.doi.org/10.1142/S0218271802002025

  58. 58. El Naschie, M.S. (2013) Journal of Modern Physics, 2, 18-23.

  59. 59. Ellis, J.R., Mavromatos, N.E., Mitsou, V.A. and Nanopoulos, D.V. (2007) Astroparticle Physics, 27, 185-198.
    http://dx.doi.org/10.1016/j.astropartphys.2006.10.007

  60. 60. El Naschie, M.S. (2013) Journal of Modern Physics, 4, 31-38.
    http://dx.doi.org/10.4236/jmp.2013.411A1005

  61. 61. Iovane, G., Laserra, E. and Giordano, P. (2004) Chaos, Solitons & Fractals, 22, 521-528.
    http://dx.doi.org/10.1016/j.chaos.2004.02.026

  62. 62. Tang, W., Li, Y., Kong, H.Y. and El Naschie, M.S. (2014) Bubbfil Nanotechnology, 1, 3-12.

  63. 63. Diamandis, G.A., Georgalas, B.C., Mavromatos, N.E. and Papantonopoulos, E. (2002) International Journal of Modern Physics A, 17, 4567-4589.
    http://dx.doi.org/10.1142/S0217751X02010893

  64. 64. El Naschie, M.S. (2014) Advances in Pure Mathematics, 4, 641-648.
    http://dx.doi.org/10.4236/apm.2014.412073

  65. 65. El Naschie, M.S. (2015) American Journal of Nano Research and Application, 3, 33-40.

  66. 66. El Naschie, M.S. (2015) World Journal of Nano Science & Engineering, 5, 26-33.
    http://dx.doi.org/10.4236/wjnse.2015.51004

  67. 67. Marek-Crnjac, L. (2013) American Journal of Modern Physics, 2, 255-263.
    http://dx.doi.org/10.11648/j.ajmp.20130205.14

  68. 68. Iovane, G. (2004) Chaos, Solitons & Fractals, 20, 657-667.
    http://dx.doi.org/10.1016/j.chaos.2003.09.036

  69. 69. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 25, 969-977.
    http://dx.doi.org/10.1016/j.chaos.2005.02.028

  70. 70. El Naschie, M.S. (2016) Journal of Quantum Information Science, 6, 1-9.
    http://dx.doi.org/10.4236/jqis.2016.61001

  71. 71. Fred, Y.Y. (2009) Chaos, Solitons & Fractals, 42, 89-93.
    http://dx.doi.org/10.1016/j.chaos.2008.10.030

  72. 72. Ellis, J., Mavromatos, N.E. and Nanopoulos, D.V. (2005) Physics Letters B, 619, 17-25.
    http://dx.doi.org/10.1016/j.physletb.2005.05.047

  73. 73. El Naschie, M.S. (2016) World Journal of Condensed Matter Physics, 6, 63-67.
    http://dx.doi.org/10.4236/wjcmp.2016.62009

  74. 74. Iovane, G., Laserra, E. and Tortoriello, F.S. (2004) Chaos, Solitons & Fractals, 20, 415-426.
    http://dx.doi.org/10.1016/j.chaos.2003.08.004

  75. 75. El Naschie, M.S. (2015) American Journal of Nano Research & Application, 3, 66-70.

  76. 76. El Naschie, M.S. (2015) Journal of Modern Physics, 6, 348-395.
    http://dx.doi.org/10.4236/jmp.2015.64042

  77. 77. Greljo, A., Julio, J., Kamenik, J.F., Smith, C. and Zupan, J. (2013) Journal of High Energy Physics, 2013, 190.
    http://dx.doi.org/10.1007/jhep11(2013)190

  78. 78. Diamandis, G.A., Georgalas, B.C., Lahanas, A.B., Mavromatos, N.E. and Nanopoulos, D.V. (2006) Physics Letters B, 642, 179-186.
    http://dx.doi.org/10.1016/j.physletb.2006.09.035

  79. 79. El Naschie, M.S. (2006) World Journal of Nano Science and Engineering, 5, 49-56.
    http://dx.doi.org/10.4236/wjnse.2015.52007

  80. 80. Sidharth, B.G. (2001) Chaos, Solitons & Fractals, 12, 1101-1109.
    http://dx.doi.org/10.1016/S0960-0779(00)00079-5

  81. 81. El Naschie, M.S. (2005) International Journal of Nonlinear Sciences and Numerical Simulation, 6, 95-98.
    http://dx.doi.org/10.1515/ijnsns.2005.6.2.95

  82. 82. Gibbons, G., Shellard, E. and Rankin, S. (2003) The Future of Theoretical Physics and Cosmology. Cambridge University Press, Cambridge.

  83. 83. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 30, 579-605.
    http://dx.doi.org/10.1016/j.chaos.2006.03.030

  84. 84. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 29, 876-881.
    http://dx.doi.org/10.1016/j.chaos.2005.12.027

  85. 85. El Naschie, M.S. (2007) International Journal of Nonlinear Science & Numerical Simulation, 8, 11-20.
    http://dx.doi.org/10.1515/IJNSNS.2007.8.1.11

  86. 86. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 26, 477-481.
    http://dx.doi.org/10.1016/j.chaos.2004.12.024

  87. 87. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 27, 9-13.
    http://dx.doi.org/10.1016/j.chaos.2005.05.010

  88. 88. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 27, 39-42.
    http://dx.doi.org/10.1016/j.chaos.2005.04.094

  89. 89. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 27, 843-849.
    http://dx.doi.org/10.1016/j.chaos.2005.06.002

  90. 90. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 26, 1-6.
    http://dx.doi.org/10.1016/j.chaos.2005.02.031

  91. 91. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 30, 636-641.
    http://dx.doi.org/10.1016/j.chaos.2006.04.044

  92. 92. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 25, 509-514.
    http://dx.doi.org/10.1016/j.chaos.2005.02.016

  93. 93. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 29, 816-822.
    http://dx.doi.org/10.1016/j.chaos.2006.01.013

  94. 94. El Naschie, M.S. (2007) Chaos, Solitons & Fractals, 31, 537-547.
    http://dx.doi.org/10.1016/j.chaos.2006.07.001

  95. 95. El Naschie, M.S. (2007) International Journal of Nonlinear Sciences and Numerical Simulation, 8, 445-450.
    http://dx.doi.org/10.1515/IJNSNS.2007.8.3.445

  96. 96. El Naschie, M.S. (2005 Chaos, Solitons & Fractals, 26, 665-670.
    http://dx.doi.org/10.1016/j.chaos.2005.01.018

  97. 97. El Naschie, M.S. (2007) Chaos, Solitons & Fractals, 32, 427-430.
    http://dx.doi.org/10.1016/j.chaos.2006.09.016

  98. 98. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 30, 1025-1033.
    http://dx.doi.org/10.1016/j.chaos.2006.05.088

  99. 99. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 29, 845-853.
    http://dx.doi.org/10.1016/j.chaos.2006.01.073

  100. 100. El Naschie, M.S. (2005) International Journal of Nonlinear Sciences and Numerical Simulation, 6, 331-333.
    http://dx.doi.org/10.1515/IJNSNS.2005.6.3.331

  101. 101. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 26, 303-311.
    http://dx.doi.org/10.1016/j.chaos.2005.03.004

  102. 102. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 26, 291-294.
    http://dx.doi.org/10.1016/j.chaos.2005.03.003

  103. 103. El Naschie, M.S. (2007) Chaos, Solitons & Fractals, 32, 370-374.
    http://dx.doi.org/10.1016/j.chaos.2006.09.018

  104. 104. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 30, 525-531.
    http://dx.doi.org/10.1016/j.chaos.2005.04.123

  105. 105. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 29, 803-807.
    http://dx.doi.org/10.1016/j.chaos.2006.01.012

  106. 106. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 25, 521-524.
    http://dx.doi.org/10.1016/j.chaos.2005.01.022

  107. 107. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 35, 7-12.
    http://dx.doi.org/10.1016/j.chaos.2007.06.023

  108. 108. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 35, 67-70.
    http://dx.doi.org/10.1016/j.chaos.2007.05.013

  109. 109. Krauss, L.M. (2001) Quintessence. Published by Vintage.

  110. 110. El Naschie, M.S. (2015) International Journal of High Energy Physics, 2, 13-21.
    http://dx.doi.org/10.11648/j.ijhep.20150201.12

  111. 111. Mills, R. (1994) Space, Time and Quantra. W. H. Freeman, New York.

  112. 112. El Naschie, M.S. (2015) International Journal of Innovation in Science and Mathematics, 3, 254-265.

  113. 113. El Naschie, M.S. (2016) Journal of Quantum Information Science, 6, 57-61.
    http://dx.doi.org/10.4236/jqis.2016.62007

  114. 114. Kragh, H. (1996) Cosmology and Controversy. Princeton University Press, Princeton, NJ.

  115. 115. Mumford, D., Series, C. and Wright, D. (2002) Indra’s Pearls. Cambridge University Press, Cambridge.

  116. 116. Rogers, B., Pennathur, S. and Adams, J. (2008) Nanotechnology. CRC Press, Boca Raton.

  117. 117. El Naschie, M.S. (2015) Problems of Nonlinear Analysis in Engineering Systems, 2, 1-16.

  118. 118. Hsu, J.-P. and Hsu, L. (2006) A Broad View of Relativity. World Scientific, Singapore.

  119. 119. El Naschie, M.S. (2015) American Journal of Nano Research and Applications, 3, 1-5.

  120. 120. El Naschie, M.S. (2016) Natural Science, 8, 152-159.
    http://dx.doi.org/10.4236/ns.2016.83018

  121. 121. El Naschie, M.S. (2016) Journal of Modern Physics, 7, 729-736.
    http://dx.doi.org/10.4236/jmp.2016.78069

  122. 122. El Naschie, M.S. (2016) International Journal of Astronomy and Astrophysics, 6, 135-144.
    http://dx.doi.org/10.4236/ijaa.2016.62011

  123. 123. El Naschie, M.S. (2016) American Journal of Computational Mathematics, 6, 185-199.
    http://dx.doi.org/10.4236/ajcm.2016.63020

  124. 124. El Naschie, M.S. (2015) American Journal of astronomy and Astrophysics, 3, 77-86.
    http://dx.doi.org/10.11648/j.ajaa.20150305.11

  125. 125. Babchin, A.J. and El Naschie, M.S. (2015) World Journal of Condensed Matter Physics, 6, 1-6. http://dx.doi.org/10.4236/wjcmp.2016.61001

  126. 126. El Naschie, M.S. (2016) Advances in Pure Mathematics, 6, 446-454.
    http://dx.doi.org/10.4236/apm.2016.66032

  127. 127. Ho, M.E.N. and Giuseppe Vitiello, M.W. (2015) Global Journal of Science Frontier Research, 15, 61-80.

  128. 128. El Naschie, M.S. (2016) International Journal of Astronomy and Astrophysics, 6, 56-81.
    http://dx.doi.org/10.4236/ijaa.2016.61005

  129. 129. Auffray, J.P. and El Naschie, M.S. (2016) Journal of Modern Physics, 7, 156-161.
    http://dx.doi.org/10.4236/jmp.2016.71017

  130. 130. El Naschie, M.S. (2016) Journal of Modern Physics, 7, 1420-1428.
    http://dx.doi.org/10.4236/jmp.2016.712129

  131. 131. El Naschie, M.S. (2016) Journal of Applied Mathematics and Physics, 4, 979-987.
    http://dx.doi.org/10.4236/jamp.2016.46105

  132. 132. Brownstein, J.R. and Moffat, J.W. (2007) Monthly Notices of the Royal Astronomical Society, 382, 29-47.
    http://dx.doi.org/10.1111/j.1365-2966.2007.12275.x