Advances in Pure Mathematics
Vol.08 No.08(2018), Article ID:86469,12 pages
10.4236/apm.2018.88042
Geometric Aspects of Quasi-Periodic Property of Dirichlet Functions
Dorin Ghisa1, Andrei Horvat-Marc2
1Department of Mathematics, York University Glendon College, Toronto, Canada
2North University Center at Baia Mare, Faculty of Science, Department of Mathemathics and Computer Science, Technical University of Cluj Napoca, Baia Mare, Romania

Copyright © 2018 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/



Received: July 9, 2018; Accepted: August 3, 2018; Published: August 6, 2018
ABSTRACT
The concept of quasi-periodic property of a function has been introduced by Harald Bohr in 1921 and it roughly means that the function comes (quasi)-periodically as close as we want on every vertical line to the value taken by it at any point belonging to that line and a bounded domain . He proved that the functions defined by ordinary Dirichlet series are quasi-periodic in their half plane of uniform convergence. We realized that the existence of the domain is not necessary and that the quasi-periodicity is related to the denseness property of those functions which we have studied in a previous paper. Hence, the purpose of our research was to prove these two facts. We succeeded to fulfill this task and more. Namely, we dealt with the quasi-periodicity of general Dirichlet series by using geometric tools perfected by us in a series of previous projects. The concept has been applied to the whole complex plane (not only to the half plane of uniform convergence) for series which can be continued to meromorphic functions in that plane. The question arise: in what conditions such a continuation is possible? There are known examples of Dirichlet series which cannot be continued across the convergence line, yet there are no simple conditions under which such a continuation is possible. We succeeded to find a very natural one.
Keywords:
Dirichlet Functions, Analytic Continuation, Fundamental Domains, Quasi-periodic Functions

1. Introduction
The theory of Dirichlet series started at the end of the 19-th Century with works of celebrated mathematicians as Hadamard, Landau, Bohr etc. These series are natural generalizations of the Riemann Zeta series. From the beginning questions were asked of what are those Dirichlet series which can be continued as meromorphic functions in the whole complex plane and satisfy there similar properties with those of the Riemann Zeta function, as for example a Riemann type of functional equation, similar display of non trivial zeros (the famous Riemann Hypothesis) etc. We devoted a lot of studies to these questions by using geometric methods. We perfected an idea of Speiser (1934) of studying the pre-image of the real axis by functions obtained as meromorphic continuations to the whole complex plane of general Dirichlet series. The key result was a way to identify the fundamental domains of these functions. These are domains represented conformally (hence injectively) by the functions onto the whole complex plane with some slits.
As Ahlfors [1] noticed, this is the most natural way to proceed when studying different classes of functions. The results are promising and there are a lot of followers mainly in the field of Blaschke products but also in that of Dirichlet functions.
By a general Dirichlet series we understand an expression of the form
(1)
where is an arbitrary sequence of complex numbers and is an increasing sequence of non negative numbers with . There is no loss of generality by considering only normalized series (1) in which and . It is known [2] that if the series (1) converges for , then it converges for every s with . The number , when it exists, is called the abscissa of convergence of the series (1). When the series does not converge for any we denote and if it converges for every s we put . The line is called the line of convergence of (1), although there are examples of Dirichlet series (see [2] ) which do not converge for any s with . Other series converge for all the points of that line, or only for some points.
When (1) does not converge for , then (see [2] )1
(2)
If (1) converges for , then
(3)
The abscissa of absolute convergence of the series (1) is defined in an analogous way and it is obvious that . For the Riemann Zeta function , while for the alternate Zeta function and . When then converges uniformly on compact sets of the half plane and is an analytic function in that half plane and sometimes it can be continued analytically to the whole complex plane except possibly for some poles. We will deal with this problem in Section 3. We keep the notation for this extended function and we call it Dirichlet function. Since and in the series (1) we have that and it can be easily seen [3] that this limit is uniform with respect to t. In other words, for every there is such that for we have for every real t, hence maps the half plane into the disc .
This fact suggests that the series (1) converges uniformly on that half plane. Harald Bohr defined the abscissa of uniform convergence of (1) as being the infimum of the abscisas such that (1) converges uniformly for . It has been found that and every value between and can be taken by for particular series (1).
Studying Dirichlet L-functions generated by ordinary Dirichlet series (the case where ) Harald Bohr (see [4] ) discovered that they display on vertical lines a quasi-periodic behavior, namely for every bounded domain of uniform convergence of the series and for every there is a sequence ,
(4)
such that for every we have .
This roughly means that the function comes (quasi)-periodically on a vertical line as close as we want to the value of it at any point of belonging to that line.
We study in this paper the quasi-periodic property of functions defined by general Dirichlet series and show that this is a geometric property of the image by of vertical lines related to the fundamental domains of these functions. These fundamental domains are obtained as shown in [3] and [5] .
2. The Quasi-Periodicity on Vertical Lines of General Dirichlet Series
Let us give first to the concept of quasi-periodicity a slightly different definition. We will say that is quasi-periodic on a line if for every and for every a sequence (4) exists such that . We notice that this definition is no more attached to bounded domains, hence it appears less restrictive than that given by Bohr, yet the inequality refers only to the points of a given vertical line and not to the points of any vertical line intersecting the domain , which is a restriction. This new definition serves better the purpose of studying the denseness properties of Dirichlet functions.
Theorem 1 If with are linearly independent in the field of rational numbers then the series (1) is quasi-periodic on every vertical line of the half plane .
Proof Let s be arbitrary with and divide and into the sum of the first n terms and the rest . Since the series converges uniformly on , when is given, there is a rank n such that and for every real number . On the other hand
(5)
By Diophantine approximation, a sequence (4) exists such that for every of that sequence is as close to 1 on the unit circle as we whish. Since the set is bounded, we have for every and then for every , which proves the theorem.
Remark For ordinary Dirichlet series we have , for and these are linearly independent in the field of rational numbers, therefore these series are quasi-periodic on every vertical line from the half plane of convergence.
It is known (see [5] ) that for every series (1) which can be continued analytically to a the whole complex plane except possibly for a simple pole at
, the complex plane is divided into infinitely many horizontal strips
bounded by components of the pre-image of the real axis which are mapped bijectively by
onto the interval
. These are unbounded curves
such that for
we have
and no
can be contained in a right half plane. If
,
contains
zeros of
counted with multiplicities, then it will contain
zeros of
. The strip
can contain infinitely many zeros of such a function. Every strip
containing
zeros counted with multiplicities can be divided into
unbounded subsets whose interiors
are fundamental domains of
, i.e. they are mapped conformally by
onto the whole complex plane with some slits. The strip
can contain infinitely many fundamental domains.
Every fundamental domain contains either a simple zero or no zero and in this last case a double zero belongs to the boundary of two adjacent fundamental domains. The zeros of
are all simple zeros (see [6] ) and are all located on the boundaries of the fundamental domains.
Figure 1 illustrates the pre-image of the real axis for t between −20 and 20 by two Dirichlet L-functions defined by Dirichlet characters modulo 13 studied in [3] , the first one by a complex character and the second by a real one. On both
Figure 1. The pre-image of the real axis by two Dirichlet L-functions.
of them the strips
,
and
can be seen, as well as the zeros belonging to these strips. For any Dirichlet function
every vertical line which does not pass through the pole is divided by the boundaries of the fundamental domains
into finite intervals which are mapped bijectively by
onto Jordan arcs
.
The image of the whole line by
is therefore the union of infinitely many Jordan arcs
. If two domains
are adjacent, then the ends of the corresponding
which are images of the same point of the vertical line will obviously coincide. Moreover, different arcs 
The image of an interval determined by 




When the analytic continuation to the whole complex plane of the series (1) is possible the arcs 





for 














3. Analytic Continuation of General Dirichlet Series
It is known that some functions defined by Dirichlet series cannot be extended across the line 
We recall that the Gamma function can be expressed as

and this is a meromorphic function in the complex plane.
On replacing x by 
which multiplied by 

Here we have denoted by 



For the Riemann Zeta function we have 

Riemann has shown that the integral from (9) is equivalent to a contour integral of 


Theorem 2 If the series (1) has a finite abscissa of convergence

Proof Suppose that
and the abscissa of convergence of 
If

Consequently, the half plane of convergence of 
Once we know this half plane of convergence, we can try to use the Riemann technique, but taking care to choose the integration curve in the right half plane. Fortunately such a choice is possible and we can prove:
Theorem 3 If 

Proof Let us form a contour 

and the half lines 



Since the singularities of 










as both of these integrals are obviously equal to

We can take r such that no singular point of 







Since the function under the integral is bounded between 



Figure 2. The integrals on 

The right hand side in (10) is defined for every complex value s and represents a meromorphic function in the whole complex plane.
4. Quasi-Periodicity and Denseness Property
The connection between the quasi-periodic property and the denseness property of the image of vertical lines by Dirichlet functions appears clearly when we interpret the first one in terms of the arcs
Theorem 4 The necessary and sufficient condition for 





Proof The condition is necessary, since if for every 











Hence, if 















No two arcs 










In order to study the image of vertical lines by the series (1) the condition that the exponents 




















The results of Bohr are in agreement with the fact that the function (1) tends uniformly with respect to t to 1 as

















Theorem 5 For any Dirichlet function 







For the Riemann series, the term 













5. Conclusion
A Dirichlet function is defined by an arbitrary sequence of complex numbers (the coefficients) and a sequence of increasing positive numbers (the exponents), otherwise also arbitrary. It is intriguing how two such arbitrariness can involve a strong property as that of quasi-periodicity. We have shown that this is in fact a geometric property related to the fundamental domains of the respective function. The domains are infinite strips which are mapped conformally by the function onto the whole complex plane with some slits. A vertical line intersects all those strips and the values of the function on each one of the segments obtained come quasi-periodically close to every given value on that line as illustrated in Figure 3 and Figure 4. The Diophantian approximation plays here
Figure 3. The image by 


Figure 4. The image by 


the same role as in the denseness property and this is the reason why the two properties come simultaneously. We brought in this paper some light into these two complex phenomena.
Conflicts of Interest
The authors declare no conflicts of interest regarding the publication of this paper.
Cite this paper
Ghisa, D. and Horvat-Marc, A. (2018) Geometric Aspects of Quasi-Periodic Property of Dirichlet Functions. Advances in Pure Mathematics, 8, 699-710. https://doi.org/10.4236/apm.2018.88042
References
- 1. Ahlfors, L.V. (1979) Complex Analysis. McGraw-Hill Education, New York.
- 2. Hardy, G.H. and Riesz, M. (1915) The General Theory of Dirichlet’s Series. Cambridge University Press, Cambridge.
- 3. Ghisa, D. (2015) Fundamental Domains and Analytic Continuation of General Dirichlet Series. BJMCS, 25, 100-116.
- 4. Bohr, H. (1922) über eine quasi-periodische Eigenschaft Dirichletscher Reihen mit Anwendung auf Dirichletschen L-Functione. Mathematische Annalen, 85, 115-122.
- 5. Ghisa, D. (2017) The Geometry of the Mappings by General Dirichlet Series. Advances in Pure Mathematics, 7, 1-20. https://doi.org/10.4236/apm.2017.71001
- 6. Ghisa, D. (2016) On the Generalized Riemann Hypothesis II. IJSIMR, 4, 46-55.http://arxiv.org/abs/1602.01799
- 7. Ghisa, D. and Horvat-Marc, A. (2017) Geometric Aspects of Denseness Theorems for Dirichlet Function. Journal of Advances in Mathematics and Computer Science, 25, 1-11. https://doi.org/10.9734/JAMCS/2017/37947
- 8. Valiron, G. (1926) Théorie générale des séries de Dirichlet. Mémorial des sciences mathématiques, 17, 1-56.http://www.numdam.org/item?id=MSM_1926__17__1_0
- 9. Bohr, H. (1913) Lösung des absoluten Konvergenzproblems einer algemeinen Klasse Dirichletscher Reihen. Acta Mathematica, 36, 197-240. https://doi.org/10.1007/BF02422381
NOTES
1We followed the tradition of this monograph by using the notation “log” for the principal branch of the multivalued function logarithm. Obviously, when the argument is positive, it simply means natural logarithm.












