Journal of Mathematical Finance
Vol.06 No.05(2016), Article ID:72117,24 pages
10.4236/jmf.2016.65057
Randomized Stopping Times and Early Exercise for American Derivatives in Dry Markets
João Amaro de Matos1, Ana Lacerda2
1Nova School of Business and Economics, Universidade Nova de Lisboa, Lisbon, Portugal
2Economic and Financial Affairs Dept., Portuguese Permanent Representation to the European Union, Brussels, Belgium

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/



Received: September 1, 2016; Accepted: November 15, 2016; Published: November 18, 2016
ABSTRACT
This paper studies the impact of dry markets for underlying assets on the optimal stopping time and optimal exercise policy of American derivatives. We consider that the underlying is transacted at all points in time except for a subset of dates, for which there is an exogenous probability that trading may exist. Using superreplicating strategies, we derive expectation representations for the range of arbitrage-free values of the derivatives. For arbitrary probability, an enlarged filtration jointly induced by the price process and the market existence process makes ordinary stopping times sufficient to characterize such representation. For the deterministic case where the probability is zero, randomized stopping times are required. Several comparisons of the ranges obtained with the two market restrictions are performed. Finally, we conclude that market incompleteness caused by dryness may delay the optimal exercise of American derivatives.
Keywords:
Option Pricing, Incomplete Markets, Dry Markets, Optimal Stopping Time, Randomized Stopping Time

1. Introduction
Derivatives were originally priced by assuming that markets were complete, computing the value of a derivative as the value of a self-financing, and replicating portfolio on the underlying risky asset and risk-free bond. Such portfolio could be rebalanced by continuously trading the underlying asset and bonds. The value of the initial portfolio could be shown to be the no-arbitrage price of the derivative. In the case of American derivatives, Karatzas [1] has shown that, in this complete market setting, the no-arbitrage value of one such derivative is indeed the supremum of the implied European derivative values over all possible stopping times. In the presence of market imperfections, such simple assumptions do not hold and markets become incomplete, making the pricing mechanism of options more subtle. In particular, it may be difficult to characterize the rebalancing portfolios. This issue has become a major concern for financial economists since real markets are not perfect, and a significant literature about option pricing in incomplete markets has been developed1.
In this paper we assume that an American derivative and its respective underlying asset may not be traded at some points in time, generating incomplete markets, and then study the impact of this constraint on its optimal stopping time. In particular, we show that this incompleteness may delay the optimal exercise of American derivatives as compared to the case of complete markets. We are also able to write upper and lower bounds for their possible non-arbitrage values in terms of both randomized and ordinary stopping times.
The market for an asset is said to be liquid when there are numerous buyers and sellers, making a quick trade easy to be executed. In such circumstances, variations in supply and demand should not have a significant impact on the transaction price. An illiquid market implies that it may not be that easy to sell or to buy the asset. The fact that the underlying asset can be traded only at some points in time can be described as a particular lack of liquidity of the market, as in [10] . We shall refer to this situation as dry markets. We will consider the deterministic case, when we know ex-ante at which points in time markets do exist or do not exist and the probabilistic case, when we assign a probability p to the existence of the market at each point in time. Lack of liquidity is of extreme practical importance. It suffices to think about how many hours per day the exchanges are closed and stocks cannot be traded. Even while exchanges are open, there is strong empirical evidence (see [11] among others) of heavy trading at the beginning and the end of the trading day and relatively light trading in the middle of the day. Such U-shaped pattern of the average volume of traded shares reflects the fact that markets are essentially dry away from opening and closing hours. A rich literature modeling the nature of such intraday dryness for stock markets emerged with [12] [13] , and expanded to many other markets such as the FX markets [14] . Other examples where trading is not possible include refracting periods for swing options and vesting periods for employee stock options.
Markets’ dryness implies that markets become incomplete in the sense that perfect hedging of the derivative in all states of nature may no longer be possible. However, for any given derivative, portfolios can be found that have the same payoff as the derivative in some states of nature and higher payoffs in the other states. Such portfolios are said to be superreplicating (or superhedging). Holding one such portfolio should be worth more than the derivative itself and therefore, the value of the cheapest of such portfolios should be seen as a bound on the value of the derivative. The nature of the superreplicating bounds for European derivatives was well characterized in the context of incomplete markets by [2] [3] [4] [5] . Under market incompleteness, the hedging position of a market-maker depends on whether this intermediary is in a long or in a short position. This fact results in a lower and an upper bound for the derivatives’ values. The superreplicating bounds establish the range of prices outside which an investor has a positive profit with probability one. In other words, an arbitrage opportunity exists if the investor sells options above the upper bound or buys options below the lower bound.
There has been a relatively extensive literature characterizing in varying degrees of generality the superreplicating bounds of American derivatives in incomplete markets such as in [6] [7] [8] [9] . A later paper by Chalasani and Jha [15] discusses the particular case of transaction costs in discrete time and concludes that, in their specific setting, the superreplicating bounds of one such derivative may also be written as the supremum of the implied European derivative value. However, there are two important subtleties in their result: first, the supremum must be taken over randomized stopping times and second, the probability measure defining the European value over which the supremum is taken, may depend itself on the randomized stopping time that solves the problem.
The results of these authors were related to the fact that2, under incomplete markets, the choice of exercise policy may influence the characterization of the marketed subspace, and therefore influence the pricing of securities. A rational exercise policy may even not be well defined if the state-price deflator depends on the exercise policy. This is their argument for using optimal randomized stopping times when characterizing the superreplication bounds of American derivatives under proportional transaction costs.
We contribute to this literature by showing that in the case where market incompleteness is generated by dryness, the supremum may be taken over usual deterministic stopping times, as opposed to the randomized stopping times in [15] . We are also able to understand how to recover their result in the dry market context, contributing to a better understanding of the process of exercising American options in incomplete markets. In that sense, our results extend their results and imply that the nature of the optimal stopping time may depend on the imperfection mechanism generating market incompleteness. Although the result for deterministic dry markets may be understood in the context of superreplicating bounds, as discussed heuristically in [17] , the case of probabilistic dry markets is of a different nature, since it crosses an additional source of uncertainty (existence or non-existence of underlying trade at any given point in time). We are thus allowed to conclude that the need of randomized stopping times clearly depends on the nature of the market incompleteness. In order to be perfectly comparable with the previous literature, our results are developed in a discrete-time setting, and use well-understood techniques such as backward induction and linear-programming duality, available without any technical difficulties. On the financial side, liquidity and the lack thereof are important issues that are modeled according to this discrete-time setting, allowing for quite intuitive conclusions.
Furthermore, under some regularity conditions, in dry markets the choice of exercise policy does not affect the characterization of the marketed subspace. Actually, we are able to show that this type of market incompleteness may delay the optimal exercise of American derivatives as compared to the case where the underlying asset may be traded at every point in time.
Our work is organized as follows. Section 2 presents the model and relevant probabilistic concepts, after which Section 3 presents the results for the upper and lower superreplicating bounds of American derivatives. In Section 4 these different bounds are compared. The exercise policy in dry markets is discussed in section 5. Finally, in Section 6 we conclude. Our main technical proofs are presented in the Appendix.
2. Dry Markets
2.1. The Model
In this paper we shall follow the notation used in [15] making it easier to compare the techniques and the results of both papers. Consider an economy where three different assets are traded. There is a risk free asset with unitary initial value providing a deterministic total return of
per period; there are also a risky asset and a third asset, an American derivative, written on the risky asset, with expiration date T. The discrete set of possible transaction dates is denoted by
The value of the underlying risky asset over time is modelled by means of a finite event tree, each node being identified by a pair
, where j denotes the j-th node at time t. There is only one node at time
, denoted by
For any given node
, the set of successors at time
,
, is denoted by
. For simplicity let
denote the set of immediate successors, i.e.,
. The nodes
are called terminal nodes and
is assumed to be the empty set
. We also assume that, for
, each node
has a nonempty set of immediate successors, i.e.,
. In an analogous way, the set of immediate predecessors of a node
is denoted by


A path on the event tree is a set of nodes 
in the union satisfies














Dry markets are characterized by the fact that transactions are possible with probability one only at some points in time t in a set












We can think of the existence (or not) of trade at time t as the realization of a random variable







and the enlarged filtration
with



















2.1.1. The Liquid Case and the Perfectly Replicating Portfolio
When




Under the absence of arbitrage, the initial value of the derivative coincides with 


2.1.2. The Dry Markets Case and the Superreplicating Portfolios
When markets are dry the number of traded securities at some points in time may not be sufficient to allow the construction of a self-financing replicating portfolio. Markets are then said to be incomplete. In that case, there is not a unique arbitrage-free value for the American derivative. By replacing the notion of replicating strategy by the notion of superreplication strategy it is possible however to derive an arbitrage-free range of values for the American derivative.
We now focus on the construction of the admissible superreplicating strategies for probabilistic dry markets. At any point in time, the number of shares and the amount invested in the risk-free asset will depend on the existence, or inexistence, of trade at the previous moments in time. However, these values will not depend on the future existence of trade.
Let 






since the portfolio cannot be rebalanced at time t. In that sense the admissible trading strategies will depend on the last point in time where trade occured. For that reason we shall use the notation 






Just as in the deterministic case, let 

Hence,
In an analogous way to the deterministic case, the definition of self-financed strategy and superreplicating strategy is dependent on whether one is in a short or in a long position in the derivative.
In what follows we characterize the upper and lower arbitrage-free bounds for the value of the American derivatives in the described framework. In order to do that, we first define some necessary mathematical objects in the following section.
2.2. Some Probabilistic Definitions
In this section we adapt to the case of dry markets some definitions and results from [15] and required to obtain the arbitrage-free bounds of an American derivative. We begin by defining 


Notice that 

Definition 1. A node probability measure is a nonnegative function 

Let 

Definition 2. A node probability measure 



The martingale term is justified in the sense that under that measure, for given





Definition 3. A node probability measure on the event tree is said to be y-simple if, for each






The following theorem is analogous to Theorem 6.7 in [15] adapted to dry markets.
Theorem 1 (Chalasani and Jha) The extreme points of the set 
Proof. Theorem 6.7 in [15] can be extended to the case of deterministic dryness. In the general probabilistic case, it suffices to consider the auxiliary node probability measures 







Definition 4. An adjusted probability measure is a nonnegative function 




with
Let the set of all such probability measures be denoted by

















Consider









Definition 5. A y-simple node probability measure is said to be associated with a given stopping time if 





Let the set of all node probability measures with this property be denoted by
Definition 6. For any probability measure 







The set of all 


Definition 7. A measure-strategy pair 



We can now enunciate the following result, adapted from [15] to include the random variable y.
Theorem 2. Consider a node probability measure 





is strictly positive. Conversely, if 


Proof. Consider that the auxiliary node probability measures, 







and

The mathematical definitions provided above are dependent of y. In what follows we show that it is possible to define an adjusted probability and a randomized stopping time in the original tree related with the concepts just presented.
Definition 8. An adjusted probability measure 



The set of all such probability measures 

A randomized stopping time is a nonnegative 

where

Definition 9. For a given randomized stopping time





for any 

Let 


Theorem 3. For any given stopping time 





with 



If 




The randomized stopping time 


If 


Otherwise,
Proof. See Appendix.
3. Results on Dry Markets
3.1. Upper Bound for the Value of an American Derivative
The upper bound for the value of an American derivative (also called its upper hedging price) is the maximum value for which the derivative would be traded without allowing for arbitrage opportunities. Such upper bound coincides with the value of the cheapest self-financed portfolio that the seller of the derivative can acquire in order to be completely hedged against any possibility of early exercise of the American derivative.
A strategy is said to be self-financed if, for any given





with 
A sequence of portfolios

superreplicating strategy if the value of each portfolio is higher than or equal to the payoff of the derivative at any node in the next transaction time. In other words, for any trading dates t1 and t2 such that 






Since the upper bound 
where the decision variables are the 

More formally, for any given 



subject to the superreplicating constraints:


and subject to the self-financing constraints:

for any
Using results from linear programming the upper arbitrage-free bound of the American derivative can be written as follows.
Theorem 4. The upper hedging price of an American derivative in a probabilistic dry market can be written as
Proof. The proof follows from characterizing the dual of the linear programming problem above characterizing
The upper bound solving the problem above can also be seen to be the solution of a more intuitive problem. In fact, it can be shown that this upper bound maximizes over all possible stopping times the expected discounted payoff, when the expectation is optimized among all adjusted probability measures. In other words,
Theorem 5. The upper hedging price of an American derivative in a probabilistic dry market can be written as
where
Proof. Using Theorem 1 and Theorem 2 the conclusion is straightforward.
Note that this result is the same that would be obtained if the filtration describing the risky asset price is augmented, with no uncertainty about the existence of trade and no trade in some nodes. Using this filtration, ordinary stopping times are sufficient to write the upper bound as an expectation.
However, the upper bound on the value of an American derivative can also be written using randomized stopping times under an adjusted probability measure. The adjusted probability measure must be decomposed in such a way that, if an augmented filtration is considered, the risky asset price is a martingale. Under the original filtration 
Theorem 6. The upper hedging price of an American derivative in a probabilistic dry market can be written as
with
Proof. In order to prove that the optimum value determined by the optimization problems in Theorem 6 coincides with the one presented in Theorem 5, we notice that

We then establish a relation between the two sets over which the optimization problems presented in both theorems are performed. We begin by considering an element 

for any element 





By the definition of a 





The Difference to the Case of Transaction Costs
The point that explains the difference between our result and that of Chalasani and Jha in [15] is the following. Under no transaction costs and complete markets, there is only one node per path such that the value of the superhedging portfolio fully replicates the derivative’s payoff. This unique node per path would correspond to the optimal exercise of the derivative.
In the setting of [15] , rebalancing the superhedging portfolio is possible at any point in time, and the derivatives have well-defined payoffs at any point in time. However, due to transaction costs, it may be optimal for their problem not to rebalance at some points in time. The cheapest superhedging strategy could then be to replicate the derivative’s payoff in consecutive points in time, for a given path. These points with full replication correspond to optimal stopping. Since there may be more than one per path, the optimal stopping time would be randomized.
In our case it is not possible to exercise the derivative when the underlying asset is not traded, and hence there is no need to hedge for exercise at those points where it is not possible to rebalance the portfolio. In particular, in the case of probabilistic dry markets, our representation of the superreplicating bounds with deterministic stopping times is strongly driven by the fact that we consider the enlarged filtration resulting from the price process and the trade-existence process. This enlarged filtration allows for at most one node, per path, such that the value of the superhedging portfolio fully replicates the derivative’s payoff, avoiding this way the randomized stopping times. If that were not the case, the resulting stopping times could also be randomized. In fact, had we considered only the filtration generated by the price process, for any given price path it could be optimal fully replicate the derivative’s payoff at different moments in time.
3.2. Lower Bound for the Value of an American Derivative
The lower bound for the value of an American derivative (also called its lower hedging price) is the minimum value for which the derivative would be traded without allowing for arbitrage opportunities. Such lower bound coincides with the value of the most expensive self-financed portfolio that the buyer of the American derivative can sell in order to be completely hedged.
For any given stopping time 






For any given stopping time 











The value process of the portfolio 
For each 

each node that is a predecessor of the node where 

The set of these set of portfolios, one for each 

For a long position in the derivative, a set of portfolios that belongs to 





with


A set of portfolios that belongs to











For each 


More formally, the lower bound for the value of the American derivative can thus be seen as the solution of the following problem:
subject to the superreplicating constraint
if



for any 


Additionally, for any node 

for any 





Let us consider the worse scenario in what concerns the existence of trade, that is, the situation that corresponds to the 


Theorem 7. The lower hedging price of an American derivative in a dry market can be written as
with 

Proof. Notice that the solution of the deterministic case 



The lower bound solving the problem above can also be seen as the solution of a more intuitive problem, maximizing the expected discounted payoff, of the derivative over all possible stopping times, when the expectation is minimized among all adjusted probability measures. In other words,
Theorem 8. The lower hedging price of an American derivative in a dry market can be written as
with
where
Proof. Follows from the result of the last theorem together with Theorem 2.
This result has already been conjectured as an extension in [17] . When the market is complete then 
4. Comparison of the Results
In this section we will compare the arbitrage-free bounds of an American derivative in a deterministic dry market (when


The upper bound in a probabilistic dry market is higher than or equal to the upper bound if the market is dry in the deterministic sense. Moreover, it is also equal to or higher than the upper bound if transactions were possible at all points in time (



The lower bound in a probabilistic dry market is equal to the lower bound if the market is dry in the deterministic sense. Moreover, it is also lower than or equal to the lower bound if transactions were possible at all points in time (



If the market is incomplete, even with the existence of transactions at all points in time, it is in general not possible to find a unique arbitrage free value for the American derivative. However, it is also possible to establish an arbitrage free range of variation for the value of the American derivative. This range will be a subset of the arbitrage free range of variation for the value of the American derivative in the case of probabilistic dryness, but may not be a subset of the arbitrage free range of variation in the deterministic case.
In this paper we have considered that the only source of market incompleteness would be the non-existence of underlying trade at some points in time. If transactions were possible at all points in time, markets would be complete and there would be a unique arbitrage-free value for any American derivative. We found out that this unique arbitrage-free value for each American derivative belongs to the arbitrage-free range of variation for its value under a probabilistic dry market. However, it may not belong to the arbitrage-free range if a deterministic dry market is considered.
5. Exercise Policy
In order to understand the optimal exercise policy, we start presenting the case of a complete market.
5.1. Complete Markets
In the case of complete markets, the value of an American derivative is given by

where

Definition 10. A stopping time frontier is the set of nodes (i, t) such that
Recalling that there is an optimal stopping node for each possible path5, we define the interior of the stopping time frontier as follows.
Definition 11. The interior of the stopping time frontier is the set of predecessors of the stopping time frontier.
It follows that no rational agent exercises the American derivative at a node inside the stopping time frontier, because at such nodes, the American derivative is worth more than the corresponding exercise. A rational agent would exercise the American derivative whenever the stopping time frontier is reached. This happens because the derivative’s payoff at that point is larger than the cost of a replicating portfolio, guaranteeing the derivative’s payoff in the future.
If the solution is not unique, there may be indeterminacy, even in this case of complete markets. An example illustrates this point. Consider the non-terminal node 





We also assume that, at node

Moreover, let 



In this case, the value of the portfolio, at node








Since the replicating portfolio satisfies (12) and (13), the solution of the dual problem is not unique. There are several node probability measures q solving the maximization problem that characterizes the value of the derivative. Let 



such that for any 
If the maximization problem characterizing the value is not uniquely solved by a node probability measure q, then the stopping time and the adjusted probability measure are also not uniquely defined. For instance, the value can be written as
with



As the stopping time is not unique, there are several stopping time frontiers, each one associated with a different stopping time. For any node inside all possible stopping time frontiers, the argument of the unique case solution applies and the agent does not have any incentive to exercise the American derivative. However, when the first stopping time frontier is reached, namely node



In the case where several stopping time frontiers coexist in this complete market setting, the exercise at any stopping time frontier before the last frontier provides a payoff equal to the value of the derivative. Also note that the last stopping time frontier is reduced to the role of a unique stopping time frontier, if the American derivative is not exercised at the previous frontiers.
5.2. Incomplete Dry Markets
With incomplete dry markets the problem is more complex. In order to characterize the optimal exercise policy, we use the stopping time 
First, if the reduced filtration 
Second, if we consider the enlarged filtration
Definition 12. A stopping time frontier is a pair 

Remark 1. Notice that complete markets corresponds to the case where there is only one vector
Remark 2. Note that for two different sets 





Just as in the complete markets’ case, the interior of the stopping time frontier is defined as the set of predecessors of the stopping time frontier.
Even for price paths with a strictly positive q, the optimal stopping exercise is not uniquely defined using pure arbitrage arguments. For a given realization 















a rational holder who wants to guarantee a given amount at 




However, if the American derivative is not exercised at any predecessor of the stopping time frontier, it will be exercised when the stopping time frontier is reached. The reason is that, at the frontier, the payoff is higher than the value of its replicating portfolio. However, if in a given path there is no node with a strictly positive q, the optimal stopping time can be such that 
A third and final point, is that the situation occurring in the complete market case leading to a non-unique solution of the dual problem, may also happen when markets are incomplete.
5.3. Completeness versus Incompleteness Driven by Dryness
In this section we establish the following result.
Proposition 9. For every path such that the stopping time is unique, the stopping time frontier under complete markets is contained in the union of the stopping time frontier under dry markets and its interior.
Proof. Consider a given















Hence, nodes in the interior of the stopping time frontier under complete markets are also in the interior of the stopping time frontier under incomplete markets. On the other hand
We now turn to the case where there is not a unique stopping time. In that case, for each path w, pick the node 

Let the set 
Proposition 10. The envelope of the stopping time frontier under complete markets is contained in the union of the envelope of the stopping time frontiers under dry markets and its interior.
Proof. Analogous to the proof above.
We now arrive to a quite significant corollary of this exercise in incomplete dry markets.
Corollary 1. Under uniqueness of the stopping time, rational exercise of American options under incomplete markets driven by dryness may occur later than it would occur under complete markets.
Remark 3. Notice that, under dry markets, American options may be exercised before their optimal stopping time, only under the condition specified by Equation (14), i.e., only under indifference. If not for that case, market incompletenes may only affect optimal exercise of an American option by delaying it.
6. Conclusions
An analysis of the optimal exercise of American options in a context where market’s incompleteness is generated by transaction costs leads to the conclusion that the optimal exercise is characterized by randomized stopping times. Our paper analyzes the same problem when market incompleteness is generated by dry markets, making clear that the need for randomized stopping times depends on the way market incompleteness is generated. We conclude that in the case of deterministic dry markets, the bounds for the values of American derivatives are the supremum of the implied European derivatives (i.e., European derivatives with the same underlying traded in the same dry market), this supremum being taken over deterministic stopping times. In the general probabilistic dry markets’ case, there is an additional source of uncertainty, namely the existence or not of trade at given points in time, which can be interpreted as the realization of an additional stochastic process. If an enlarged filtration, resulting from the price process and the trade existence process is considered, only ordinary stopping times are required to describe the upper and lower bounds. However, if the enlarged filtration was not considered, and the stopping times were defined by using only the filtration induced by the price process, then they could be randomized. This last conclusion recovers the results for the transaction cost model.
In a complete market the arbitrage free value of the derivative is unique and equal to the value of the replicating portfolio. However, in our incomplete market framework driven by dry markets, that fact no longer holds true. Ruling out arbitrage opportunities identifies a range of variation for the value of the derivative. The arbitrage-free value intervals for the deterministic case, for the probabilistic case and for the liquid case are compared. We find out that the range in the probabilistic case includes the range of the deterministic case and also the unique value of the liquid case. Moreover, the lower bound in the probabilistic case coincides with the one in the deterministic case. However, a relation cannot be established between the arbitrage-free range in the deterministic case and the one in the liquid case when transactions are possible at all points in time.
Moreover, when a complete market is considered, the optimal exercise policy corresponds to the stopping time that is the supremum of the implied European derivatives. Consistently with the absence of a unique arbitrage-free price, if American options are considered in this dry markets setting, the optimal exercise policy is also not well defined. The reason is that there are paths where the stopping time is not uniquely defined and in addition, the fact that if the filtration induced by the price process is considered, randomized stopping time must be used. However, we were able to show that incompleteness generated by dry markets may in general delay the optimal exercise of American derivatives.
Acknowledgments
This work was funded by National Funds through FCT―Fundação para a Ciência e Tecnologia under the project Ref. UID/ECO/00124/2013 and by POR Lisboa under the project LISBOA-01-0145-FEDER-007722. This support is greatly appreciated.
Cite this paper
de Matos, J.M. and Lacerda, A. (2016) Randomized Stopping Times and Early Exercise for American Derivatives in Dry Markets. Journal of Mathematical Finance, 6, 842-865. http://dx.doi.org/10.4236/jmf.2016.65057
References
- 1. Karatzas, I. (1988) On the Pricing of American Options. Applied Mathematics and Optimization, 17, 37-60.
http://dx.doi.org/10.1007/BF01448358 - 2. El Karoui, N. and Quenez, M.C. (1991) Programation dynamique et évaluation des actifs contingents en marché incomplet. Comptes Rendues de l’Academy des Sciences de Paris, Série I, 313, 851-854.
- 3. El Karoui, N. and Quenez, M.C. (1995) Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market. SIAM Journal of Control and Optimization, 33, 29-66.
http://dx.doi.org/10.1137/S0363012992232579 - 4. Edirisinghe, C., Naik, V. and Uppal, R. (1993) Optimal Replication of Options with Transactions Costs and Trading Restrictions. Journal of Financial and Quantitative Analysis, 28, 117-138.
http://dx.doi.org/10.2307/2331154 - 5. Karatzas, I. and Kou, S. (1996) On the Pricing of Contingent Claims with Constrained Portfolios. The Annals of Applied Probability, 6, 321-369.
http://dx.doi.org/10.1214/aoap/1034968135 - 6. Kramkov, D. (1996) Optional Decomposition of Supermartigales and Hedging Contingent Claims in Incomplete Security Markets. The Annals of Applied Probability, 9, 904-950.
- 7. Follmer, H. and Kramkov, D. (1997) Optional Decomposition under Constraints. Probability Theory and Related Fields, 109, 1-25.
http://dx.doi.org/10.1007/s004400050122 - 8. Follmer, H. and Kabanov, Y. (1998) Optional Decomposition and Lagrange Multipliers Finance & Stochastics, 2, 69-81.
- 9. Karatzas, I. and Kou, S. (1998) Hedging American Contingent Claims with Constrained Portfolios. Finance & Stochastics, 3, 215-258.
http://dx.doi.org/10.1007/s004400050122 - 10. Longstaff, F. (2001) Optimal Portfolio Choice and the Valuation of Illiquid Securities. Review of Financial Studies, 14, 407-431.
http://dx.doi.org/10.1093/rfs/14.2.407 - 11. Jain, P.C. and Joh, G.H. (1988) The Dependence between Hourly Prices and Trading Volume. Journal of Financial and Quantitative Analysis, 23, 269-283.
http://dx.doi.org/10.2307/2331067 - 12. Admati, A.R. and Pfleiderer, P. (1988) A Theory of Intraday Patterns: Volume and Price Variability. Review of Financial Studies, 1, 3-40.
http://dx.doi.org/10.1093/rfs/1.1.3 - 13. Admati, A.R. and Pfleiderer, P. (1989) Divide and Conquer: A Theory of Intraday and Day-of-the-Week mean Effects. Review of Financial Studies, 2, 189-223.
http://dx.doi.org/10.1093/rfs/2.2.189 - 14. Bollerslev, T. and Domowitz, I. (1993) Trading Patterns and Prices in the Interbank Foreign Exchange Market. The Journal of Finance, 48, 1421-1443.
http://dx.doi.org/10.1111/j.1540-6261.1993.tb04760.x - 15. Chalasani, P. and Jha, S. (2001) Randomized Stopping Times and American Option Pricing with Transaction Costs. Mathematical Finance, 11, 33-77.
http://dx.doi.org/10.1111/1467-9965.00107 - 16. Duffie, D. (2001) Dynamic Asset Pricing Theory. Princeton University Press, Princeton.
- 17. Harrison, J. and Kreps, D. (1979) Martingales and Arbitrage in a Multiperiod Securities Markets. Journal of Economic Theory, 20, 381-408.
http://dx.doi.org/10.1016/0022-0531(79)90043-7
Appendix
Proof of Theorem 3
Proof. The proof that 

For any given node 

Consider a given path such that at the terminal node 

Consider a given path such that at the node 



Let 



Moreover, as 

However, if there are not a successor 



















and the proof is complete.
Submit or recommend next manuscript to SCIRP and we will provide best service for you:
Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work
Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jmf@scirp.org
NOTES
1See, among others, [2] - [9] .
2For a discussion of this point see, among others, [16] , p. 37.
3A self-financed portfolio is a portfolio that generates enough wealth to rebalance the portfolio according to any future state of nature.
4A replicating portfolio is a sequence of portfolios 
5If the solution is unique, there is a unique strictly positive q associated to each path. Hence, the stopping time is uniquely defined.
6The reason is that 


7In this case we should have






































































