s nanobacteria in travertines, carbonate sediments and hot springs of central Italy, which are very similar to those described as NB/CNP. The author contends that they are responsible for a great deal of mineral precipitation as well as conversion of igneous mineral to soils, and the corrosion of metals.

5. Conclusion

We found a strong correlation between renal stones and CNP in this study and these results open a new insight on this area to explore the etiology of stone formation. Whether NB/CNP are truly nanoorganisms or self-propagating mineral compounds is still controversial and its contribution, if any, in apatite nucleation and crystal growth remains uncertain. Future studies are necessary for understanding the mechanisms involved in kidney stone formation.

6. Acknowledgements

The authors wish to thank to CNPq and CAPES for financial support and to Drs Túlio Graziottin and André Bonfanti for calculi supply.

REFERENCES

  1. I. P. Heilberg and N. Schor, “Renal Stone Disease: Causes, Evaluation and Medical Treatment,” Brazilian Archives of Endocrinology and Metabolism, Vol. 50, No. 4, 2006, pp. 823-831. doi:10.1590/S0004-27302006000400027
  2. N. L. Miller, A. P. Evan and J. E. Lingeman, “Pathogenesis of Renal Calculi,” Urologic Clinics of North America, Vol. 34, No. 3, 2007, pp. 295-313. doi:10.1016/j.ucl.2007.05.007
  3. M. Vella, M. Karydi, G. Coraci, R. Oriti and D. Melloni, “Pathophysiology and Clinical Aspects of Urinary Lithiasis,” Urologia Internationalis, Vol. 79, Suppl. 1, 2007, pp. 26-31.
  4. M. J. Stechman, N. Y. Loh and R. V. Thakker, “Genetics of Hypercalciuric Nephrolithiasis: Renal Stone Disease,” Annals of the New York Academy, Vol. 1116, No. 1, 2005, pp. 461-484.
  5. N. Ciftcioglu, D. S. McKay, G. Mathew and E. O. Kajander, “Nanobacteria: Fact or Fiction? Characteristics, Detection, and Medical Importance of Novel Self-Replicating, Calcifying Nanoparticles,” Journal of Investigative Medicine, Vol. 54, No. 7, 2006, pp. 385-394. doi:10.2310/6650.2006.06018
  6. E. O. Kajander, “Nanobacteria—Propagation Calcifying Nanoparticles,” Letters in Applied Microbiology, Vol. 1242, No. 6, 2006, pp. 549-552.
  7. N. Ciftçioglu, K. Vejdani, O. Lee, G. Mathew, K. M. Aho, E. O. Kajander, D. S. McKay, J. A. Jones and M. L. Stoller, “Association between Randll’s Plaque and Calcifying Nanoparticles,” International Journal of Nanomedicine, Vol. 3, No. 1, 2008, pp. 105-115.
  8. A. B. Simonetti, G. E. Englert, K. Campos, M. Mergener, C. David, A. P. Oliveira, et al., “Nanobacteria-Like Particles: A Threat to Cell Cultures,” Brazilian Journal of Microbiology, Vol. 38, No. 1, 2007, pp. 153-158.
  9. E. O. Kajander, N. Çiftçioglu, M. A. Miller-Hjelle and J. T. Hjelle, “Nanobacteria: Controversial Pathogens in Nephrolithiasis and Polycystic Kidney Disease,” Current Opinion in Nephrology and Hypertension, Vol. 10, No. 3, 2001, pp. 445-452. doi:10.1097/00041552-200105000-00023
  10. H. M. Wood and D. A. Shoskes, “The Role of Nanobacteria in Urologic Disease,” World Journal of Urology, Vol. 24, No. 1, 2006, pp. 51-54.
  11. E. O. Kajander, N. Ciftcioglu, K. Aho and E. GarciaCuerpo, “Characteristics of Nanobacteria and Their Possible Role in Stone Formation,” Urological Research, Vol. 31, No. 2, 2003, pp. 47-54.
  12. N. Çiftçioglu, R. S. Haddad, D. C. Golden, D. R. Morrison and D. S. McKay, “A Potencial Cause for Kidney Stone Formation during Space Flights: Enhanced Growth of Nanobacteria in Microgravity,” Kidney International, Vol. 67, No. 2, 2005, pp. 483-491.
  13. J. A. Jones, N. Cifticioglu, J. F. Schmid, Y. R. Barr and D. Griffith, “Calcifying Nanoparticles (Nanobacteria): An Additional Potential Factor for Urolithiasis in Space Flight Crews,” Urology, Vol. 73, No. 1, 2009, p. 210.
  14. E. Garcia-Cuerpo, E. O. Kajander, N. Çiftçioglu, F. L. Castellano, C. Correa, J. Gonzálvez, et al., “Nanobacteria. An Experimental Neo-Lithogenesis Model,” Archivos Españoles de Urología, Vol. 53, No. 4, 2000, pp. 291-303.
  15. F. A. Shiekh, M. Khullar and S. K. Singh, “Lithogenesis: Induction of Renal Calcifications by Nanobacteria,” Urological Research, Vol. 34, No. 1, 2006, pp. 53-57. doi:10.1007/s00240-005-0034-0
  16. R. Psenner, M. Loferer and J. Maniloff, “Nannobacteria: Size Limits and Evidence,” Science, Vol. 276, No. 5320, 1997, pp. 1773-1776.
  17. M. Drancourt, V. Jacomo, H. Lépidi, E. Lechevallier, V. Grisoni, C. Coulange, et al., “Attempted Isolation of Nanobacterium sp. Microorganisms from Upper Urinary Tract Stones,” The Journal of Clinical Microbiology, Vol. 41, No. 1, 2003, pp. 368-372.
  18. H. Kumno, A. Matsumoto, S. Uehara, F. Abarzua, M. Araki, K. Tsutsui and K. Tomochika, “Detection and Isolation of Nanobacteria-Like Particles from Urinary Stones: Long-Withheld Data,” International Journal of Urology, Vol. 18, No. 6, 2011, pp. 458-465.
  19. R. L. Ryall, “The Future of Stone Research: Rummagings in the Attic, Randall’s Plaque, Nanobacteria, and Lessons from Phylogeny,” Urological Research, Vol. 36, No. 2, 2008, pp. 77-97. doi:10.1007/s00240-007-0131-3
  20. J. Martel and J. D. Young, “Purported Nanobacteria in Human Blood as Calcium Carbonate Nanoparticles,” Proceedings of National Academy of Science of the United States of America, Vol. 105, No. 14, 2008, pp. 5549-5554. doi:10.1073/pnas.0711744105
  21. R. L. Folk, “SEM Imaging of Bacteria and Nannobacteria in Carbonate Sediments and Rocks,” Journal of Sedimentary Petrology, Vol. 63, No. 5, 1993, pp. 990-999.

NOTES

*Corresponding author.

Journal Menu >>