aspx?ReferenceID=1899169" target="_blank">60. Zurek, W.H. (2009) Quantum Darwinism. Nature Physics, 5, 181-188.
http://dx.doi.org/10.1038/nphys1202
  • 61. Bousso, R. (2002) The Holographic Principle. Reviews of Modern Physics, 74, 825-874.
    http://dx.doi.org/10.1103/RevModPhys.74.825

  • 62. ‘t Hooft, G. (2005) The Holographic Mapping of the Standard Model onto the Black Hole Horizon: I. Abelian Vector Field, Scalar Field and BEH Mechanism. Classical and Quantum Gravity, 22, 4179-4188.
    http://dx.doi.org/10.1088/0264-9381/22/20/001

  • 63. Susskind, L. (1995) The World as a Hologram. Journal of Mathematical Physics, 36, 6377.
    http://dx.doi.org/10.1063/1.531249

  • 64. Witten, E. (1998) Anti De Sitter Space and Holography. Advances in Theoretical and Mathematical Physics, 2, 253-291.
    http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2

  • 65. Myung, Y.S. (2005) Holographic Principle and Dark Energy. Physics Letters B, 610, 18-22.
    http://dx.doi.org/10.1016/j.physletb.2005.02.006

  • 66. Bekenstein, J.D. (2003) Information in the Holographic Universe. Scientific American, 289, 58-65.
    http://dx.doi.org/10.1038/scientificamerican0803-58

  • 67. Turing, A.M. (1950) I.—Computing Machinery and Intelligence. Mind, LIX, 433-460.
    http://dx.doi.org/10.1093/mind/LIX.236.433

  • 68. Shannon, C.E. (1948) A Mathematical Theory of Communication. The Bell System Technical Journal, 27, 379-423.
    http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x

  • 69. Shannon, C.E. (1948) A Mathematical Theory of Communication. The Bell System Technical Journal, 27, 623-656.
    http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x

  • 70. Von Neumann, J. (1996) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton.

  • 71. Jaynes, E.T. (1957) Information Theory and Statistical Mechanics. Physical Review, 106, 620-630.
    http://dx.doi.org/10.1103/PhysRev.106.620

  • 72. Landauer, R. (1961) Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development, 5, 183-191.
    http://dx.doi.org/10.1147/rd.53.0183

  • 73. Zuse, K. (1993) The Computer—My Life. Springer Verlag, New York.
    http://dx.doi.org/10.1007/978-3-662-02931-2

  • 74. Bekenstein, J.D. (2005) How Does the Entropy/Information Bound Work? Foundations of Physics, 35, 1805-1823.
    http://dx.doi.org/10.1007/s10701-005-7350-7

  • 75. Blume-Kohout, R. and Zurek, W.H. (2005) A Simple Example of “Quantum Darwinism”: Redundant Information Storage in Many-Spin Environments. Foundations of Physics, 35, 1857-1876.
    http://dx.doi.org/10.1007/s10701-005-7352-5

  • 76. Deutsch, D. (1997) The Fabric of Reality: The Science of Parallel Universes—and Its Implications. Penguin Books, Penguin.

  • 77. Deutsch, D. (2013) Constructor Theory. Synthese, 190, 4331-4359.
    http://dx.doi.org/10.1007/s11229-013-0279-z

  • 78. Esposito, M., Harbola, U. and Mukamel, S. (2009) Nonequilibrium Fluctuations, Fluctuation Theorems, and Counting Statistics in Quantum Systems. Reviews of Modern Physics, 81, 1665.
    http://dx.doi.org/10.1103/RevModPhys.81.1665

  • 79. Fredkin, E. (1990) An Informational Process Based on Reversible Universal Cellular Automata. Physica D: Nonlinear Phenomena, 45, 254-270.
    http://dx.doi.org/10.1016/0167-2789(90)90186-S

  • 80. Fredkin, E. (2003) An Introduction to Digital Philosophy. International Journal of Theoretical Physics, 42, 189-247.
    http://dx.doi.org/10.1023/A:1024443232206

  • 81. Freedman, M.H., Larsen, M. and Wang, Z. (2002) A Modular Functor Which Is Universal for Quantum Computation. Communications in Mathematical Physics, 227, 605-622.
    http://dx.doi.org/10.1007/s002200200645

  • 82. Freedman, M., Kitaev, A., Larsen, M. and Wang, Z. (2003) Topological Quantum Computation. Bulletin of the American Mathematical Society, 40, 31-38.
    http://dx.doi.org/10.1090/S0273-0979-02-00964-3

  • 83. ‘t Hooft, G. (1999) Quantum Gravity as a Dissipative Deterministic System. Classical and Quantum Gravity, 16, 3263-3279.
    http://dx.doi.org/10.1088/0264-9381/16/10/316

  • 84. ‘t Hooft, G. (2014) The Cellular Automaton Interpretation of Quantum Mechanics. A View on the Quantum Nature of our Universe, Compulsory or Impossible? arXiv:1405.1548

  • 85. Kitaev, A.Y. (2003) Fault-Tolerant Quantum Computation by Anyons. Annals of Physics, 303, 2-30.
    http://dx.doi.org/10.1016/S0003-4916(02)00018-0

  • 86. Kitaev, A. (2006) Anyons in an Exactly Solved Model and Beyond. Annals of Physics, 321, 2-111.
    http://dx.doi.org/10.1016/j.aop.2005.10.005

  • 87. Lloyd, S. (2012) The Universe as Quantum Computer. In: Zenil, H., Ed., A Computable Universe: Understanding and Exploring Nature as Computation, World Scientific Publishing, 567-581. http://dx.doi.org/10.1142/9789814374309_0029

  • 88. Mandal, D. and Jarzynski, C. (2012) Work and Information Processing in a Solvable Model of Maxwell’s Demon. Proceedings of the National Academy of Sciences of the United States of America, 109, 11641-11645.
    http://dx.doi.org/10.1073/pnas.1204263109

  • 89. Nayak, C., Simon, S.H., Stern, A., Freedman, M. and Das Sarma, S. (2008) Non-Abelian Anyons and Topological Quantum Computation. Reviews of Modern Physics, 80, 1083-1159. http://dx.doi.org/10.1103/RevModPhys.80.1083

  • 90. Ogburn, R.W. and Preskill, J. (1999) Topological Quantum Computation. In: Williams, C.P., Ed., Quantum Computing and Quantum Communications, Springer, Berlin Heidelberg.

  • 91. Pekola, J.P. (2015) Towards Quantum Thermodynamics in Electronic Circuits. Nature Physics, 11, 118-123.
    http://dx.doi.org/10.1038/nphys3169

  • 92. Sagawa, T. and Ueda, M. (2008) Second Law of Thermodynamics with Discrete Quantum Feedback Control. Physical Review Letters, 100, Article ID: 080403.
    http://dx.doi.org/10.1103/PhysRevLett.100.080403

  • 93. Sau, J.D., Lutchyn, R.M., Tewari, S. and Das Sarma, S. (2010) Generic New Platform for Topological Quantum Computation Using Semiconductor Heterostructures. Physical Review Letters, 104, Article ID: 040502.
    http://dx.doi.org/10.1103/PhysRevLett.104.040502

  • 94. Schmidhuber, J. (2000) Algorithmic Theories of Everything. arXiv:quant-ph/0011122

  • 95. Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E. and Sano, M. (2010) Experimental Demonstration of Information-to-Energy Conversion and Validation of the Generalized Jarzynski Equality. Nature Physics, 6, 988-992.
    http://dx.doi.org/10.1038/nphys1821

  • 96. Wang, Z. (2010) Topological Quantum Computation. CBMS Regional Conference Series in Mathematics.

  • 97. von Weizsäcker, C.F., Görnitz, T. and Lyre, H. (2006) The Structure of Physics. Springer, The Netherlands.

  • 98. Wheeler, J.A. (1990) Information, Physics, Quantum: The Search for Links. The Proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics of Information, May-June 1989, Westview Press, Santa Fe, New Mexico, Boulder, CO, USA.

  • 99. Wolfram, S. (2002) A New Kind of Science. Wolfram Media, Champaign.

  • 100. Zenil, H. (2013) A Computable Universe: Understanding and Exploring Nature as Computation. World Scientific, Hackensack, New Jersey.

  • 101. Zizzi, P.A. (2006) Space-Time at the Planck Scale: The Quantum Computer View. In: Garola, C., Rossi, A. and Sozzo, S., Eds., The Foundations of Quantum Mechanics, World Scientific Publishing, 345-358.
    http://dx.doi.org/10.1142/9789812773258_0030

  • 102. Zurek, W.H. (2007) Relative States and the Environment: Einselection, Envariance, Quantum Darwinism, and the Existential Interpretation. Arxiv:0707.2832.

  • 103. Barbour, J.B. (1974) Relative-Distance Machian Theories. Nature, 249, 328-329.
    http://dx.doi.org/10.1038/249328a0

  • 104. Barbour, J. (2003) Scale-Invariant Gravity: Particle Dynamics. Classical and Quantum Gravity, 20, 1543-1570.
    http://dx.doi.org/10.1088/0264-9381/20/8/310

  • 105. Barbour, J.B. and Bertotti, B. (1982) Mach’s Principle and the Structure of Dynamical Theories. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 382, 295-306.
    http://dx.doi.org/10.1098/rspa.1982.0102

  • 106. Gryb, S. (2009) Implementing Mach’s Principle Using Gauge Theory. Physical Review D, 80, Article ID: 024018.
    http://dx.doi.org/10.1103/PhysRevD.80.024018

  • 107. Gomes, H., Gryb, S. and Koslowski, T. (2011) Einstein Gravity as a 3D Conformally Invariant Theory. Classical and Quantum Gravity, 28, Article ID: 045005.
    http://dx.doi.org/10.1088/0264-9381/28/4/045005

  • 108. Barbour, J., Koslowski, T. and Mercati, F. (2014) Identification of a Gravitational Arrow of Time. Physical Review Letters, 113, Article ID: 181101.
    http://dx.doi.org/10.1103/PhysRevLett.113.181101

  • 109. Carlip, S. (1998) Quantum Gravity in 2 + 1 Dimensions. Cambridge University Press, Cambridge.

  • 110. Thomson, W. and Kelvin, L. (1867) On Vortex Atoms. Proceedings of the Royal Society of Edinburgh, VI, 94-105. (Reprinted in Philosophical Magazine, XXXIV, 15-24)

  • 111. Arias, K.I., Zysman-Colman, E., Loren, J.C., Linden, A. and Siegel, J.S. (2011) Synthesis of a D3-Symmetric “Trefoil” Knotted Cyclophane. Chemical Communications, 47, 9588-9590.
    http://dx.doi.org/10.1039/c1cc11209k

  • 112. Atiyah, M. (1995) Quantum Physics and the Topology of Knots. Reviews of Modern Physics, 67, 977-981.
    http://dx.doi.org/10.1103/RevModPhys.67.977

  • 113. Berry, M. (2001) Knotted Zeros in the Quantum States of Hydrogen. Foundations of Physics, 31, 659-667. http://dx.doi.org/10.1023/A:1017521126923

  • 114. Bilson-Thompson, S., Hackett, J. and Kauffman, L.H. (2009) Particle Topology, Braids, and Braided Belts. Journal of Mathematical Physics, 50, Article ID: 113505.
    http://dx.doi.org/10.1063/1.3237148

  • 115. Bonesteel, N.E., Hormozi, L., Zikos, G. and Simon, S.H. (2005) Braid Topologies for Quantum Computation. Physical Review Letters, 95, Article ID: 140503.
    http://dx.doi.org/10.1103/PhysRevLett.95.140503

  • 116. Dennis, M.R., King, R.P., Jack, B., O’Holleran, K. and Padgett, M.J. (2010) Isolated Optical Vortex Knots. Nature Physics, 6, 118-121.
    http://dx.doi.org/10.1038/nphys1504

  • 117. Dimofte, T. (2013) Quantum Riemann Surfaces in Chern-Simons Theory. Advances in Theoretical and Mathematical Physics, 17, 479-599.
    http://dx.doi.org/10.4310/ATMP.2013.v17.n3.a1

  • 118. Evans, M.E., Robins, V. and Hyde, S.T. (2015) Ideal Geometry of Periodic Entanglements. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 471, Article ID: 20150254.
    http://dx.doi.org/10.1098/rspa.2015.0254

  • 119. Faddeev, L. and Niemi, A.J. (1997) Stable Knot-Like Structures in Classical Field Theory. Nature, 387, 58-61.
    http://dx.doi.org/10.1038/387058a0

  • 120. Faddeev, L. and Niemi, A.J. (1999) Partially Dual Variables in SU(2) Yang-Mills Theory. Physical Review Letters, 82, 1624-1627.
    http://dx.doi.org/10.1103/PhysRevLett.82.1624

  • 121. Finkelstein, R.J. (2013) The Preon Sector of the SLq(2) Model and the Binding Problem. International Journal of Modern Physics A, 29, Article ID: 1450092.
    http://dx.doi.org/10.1142/S0217751X14500924

  • 122. Finkelstein, R.J. (2015) The SLq(2) Extension of the Standard Model. International Journal of Modern Physics A, 30, Article ID: 1530037.
    http://dx.doi.org/10.1142/S0217751X15300379

  • 123. Finkelstein, R.J. and Cadavid, A.C. (2006) Masses and Interactions of q-Fermionic Knots. International Journal of Modern Physics A, 21, 4269-4302.
    http://dx.doi.org/10.1142/S0217751X06032496

  • 124. Gambini, R., Lewandowski, J., Marolf, D. and Pullin, J. (1998) On the Consistency of the Constraint Algebra in Spin Network Quantum Gravity. International Journal of Modern Physics D, 7, 97-109.
    http://dx.doi.org/10.1142/S0218271898000103

  • 125. Garnerone, S., Marzuoli, A. and Rasetti, M. (2006) Quantum Knitting. Laser Physics, 16, 1582-1594. http://dx.doi.org/10.1134/S1054660X06110120

  • 126. Garoufalidis, S., Morton, H. and Vuong, T. (2013) The SL3 Colored Jones Polynomial of the Trefoil. Proceedings of the American Mathematical Society, 141, 2209-2220.
    http://dx.doi.org/10.1090/S0002-9939-2013-11582-0

  • 127. Gelca, R. (2002) Non-Commutative Trigonometry and the A-Polynomial of the Trefoil Knot. Mathematical Proceedings of the Cambridge Philosophical Society, 133, 311-323.

  • 128. Jehle, H. (1981) Topological Characterization of Leptons, Quarks and Hadrons. Physics Letters B, 104, 207-211.
    http://dx.doi.org/10.1016/0370-2693(81)90592-X

  • 129. Katritch, V., Bednar, J., Michoud, D., Scharein, R.G., Dubochet, J. and Stasiak, A. (1996) Geometry and Physics of Knots. Nature, 384, 142-145.
    http://dx.doi.org/10.1038/384142a0

  • 130. Kauffman, L.H. (2001) Knots and Physics. World Scientific, Singapore.

  • 131. Kauffman, L.H. (2015) Rotational Virtual Knots and Quantum Link Invariants. Journal of Knot Theory and Its Ramifications, 24, Article ID: 1541008.
    http://dx.doi.org/10.1142/S0218216515410084

  • 132. Kauffman, L.H. (2015) Knot Logic: Logical Connection and Topological Connection. Arxiv:1508.06028

  • 133. Kauffman, L.H. (2016) Knot Logic and Topological Quantum Computing with Majorana Fermions. In: Chubb, J., Eskandarian, A. and Harizanov, V., Eds., Logic and Algebraic Structures in Quantum Computing, Lecture Notes in Logic Vol. 45, Cambridge University Press, Cambridge, 223-336.
    http://dx.doi.org/10.1017/CBO9781139519687.012

  • 134. Kauffman, L.H. and Lomonaco Jr., S.J. (2002) Quantum Entanglement and Topological Entanglement. New Journal of Physics, 4, 73.
    http://dx.doi.org/10.1088/1367-2630/4/1/373

  • 135. Kauffman, L.H. and Lomonaco Jr., S.J. (2004) Braiding Operators are Universal Quantum Gates. New Journal of Physics, 6, 134.
    http://dx.doi.org/10.1088/1367-2630/6/1/134

  • 136. Kauffman, L.H. and Lomonaco Jr., S.J. (2004) Quantum Knots. Proceedings of SPIE 5436, Quantum Information and Computation II, 268.
    http://dx.doi.org/10.1117/12.544072

  • 137. Kleckner, D. and Irvine, W.T.M. (2013) Creation and Dynamics of Knotted Vortices. Nature Physics, 9, 253-258.
    http://dx.doi.org/10.1038/nphys2560

  • 138. Liu, X. and Ricca, R.L. (2016) Knots Cascade Detected by a Monotonically Decreasing Sequence of Values. Scientific Reports, 6, Article No. 24118.
    http://dx.doi.org/10.1038/srep24118

  • 139. Moffatt, H.K. (1996) Pulling the Knot Tight. Nature, 384, 114.
    http://dx.doi.org/10.1038/384114a0

  • 140. Pieranski, P. and Przybyl, S. (2001) Ideal Trefoil Knot. Physical Review E, 64, Article ID: 031801.
    http://dx.doi.org/10.1103/PhysRevE.64.031801

  • 141. Ponnuswamy, N., Cougnon, F.B., Clough, J.M., Pantos, G.D. and Sanders, J.K. (2012) Discovery of an Organic Trefoil Knot. Science, 338, 783-785.
    http://dx.doi.org/10.1126/science.1227032

  • 142. Ranada, A.F. (1990) Knotted Solutions of the Maxwell Equations in Vacuum. Journal of Physics A: Mathematical and General, 23, L815-L820.
    http://dx.doi.org/10.1088/0305-4470/23/16/007

  • 143. Sawin, S. (1996) Links, Quantum Groups and TQFTs. Bulletin of the American Mathematical Society, 33, 413-446.

  • 144. Stasiak, A., Dubochet, J., Katritch, V. and Pieranski, P. (1998) Ideal Knots and Their Relation to the Physics of Real Knots. In: Kauffman, L.H., Ed., Series on Knots and Everything, Vol. 19, World Scientific Publishing, 1-19.
    http://dx.doi.org/10.1142/9789812796073_0001

  • 145. Tempone-Wiltshire, S.J., Johnstone, S.P. and Helmerson, K. (2016) Optical Vortex Knots— One Photon at a Time. Scientific Reports, 6, Article No. 24463.
    http://dx.doi.org/10.1038/srep24463

  • 146. Thompson, A., Swearngin, J. and Bouwmeester, D. (2014) Linked and Knotted Gravitational Radiation. Journal of Physics A: Mathematical and Theoretical, 47, Article ID: 355205.
    http://dx.doi.org/10.1088/1751-8113/47/35/355205

  • 147. Was, Z. (1998) Trefoil Knot and Ad-Hoc Classification of Elementary Fields in the Standard Model. Physics Letters B, 416, 369-372.
    http://dx.doi.org/10.1016/S0370-2693(97)01346-4

  • 148. Weisstein, E.W. (2016) Trefoil Knot. From Mathworld—A Wolfram Web Resource.
    http://mathworld.wolfram.com/TrefoilKnot.html

  • 149. Simon, S. (2010) Quantum Computing with a Twist. Physics World, 23, 35-40.
    http://dx.doi.org/10.1088/2058-7058/23/09/37

  • 150. Lyons, R.E. and Vanderkulk, W. (1962) The Use of Triple-Modular Redundancy to Improve Computer Reliability. IBM Journal of Research and Development, 6, 200-209.
    http://dx.doi.org/10.1147/rd.62.0200

  • 151. Griffiths, R.B. (2007) Types of Quantum Information. Physical Review A, 76, Article ID: 062320.
    http://dx.doi.org/10.1103/PhysRevA.76.062320

  • 152. Perez, J., Füzfa, A., Carletti, T., Mélot, L. and Guedezounme, L. (2014) The Jungle Universe: Coupled Cosmological Models in a Lotka-Volterra Framework. General Relativity and Gravitation, 46, 1753.
    http://dx.doi.org/10.1007/s10714-014-1753-8

  • 153. Leach, J., Dennis, M.R., Courtial, J. and Padgett, M.J. (2005) Vortex Knots in Light. New Journal of Physics, 7, 55.
    http://dx.doi.org/10.1088/1367-2630/7/1/055

  • 154. Caves, C.M. and Milburn, G.J. (2000) Qutrit Entanglement. Optics Communications, 179, 439-446.
    http://dx.doi.org/10.1016/S0030-4018(99)00693-8

  • 155. McConnell, R., Zhang, H., Hu, J., Cuk, S. and Vuletic, V. (2015) Entanglement with Negative Wigner Function of Almost 3,000 Atoms Heralded by One Photon. Nature, 519, 439-442.
    http://dx.doi.org/10.1038/nature14293

  • 156. Turing, A.M. (1937) On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42, 230-265.
    http://dx.doi.org/10.1112/plms/s2-42.1.230

  • 157. Dyson, G. (2012) Turing Centenary: The Dawn of Computing. Nature, 482, 459-460.
    http://dx.doi.org/10.1038/482459a

  • 158. Aleksandrova, A., Borish, V. and Wootters, W.K. (2013) Real-Vector-Space Quantum Theory with a Universal Quantum Bit. Physical Review A, 87, Article ID: 052106.
    http://dx.doi.org/10.1103/PhysRevA.87.052106

  • 159. Garcia-Morales, V. (2015) Quantum Mechanics and the Principle of Least Radix Economy. Foundations of Physics, 45, 295-332.
    http://dx.doi.org/10.1007/s10701-015-9865-x

  • 160. Khalidi, M.A. (2015) Natural Kinds as Nodes in Causal Networks. Synthese, 1-18.
    http://dx.doi.org/10.1007/s11229-015-0841-y

  • 161. Orús, R. (2014) A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States. Annals of Physics, 349, 117-158.
    http://dx.doi.org/10.1016/j.aop.2014.06.013

  • 162. Goyal, S.K., Simon, B.N., Singh, R. and Simon, S. (2011) Geometry of the Generalized Bloch Sphere for Qutrit. arXiv:1111.4427

  • 163. Klimov, A.B., Guzmán, R., Retamal, J.C. and Saavedra, C. (2003) Qutrit Quantum Computer with Trapped Ions. Physical Review A, 67, Article ID: 062313.
    http://dx.doi.org/10.1103/PhysRevA.67.062313

  • 164. Li, B., Yu, Z.H. and Fei, S.M. (2013) Geometry of Quantum Computation with Qutrits. Scientific Reports, 3, Article No. 2594.
    http://dx.doi.org/10.1038/srep02594

  • 165. Sarbicki, G. and Bengtsson, I. (2012) Dissecting the Qutrit. Journal of Physics A: Mathematical and Theoretical, 46, Article ID: 035306.
    http://dx.doi.org/10.1088/1751-8113/46/3/035306

  • 166. Pusey, M.F., Barrett, J. and Rudolph, T. (2012) On the Reality of the Quantum State. Nature Physics, 8, 475-478.
    http://dx.doi.org/10.1038/nphys2309

  • 167. Colbeck, R. and Renner, R. (2012) Is a System’s Wave Function in One-to-One Correspondence with Its Elements of Reality? Physical Review Letters, 108, Article ID: 150402.
    http://dx.doi.org/10.1103/PhysRevLett.108.150402

  • 168. Hardy, L. (2013) Are Quantum States Real? International Journal of Modern Physics B, 27, Article ID: 1345012.
    http://dx.doi.org/10.1142/S0217979213450124

  • 169. Patra, M.K., Pironio, S. and Massar, S. (2013) No-Go Theorems for Psi-Epistemic Models Based on a Continuity Assumption. Physical Review Letters, 111, Article ID: 090402.
    http://dx.doi.org/10.1103/PhysRevLett.111.090402

  • 170. Leifer, M.S. (2014) Is the Quantum State Real? An Extended Review of Ψ-Ontology Theorems. Quanta, 3, 67-155.
    http://dx.doi.org/10.12743/quanta.v3i1.22

  • 171. Gao, S. (2015) An Argument for Ψ-Ontology in Terms of Protective Measurements. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 52, 198-202.
    http://dx.doi.org/10.1016/j.shpsb.2015.07.006

  • Journal Menu >>