Open Journal of Microphysics
Vol.07 No.01(2017), Article ID:73051,27 pages
10.4236/ojm.2017.71001

Quantum Disentanglement as the Physics behind Dark Energy

Mohamed S. El Naschie

Department of Physics, Faculty of Science, University of Alexandria, Alexandria, Egypt

Copyright © 2017 by author and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Received: December 1, 2016; Accepted: December 25, 2016; Published: December 28, 2016

ABSTRACT

A straightforward simple proof is given that dark energy is the natural consequence of a quantum disentanglement physical process. Thus while the ordinary energy density of the cosmos is equal to half that of Hardy’s quantum probability of Entanglement i.e. where, the density of cosmic dark energy is consequently one minus divided by two i.e.. This result is in full agreement with all the numerous previous theoretical predictions as well as being in remarkable agreement with the overwhelming majority of cosmic accurate measurements and observations.

Keywords:

Quantum Gravity, Quantum Entanglement, Quantum Disentanglement, E-Infinity Theory, Dark Energy

1. Introduction

Although relatively short we should say from the outset that this paper covers a large part of modern cutting edge research in quantum physics and cosmology [1] - [432] . The work is essentially and mainly motivated by the desire to show more clearly than ever before the deep connection between quantum entanglement [47] [423] and the absence of almost 95.5% of the energy supposed to be contained in our cosmos [290] . We intend to give a short, simple and exact theoretical proof based on the reverse of quantum entanglement with which we mean of course Quantum Disentanglement [1] [2] . In particular we start from Hardy’s exact experimentally well-established probability of quantumly entangled of two particles [22] [26] [28] where [196] [212] and then reason that the corresponding quantum probability of disentanglement [1] [2] is. Subsequently we show that while the ordinary measureable energy density of the cosmos is given by half of Hardy’s quantum entanglement, i.e., the corresponding Dark Energy density is given by half of the quantum probability of disentanglement i.e. [185] [194] . This is all in full agreement with highly accurate cosmic measurement and observations as well as numerous previous derivations [167] [169] [177] . The strategy and details of our analysis will be given in the next two sections.

2. Background Information and Outline of the Paper

Hardy’s probability of entanglement is one of the most important exact results in quantum mechanics and was found to be exactly equal to for two quantum particles [139] [154] . It is thus an elementary almost trivial step to conclude from this result that the probability of not being quantumly entangled must be [123] [126] [135] . Subsequently it is not difficult to show that could be written as [424] . Now remembering that is the Hausdorff dimension of a Zero set modeled by a one-dimensional random Mauldin-Williams random Cantor set [7] , then could be interpreted as an entropic measure. It follows then that maybe seen as a five-dimensional entropy from which we could deduce the energy density after multiplication with a dimensional constant. In analogy to the above and knowing that is the Hausdorff dimension of an empty set modeled by the Cantor set left from the unit interval used in constructing the said Random Mauldin-Williams Cantor set [73] [80] , we see that is also a five-dimensional entropy [21] - [29] . The only difference between and is that the first is multiplicative intersection and represents an entangled state, while is an additive union which represents a disentangled state [26] [248] . In fact even the reader who is not familiar with our previous work on fractal Cantorian spacetime and Dark Energy must have guessed by now that the entanglement probability would lead to the ordinary measureable energy density of the cosmos [29] [119] [121]

(1)

while will lead us to the Dark Energy density of the cosmos which due to this very disentangled nature of cannot be measured in any direct way at least with our present technology [29] [70] [72] [78]

(2)

Finally it is also not difficult to guess that it will turn out as a surprise which on little reflection is not really a surprise that the dimensional constant needed to move from entropy to energy is given by nothing else but Einstein’s marvelous equation

(3)

so that at the end we will find from Equation (1) that [39] [62] [65]

(4)

and from Equation (3) we find that

(5)

In other words Einstein’s beauty derived long before quantum mechanics harbored all the time two quantum components namely E(O) and E(D) which when added together give the most famous formula in physics [32] [33]

(6)

3. Analysis and Proof of Ordinary Energy and Dark Energy Theorems

In the following we give in all earnest an embarrassingly short analysis leading to a proof of the following theorems:

Theorem One:

The ordinary energy density of the cosmos is half of Hardy’s probability of quantum entanglement

Theorem Two:

The Dark Energy Density of the Cosmos is half of the Hardy type Quantum Probability of disentanglement.

To prove the first Theorem we could do nothing better for the sake of brevity than repeat any of the two dozen or so previous proofs published in numerous papers over the last 4 years [23] [24] [28] However we recommend References [23] [28] and [39] as well as [32] .

On the other hand proving Theorem Two becomes trivial because which we just considered proven is the complement of which we want to prove. In other words proving that Hardy’s quantum entanglement means is automatically a proof that Hardy’s disentanglement probability means that the Dark Energy density is simply [24] [26] [28]

(7)

This is the end of the proof which has the unusual disadvantage of being too simple to believe and we have only to mention the additional obvious insight that can be measured because it is coherent while cannot be directly measured and we only infer its existence from the accelerated expansion of the universe because it is disentangled [1] [2] . This is a different view of the same good old particle-wave duality [7] . We recall our earlier conclusion that is the kinetic energy of the pre-quantum particle modeled by the Zero set while is the position or potential energy of the quantum wave modeled by the empty set [26] [28] . Now since any interference or measurement on an empty set quantum wave make the set non empty, we have to invite first quantum wave non-demolishing measuring devices before being in a position to measure dark energy directly [23] [26] [28] .

4. Zeno’s Paradox and Dark Energy

We mentioned on passing in the previous section a distinction between the kinetic energy of the particle and potential energy of the wave [432] . This seems a little odd because it is the quantum wave which is responsible in quantum mechanics for propagation. We have touched on this subject in a recent paper and here we should give a clear cut answer to his contradictory viewpoint [432] . This clear cut answer will resonate century old philosophical problems connected to Zeno’s [43] [431] and reflection on the notion that motion is illusion [43] . From the viewpoint of the entire universe motion could be considered an illusion indeed or maybe we should express this in a more conservative way and say that the distinction between kinetic energy and potential energy when it comes to regarding dark energy and the entire universe is fuzzy and fundamentally so [432] . This is easily demonstrated when we realize that in five dimensional unit universe, the largest height must be half the unit radius and that the topological acceleration [432] is the down scaling of the topological (Sigalotti) speed of light [344] which means. Now let us look at Kinetic energy [432]

(8)

where v is the Velocity and c is the speed of light. Taking m to 3D we find the topological so that the topological energy becomes

(9)

Next we look at the potential energy [432]

(10)

Setting as reasoned earlier on we find

(11)

which is the same formula as. Of course this is a fundamentally different fuzzy situation and is not the same as the conservation of Energy Theorem of classical mechanics. To stress this quantum fuzziness when it comes to regarding the entire cosmos and the possibility for a rational resolution of Zeno’s paradox [431] , let us do the same thing for the “Universe” i.e. for of the Kaluza-Klein manifold. This would lead to [432]

(12)

which is of the quantum wave as we though initially should be. However even for the potential energy, we find [432]

(13)

which is the same result [432] .

In a sense we could conclude from the above that the most important modern result in the quantum physics is that of Hardy’s quantum entanglement probability [21] [23] [28]

(14)

With that we rest our case at least for the moment.

5. Conclusion

In this paper we have stated two Theorems and proved them. The First Theorem asserts that the measurable ordinary energy density of the cosmos is half that of the Hardy Probability of quantum entanglement. The second Theorem is complimentary to the first and states that the Dark energy density of the cosmos is half the quantum probability of the Hardy disentanglement. In addition we have shown that when regarding the universe as a whole, the sharp distinction between Kinetic energy and Potential energy of classical Newtonian mechanics ceases to be true and we are faced with a fundamentally and irreducibly fuzzy situation.

Acknowledgements

Without the work on non-commutative geometry and Prof. A. Connes’ analysis of Sir R. Penrose’s Fractal Tiling, this present work could not have been possible.

Cite this paper

El Naschie, M.S. (2017) Quantum Disentanglement as the Physics behind Dark Energy. Open Journal of Microphysics, 7, 1-30. https://doi.org/10.4236/ojm.2017.71001

References

  1. 1. Barrett, J.A. (2014) Entanglement and Disentanglement in Relativistic Quantum Mechanics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 48, 168-174.
    https://doi.org/10.1016/j.shpsb.2014.08.004

  2. 2. Peres, A. (1998) Quantum Disentanglement and Computation. Superlattices and Microstructures, 23, 373-379.
    https://doi.org/10.1006/spmi.1997.0518

  3. 3. Jammer, M. (1993) Concepts of Space. Dover Publication, Mineola.

  4. 4. Jammer, M. (1974) Concept of Force. Recherche, 5, 221-230.

  5. 5. Jammer, M. (1961) Concepts of Mass in Classical and Modern Physics. Dover, New York.

  6. 6. Jammer, M. (1966) The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York, 399 p.

  7. 7. El Naschie, M.S. (2004) A Review of E Infinity Theory and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236.
    https://doi.org/10.1016/S0960-0779(03)00278-9

  8. 8. El Naschie, M.S. (1995) Quantum Mechanics, Diffusion and Chaotic Fractals. Chaos, Solitons & Fractals, 4, 1235-1247.
    https://doi.org/10.1016/0960-0779(94)90034-5

  9. 9. El Naschie, M.S. (2009) The Theory of Cantorian Spacetime and High Energy Particle Physics (an Informal Review). Chaos, Solitons & Fractals, 41, 2635-2646.
    https://doi.org/10.1016/j.chaos.2008.09.059

  10. 10. El Naschie, M.S. (2006) Elementary Prerequisites for E-Infinity: (Recommended Background Readings in Nonlinear Dynamics, Geometry and Topology). Chaos, Solitons & Fractals, 30, 579-605.
    https://doi.org/10.1016/j.chaos.2006.03.030

  11. 11. El Naschie, M.S. (2006) On an Eleven Dimensional E-Infinity Fractal Spacetime Theory. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 407-409.

  12. 12. El Naschie, M.S. (2007) A Review of Applications and Results of Ε-Infinity Theory. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 11-20.
    https://doi.org/10.1515/IJNSNS.2007.8.1.11

  13. 13. El Naschie, M.S. (2005) Einstein’s Dream and Fractal Geometry. Chaos, Solitons & Fractals, 24, 1-5.
    https://doi.org/10.1016/j.chaos.2004.09.001

  14. 14. El Naschie, M.S. (1998) Penrose Universe and Cantorian Spacetime as a Model for Noncommutative Quantum Geometry. Chaos, Solitons & Fractals, 9, 931-933.
    https://doi.org/10.1016/S0960-0779(98)00077-0

  15. 15. El Naschie, M.S. (2006) The Idealized Quantum Two-Slit Gedanken Experiment Revisited—Criticism and Reinterpretation. Chaos, Solitons & Fractals, 27, 843-849.
    https://doi.org/10.1016/j.chaos.2005.06.002

  16. 16. El Naschie, M.S. (1997) A Note on Quantum Gravity and Cantorian Spacetime. Chaos, Solitons & Fractals, 8, 131-133.
    https://doi.org/10.1016/S0960-0779(96)00128-2

  17. 17. El Naschie, M.S. (1994) Is Quantum Space a Random Cantor Set with a Golden Mean Dimension at the Core? Chaos, Solitons & Fractals, 4, 177-179.
    https://doi.org/10.1016/0960-0779(94)90141-4

  18. 18. El Naschie, M.S. (1996) Time Symmetry Breaking, Duality and Cantorian Space-Time. Chaos, Solitons & Fractals, 7, 499-518.
    https://doi.org/10.1016/0960-0779(96)00007-0

  19. 19. El Naschie, M.S. (2014) Pinched Material Einstein Space-Time Produces Accelerated Cosmic Expansion. International Journal of Astronomy and Astrophysics, 4, 80-90.
    https://doi.org/10.4236/ijaa.2014.41009

  20. 20. Nottale, L. (1996) Scale Relativity and Fractal Space-Time: Applications to Quantum Physics, Cosmology and Chaotic Systems. Chaos, Solitons & Fractals, 7, 877-938.
    https://doi.org/10.1016/0960-0779(96)00002-1

  21. 21. Marek-Crnjac, L., El Naschie, M.S. and He, J.H. (2013) Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology. International Journal of Modern Nonlinear Theory and Application, 2, 78.
    https://doi.org/10.4236/ijmnta.2013.21A010

  22. 22. El Naschie, M.S. (2005) From Experimental Quantum Optics to Quantum Gravity via a Fuzzy Kahler Manifold. Chaos, Solitons & Fractals, 25, 969-977.
    https://doi.org/10.1016/j.chaos.2005.02.028

  23. 23. El Naschie, M.S. (2013) A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory. Journal of Quantum Information Science, 3, 23.
    https://doi.org/10.4236/jqis.2013.31006

  24. 24. El Naschie, M.S. (2013) What Is the Missing Dark Energy in a Nutshell and the Hawking-Hartle Quantum Wave Collapse. International Journal of Astronomy and Astrophysics, 3, 205.
    https://doi.org/10.4236/ijaa.2013.33024

  25. 25. El Naschie, M.S. (2005) Einstein in a Complex Time-Some Very Personal Thoughts about Ε-Infinity Theory and Modern Physics. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 331-333.
    https://doi.org/10.1515/IJNSNS.2005.6.3.331

  26. 26. El Naschie, M.S. (2013) A Rindler-KAM Spacetime Geometry and Scaling the Planck Scale Solves Quantum Relativity and Explains Dark Energy. International Journal of Astronomy and Astrophysics, 3, 483-493.
    https://doi.org/10.4236/ijaa.2013.34056

  27. 27. He, J.H. (2005) Space, Time and beyond. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 343-346.
    https://doi.org/10.1515/IJNSNS.2005.6.4.343

  28. 28. El Naschie, M.S. (2013) A Unified Newtonian-Relativistic Quantum Resolution of the Supposedly Missing Dark Energy of the Cosmos and the Constancy of the Speed of Light. International Journal of Modern Nonlinear Theory and Application, 2, 43.
    https://doi.org/10.4236/ijmnta.2013.21005

  29. 29. El Naschie, M.S. (2013) From Yang-Mills Photon in Curved Spacetime to Dark Energy Density. Journal of Quantum Information Science, 3, 121-126.
    https://doi.org/10.4236/jqis.2013.34016

  30. 30. He, J.H. (2005) In Search of 9 Hidden Particles. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 93-94.
    https://doi.org/10.1515/IJNSNS.2005.6.2.93

  31. 31. El Naschie, M.S. (2004) Gravitational Instanton in Hilbert Space and the Mass of High Energy Elementary Particles. Chaos, Solitons & Fractals, 20, 917-923.
    https://doi.org/10.1016/j.chaos.2003.11.001

  32. 32. El Naschie, M.S. (2013) Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schrodinger Quantum Wave. Journal of Modern Physics, 4, 591.
    https://doi.org/10.4236/jmp.2013.45084

  33. 33. El Naschie, M. (2014) Cosmic Dark Energy Density from Classical Mechanics and Seemingly Redundant Riemannian Finitely Many Tensor Components of Einstein’s General Relativity. World Journal of Mechanics, 4, 153-156.
    https://doi.org/10.4236/wjm.2014.46017

  34. 34. Sigalotti, L.D.G. and Mejias, A. (2006) On El Naschie’s Conjugate Complex. Time, Fractal E(∞) Space-Time and Faster-Than-Light Particles. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 467-472.
    https://doi.org/10.1515/IJNSNS.2006.7.4.467

  35. 35. El Naschie, M.S. (1995) On the Nature of Complex Time, Diffusion and the Two-Slit Experiment. Chaos, Solitons & Fractals, 5, 1031-1032.
    https://doi.org/10.1016/0960-0779(95)00044-5

  36. 36. El Naschie, M.S. (2006) On Two New Fuzzy Kahler Manifolds, Klein Modular Space and ‘tHooft Holographic Principles. Chaos, Solitons & Fractals, 29, 876-881.
    https://doi.org/10.1016/j.chaos.2005.12.027

  37. 37. El Naschie, M.S. (2014) The Measure Concentration of Convex Geometry in a Quasi Banach Spacetime behind the Supposedly Missing Dark Energy of the Cosmos. American Journal of Astronomy & Astrophysics, 2, 72-77.
    https://doi.org/10.11648/j.ajaa.20140206.13

  38. 38. El Naschie, M.S. (2004) Quantum Gravity from Descriptive Set Theory. Chaos, Solitons & Fractals, 19, 1339-1344.
    https://doi.org/10.1016/j.chaos.2003.08.009

  39. 39. El Naschie, M.S. and Helal, A. (2013) Dark Energy Explained via the Hawking-Hartle Quantum Wave and the Topology of Cosmic Crystallography. International Journal of Astronomy and Astrophysics, 3, 318.
    https://doi.org/10.4236/ijaa.2013.33037

  40. 40. Iovane, G. (2005) Self-Similar and Oscillating Solutions of Einstein’s Equation and Other Relevant Consequences of a Stochastic Self-Similar and Fractal Universe via El Naschie’s ε(∞) Cantorian Space-Time. Chaos, Solitons & Fractals, 23, 351-360.
    https://doi.org/10.1016/j.chaos.2004.05.032

  41. 41. El Naschie, M.S. (2014) Compactified Dimensions as Produced by Quantum Entanglement, the Four Dimensionality of Einstein’s Smooth Spacetime and ‘tHooft’s 4-ε Fractal Spacetime. American Journal of Astronomy & Astrophysics, 2, 34-37.
    https://doi.org/10.11648/j.ajaa.20140203.12

  42. 42. El Naschie, M.S. (2007) The Fibonacci Code behind Super Strings and P-Branes. An Answer to M. Kaku’s Fundamental Question. Chaos, Solitons & Fractals, 31, 537-547.
    https://doi.org/10.1016/j.chaos.2006.07.001

  43. 43. El Naschie, M.S. (2006) Is Einstein’s General Field Equation More Fundamental than Quantum Field Theory and Particle Physics? Chaos, Solitons & Fractals, 30, 525-531.
    https://doi.org/10.1016/j.chaos.2005.04.123

  44. 44. El Naschie, M.S. (2013) A Fractal Menger Sponge Space-Time Proposal to Reconcile Measurements and Theoretical Predictions of Cosmic Dark Energy. International Journal of Modern Nonlinear Theory and Application, 2, 107.
    https://doi.org/10.4236/ijmnta.2013.22014

  45. 45. El Naschie, M.S. (2004) How Gravitational Instanton Could Solve the Mass Problem of the Standard Model of High Energy Particle Physics. Chaos, Solitons & Fractals, 21, 249-260.
    https://doi.org/10.1016/j.chaos.2003.12.001

  46. 46. El Naschie, M.S. (2004) Quantum Gravity, Clifford Algebras, Fuzzy Set Theory and the Fundamental Constants of Nature. Chaos, Solitons & Fractals, 20, 437-450.
    https://doi.org/10.1016/j.chaos.2003.09.029

  47. 47. El Naschie, M.S. (2013) Quantum Entanglement: Where Dark Energy and Negative Gravity plus Accelerated Expansion of the Universe Comes from. Journal of Quantum Information Science, 3, Article ID: 32831.
    https://doi.org/10.4236/jqis.2013.32011

  48. 48. El Naschie, M.S. (2015) Dark Energy and Its Cosmic Density from Einstein’s Relativity and Gauge Fields Renormalization Leading to the Possibility of a New ‘tHooft Quasi Particle. The Open Astronomy Journal, 8, 1-17.
    https://doi.org/10.2174/1874381101508010001

  49. 49. El Naschie, M.S. (2006) The Brain and E-Infinity. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 129-132.
    https://doi.org/10.1515/ijnsns.2006.7.2.129

  50. 50. El Naschie, M.S. (2014) On a New Elementary Particle from the Disintegration of the Symplectic ‘tHooft-Veltman-Wilson Fractal Spacetime. World Journal of Nuclear Science and Technology, 4, Article ID: 50539.

  51. 51. El Naschie, M.S. (2013) Dark Energy from Kaluza-Klein Spacetime and Noether’s Theorem via Lagrangian Multiplier Method. Journal of Modern Physics, 4, Article ID: 32975.
    https://doi.org/10.4236/jmp.2013.46103

  52. 52. Tang, W., Li, Y., Kong, H.Y. and El Naschie, M.S. (2014) From Nonlocal Elasticity to Nonlocal Spacetime and Nano Science. Bubbfil Nanotechnology, 1, 3-12.

  53. 53. Iovane, G. and Benedetto, E. (2005) El Naschie Ε-Infinity Cantorian Space-Time, Fantappie’s Group and Applications in Cosmology. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 357-370.
    https://doi.org/10.1515/ijnsns.2005.6.4.357

  54. 54. El Naschie, M.S. (2004) The Symplictic Vacuum, Exotic Quasi Particles and Gravitational Instanton. Chaos, Solitons & Fractals, 22, 1-11.
    https://doi.org/10.1016/j.chaos.2004.01.015

  55. 55. El Naschie, M.S. (2004) The Concepts of E Infinity: An Elementary Introduction to the Cantorian-Fractal Theory of Quantum Physics. Chaos, Solitons & Fractals, 22, 495-511.
    https://doi.org/10.1016/j.chaos.2004.02.028

  56. 56. El Naschie, M.S. (2006) Elementary Number Theory in Superstrings, Loop Quantum Mechanics, Twistors and E-Infinity High Energy Physics. Chaos, Solitons & Fractals, 27, 297-330.
    https://doi.org/10.1016/j.chaos.2005.04.116

  57. 57. Veltman, M. (2003) Facts and Mysteries in Elementary Particle Physics. World Scientific, Singapore.

  58. 58. Iovane, G. (2005) Mohamed El Naschie’s ε(∞) Cantorian Space-Time and Its Consequences in Cosmology. Chaos, Solitons & Fractals, 25, 775-779.
    https://doi.org/10.1016/j.chaos.2005.02.024

  59. 59. El Naschie, M.S. and Marek-Crnjac, L. (2012) Deriving the Exact Percentage of Dark Energy Using a Transfinite Version of Nottale’s Scale Relativity. International Journal of Modern Nonlinear Theory and Application, 1, 118.
    https://doi.org/10.4236/ijmnta.2012.14018

  60. 60. El Naschie, M.S. (2000) On the Unification of the Fundamental Forces and Complex Time in the E(∞) Space. Chaos, Solitons & Fractals, 11, 1149-1162.
    https://doi.org/10.1016/S0960-0779(99)00185-X

  61. 61. El Naschie, M.S. (2006) Intermediate Prerequisites for E-Infinity Theory (Further Recommended Reading in Nonlinear Dynamics and Mathematical Physics). Chaos, Solitons & Fractals, 30, 622-628.
    https://doi.org/10.1016/j.chaos.2006.04.042

  62. 62. El Naschie, M.S. (2014) Dark Energy via Quantum Field Theory in Curved Spacetime. Journal of Modern Physics and Applications, 2, 1-7.

  63. 63. El Naschie, M.S. (2013) Nash Embedding of Witten’s M-Theory and the Hawking-Hartle Quantum Wave of Dark Energy. Journal of Modern Physics, 4, 1417.
    https://doi.org/10.4236/jmp.2013.410170

  64. 64. El Naschie, M.S. (2013) The Hyperbolic Extension of Sigalotti-Hendi-Sharifzadeh’s Golden Triangle of Special Theory of Relativity and the Nature of Dark Energy. Journal of Modern Physics, 4, 354.
    https://doi.org/10.4236/jmp.2013.43049

  65. 65. El Naschie, M.S. (2003) Modular Groups in Cantorian E(∞) High-Energy Physics. Chaos, Solitons & Fractals, 16, 353-366.
    https://doi.org/10.1016/S0960-0779(02)00440-X

  66. 66. El Naschie, M.S. (2014) From E = mc2 to E = mc2/22—A Short Account of the Most Famous Equation in Physics and Its Hidden Quantum Entanglement Origin. Journal of Quantum Information Science, 4, 284.
    https://doi.org/10.4236/jqis.2014.44023

  67. 67. El Naschie, M.S. (1993) Statistical Mechanics of Multi-Dimensional Cantor Sets, Godel Theorem and Quantum Spacetime. Journal of the Franklin Institute, 330, 199-211.
    https://doi.org/10.1016/0016-0032(93)90030-X

  68. 68. El Naschie, M.S. (2003) The VAK of Vacuum Fluctuation: Spontaneous Self-Organization and Complexity Theory Interpretation of High Energy Particle Physics and the Mass Spectrum. Chaos, Solitons & Fractals, 18, 401-420.
    https://doi.org/10.1016/S0960-0779(03)00098-5

  69. 69. El-Ahmady, A.E. (2007) The Variation of the Density Functions on Chaotic Spheres in Chaotic Space-Like Minkowskispace Time. Chaos, Solitons & Fractals, 31, 1272-1278.
    https://doi.org/10.1016/j.chaos.2005.10.112

  70. 70. El Naschie, M.S. (2005) On 336 Kissing Spheres in 10 Dimensions, 528 P-Brane States in 11 Dimensions and the 60 Elementary Particles of the Standard Model. Chaos, Solitons & Fractals, 24, 447-457.
    https://doi.org/10.1016/j.chaos.2004.09.071

  71. 71. El Naschie, M.S. (2014) Entanglement of E8E8 Exceptional Lie Symmetry Group Dark Energy, Einstein’s Maximal Total Energy and the Hartle-Hawking No Boundary Proposal as the Explanation for Dark Energy. World Journal of Condensed Matter Physics, 4, 74-77.
    https://doi.org/10.4236/wjcmp.2014.42011

  72. 72. El Naschie, M.S. (2014) To Dark Energy Theory from a Cosserat-Like Model of Spacetime. Problems of Nonlinear Analysis in Engineering Systems, 20, 79-98.

  73. 73. El Naschie, M.S. (2014) Cosmic Dark Energy from ‘t Hooft’s Dimensional Regularization and Witten’s Topological Quantum Field Pure Gravity. Journal of Quantum Information Science, 4, 83-91.
    https://doi.org/10.4236/jqis.2014.42008

  74. 74. Helal, M.A., Marek-Crnjac, L. and He, J.H. (2013) The Three Page Guide to the Most Important Results of MS El Naschie’s Research in E-Infinity Quantum Physics and Cosmology. Open Journal of Microphysics, 3, 141.
    https://doi.org/10.4236/ojm.2013.34020

  75. 75. El Naschie, M.S. (2007) Feigenbaum Scenario for Turbulence and Cantorian E-Infinity Theory of High Energy Particle Physics. Chaos, Solitons & Fractals, 32, 911-915.
    https://doi.org/10.1016/j.chaos.2006.08.014

  76. 76. El Naschie, M.S. (2008) Symmetry Group Prerequisite for E-Infinity in High Energy Physics. Chaos, Solitons & Fractals, 35, 202-211.
    https://doi.org/10.1016/j.chaos.2007.05.006

  77. 77. El Naschie, M.S. (2014) Capillary Surface Energy Elucidation of the Cosmic Dark Energy—Ordinary Energy Duality. Open Journal of Fluid Dynamics, 4, 15-17.
    https://doi.org/10.4236/ojfd.2014.41002

  78. 78. El Naschie, M.S. (2016) Cosserat-Cartan and de Sitter-Witten Spacetime Setting for Dark Energy. Quantum Matter, 5, 1-4.
    https://doi.org/10.1166/qm.2016.1247

  79. 79. El Naschie, M.S. (2015) An Exact Mathematical Picture of Quantum Spacetime. Advances in Pure Mathematics, 5, 560.
    https://doi.org/10.4236/apm.2015.59052

  80. 80. El Naschie, M.S. (2007) Exceptional Lie Groups Hierarchy and the Structure of the Micro Universe. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 445-450.
    https://doi.org/10.1515/ijnsns.2007.8.3.445

  81. 81. Marek-Crnjac, L. and He, J. (2013) An Invitation to El Naschie’s Theory of Cantorian Space-Time and Dark Energy. International Journal of Astronomy and Astrophysics, 3, 464-471.
    https://doi.org/10.4236/ijaa.2013.34053

  82. 82. El Naschie, M.S. (1997) COBE Satellite Measurement, Cantorian Space and Cosmic Strings. Chaos, Solitons & Fractals, 8, 847-850.
    https://doi.org/10.1016/S0960-0779(97)00084-2

  83. 83. El Naschie, M.S. (2006) Linderhof Room of Mirrors, Thurston Three-Manifolds and the Geometry of Our Universe. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 97-100.
    https://doi.org/10.1515/IJNSNS.2006.7.1.97

  84. 84. El Naschie, M.S. (2015) A Resolution of the Black Hole Information Paradox via Transfinite Set Theory. World Journal of Condensed Matter Physics, 5, 249.
    https://doi.org/10.4236/wjcmp.2015.54026

  85. 85. El Naschie, M.S. (2014) Why E Is Not Equal to mc2. Journal of Modern Physics, 5, 743-750.
    https://doi.org/10.4236/jmp.2014.59084

  86. 86. El Naschie, M.S. (2005) On a Class of Fuzzy Kahler-Like Manifolds. Chaos, Solitons & Fractals, 26, 257-261.
    https://doi.org/10.1016/j.chaos.2004.12.024

  87. 87. El Naschie, M.S. (2005) Godel Universe, Dualities and High Energy Particles in E-Infinity. Chaos, Solitons & Fractals, 25, 759-764.
    https://doi.org/10.1016/j.chaos.2004.12.010

  88. 88. El Naschie, M.S. (1998) On the Irreducibility of Spatial Ambiguity in Quantum Physics. Chaos, Solitons & Fractals, 9, 913-919.
    https://doi.org/10.1016/S0960-0779(97)00165-3

  89. 89. El Naschie, M.S. (2013) The Quantum Entanglement behind the Missing Dark Energy. Journal of Modern Physics and Applications, 2, 88-96.

  90. 90. El Naschie, M.S. (2005) Deriving the Essential Features of the Standard Model from the General Theory of Relativity. Chaos, Solitons & Fractals, 24, 941-946.
    https://doi.org/10.1016/j.chaos.2004.10.001

  91. 91. El Naschie, M.S. (2014) Einstein’s General Relativity and Pure Gravity in a Cosserat and De Sitter-Witten Spacetime Setting as the Explanation of Dark Energy and Cosmic Accelerated Expansion. International Journal of Astronomy and Astrophysics, 4, 332.
    https://doi.org/10.4236/ijaa.2014.42027

  92. 92. El Naschie, M.S. (2006) The Unreasonable Effectiveness of the Electron-Volt Units System in High Energy Physics and the Role Played by a0 = 137. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 119-128.
    https://doi.org/10.1515/IJNSNS.2006.7.2.119

  93. 93. El Naschie, M.S. (1998) Superstrings, Knots, and Noncommutative Geometry in E(∞) Space. International Journal of Theoretical Physics, 37, 2935-2951.
    https://doi.org/10.1023/A:1026679628582

  94. 94. El Naschie, M.S. (2013) The Missing Dark Energy of the Cosmos from Light Cone Topological Velocity and Scaling of the Planck Scale. Open Journal of Microphysics, 3, 64-70.
    https://doi.org/10.4236/ojm.2013.33012

  95. 95. El Naschie, M.S. (2008) The Fundamental Algebraic Equations of the Constants of Nature. Chaos, Solitons & Fractals, 35, 320-322.
    https://doi.org/10.1016/j.chaos.2007.06.110

  96. 96. Iovane, G. (2006) El Naschie Ε-Infinity Cantorian Spacetime and Lengths Scales in Cosmology. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 155-162.
    https://doi.org/10.1515/IJNSNS.2006.7.2.155

  97. 97. El Naschie, M.S. (2014) The Meta Energy of Dark Energy. Open Journal of Philosophy, 4, 157-159.
    https://doi.org/10.4236/ojpp.2014.42022

  98. 98. El Naschie, M.S. (2007) From Symmetry to Particles. Chaos, Solitons & Fractals, 32, 427-430.
    https://doi.org/10.1016/j.chaos.2006.09.016

  99. 99. El Naschie, M.S. (2008) Kaluza-Klein Unification-Some Possible Extensions. Chaos, Solitons & Fractals, 37, 16-22.
    https://doi.org/10.1016/j.chaos.2007.09.079

  100. 100. El Naschie, M.S. (2015) On a Non-Perturbative Quantum Relativity Theory Leading to a Casimir-Dark Energy Nanotech Reactor Proposal. Open Journal of Applied Sciences, 5, 313.
    https://doi.org/10.4236/ojapps.2015.57032

  101. 101. He, J.H. (2007) Nonlinear Dynamics and the Nobel Prize in Physics. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 1-4.
    https://doi.org/10.1515/IJNSNS.2007.8.1.1

  102. 102. El Naschie, M.S. (2004) Small World Network, ε(∞) Topology and the Mass Spectrum of High Energy Particles Physics. Chaos, Solitons & Fractals, 19, 689-697.
    https://doi.org/10.1016/S0960-0779(03)00337-0

  103. 103. El Naschie, M.S. (2014) From Chern-Simon, Holography and Scale Relativity to Dark Energy. Journal of Applied Mathematics and Physics, 2, 634-638.
    https://doi.org/10.4236/jamp.2014.27069

  104. 104. El Naschie, M.S. (2005) Experimental and Theoretical Arguments for the Number and the Mass of the Higgs Particles. Chaos, Solitons & Fractals, 23, 1091-1098.
    https://doi.org/10.1016/j.chaos.2004.08.001

  105. 105. He, J.H. (2006) Application of E-Infinity Theory to Biology. Chaos, Solitons & Fractals, 28, 285-289.
    https://doi.org/10.1016/j.chaos.2005.08.001

  106. 106. He, J.H. and Marek-Crnjac, L. (2013) Mohamed El Naschie’s Revision of Albert Einstein’s E = m0c2: A Definite Resolution of the Mystery of the Missing Dark Energy of the Cosmos. International Journal of Modern Nonlinear Theory and Application, 2, 55-59.
    https://doi.org/10.4236/ijmnta.2013.21006

  107. 107. El Naschie, M.S. (1998) Dimensional Symmetry Breaking, Information and Fractal Gravity in Cantorian Space. Biosystems, 46, 41-46.
    https://doi.org/10.1016/S0303-2647(97)00079-8

  108. 108. El Naschie, M.S. (2005) On Einstein’s Super Symmetric Tensor and the Number of Elementary Particles of the Standard Model. Chaos, Solitons & Fractals, 23, 1521-1525.
    https://doi.org/10.1016/j.chaos.2004.09.003

  109. 109. El Naschie, M.S. (2001) A General Theory for the Topology of Transfinite Heterotic Strings and Quantum Gravity. Chaos, Solitons & Fractals, 12, 969-988.
    https://doi.org/10.1016/S0960-0779(00)00263-0

  110. 110. El Naschie, M.S. (2006) Fuzzy Dodecahedron Topology and E-Infinity Spacetime as a Model for Quantum Physics. Chaos, Solitons & Fractals, 30, 1025-1033.
    https://doi.org/10.1016/j.chaos.2006.05.088

  111. 111. El Naschie, M.S. (2013) Determining the Missing Dark Energy Density of the Cosmos from a Light Cone Exact Relativistic Analysis. Journal of Physics, 2, 18-23.

  112. 112. El Naschie, M.S., Marek-Crnjac, L., Helal, M.A. and He, J.H. (2014) A Topological Magueijo-Smolin Varying Speed of Light Theory, the Accelerated Cosmic Expansion and the Dark Energy of Pure Gravity. Applied Mathematics, 5, 1780-1790.
    https://doi.org/10.4236/am.2014.512171

  113. 113. Sigalotti, L.D.G. and Mejias, A. (2006) The Golden Ratio in Special Relativity. Chaos, Solitons & Fractals, 30, 521-524.
    https://doi.org/10.1016/j.chaos.2006.03.005

  114. 114. Castro, C., El-Naschie, M.S. and Granik, A. (2000) Why We Live in 3 + 1 Dimensions. CERN Document Server. (No. hep-th/0004152).

  115. 115. Marek Crnjac, L. and El Naschie, M.S. (2013) Quantum Gravity and Dark Energy Using Fractal Planck Scaling. Journal of Modern Physics, 4, 31-38.
    https://doi.org/10.4236/jmp.2013.411A1005

  116. 116. El Naschie, M.S. (2016) Einstein-Rosen Bridge (ER), Einstein-Podolsky-Rosen Experiment (EPR) and Zero Measure Rindler-KAM Cantorian Spacetime Geometry (ZMG) Are Conceptually Equivalent. Journal of Quantum Information Science, 6, 1-9.
    https://doi.org/10.4236/jqis.2016.61001

  117. 117. El Naschie, M.S. (1993) On Certain Infinite Dimensional Cantor Sets and the Schrodinger Wave. Chaos, Solitons & Fractals, 3, 89-98.
    https://doi.org/10.1016/0960-0779(93)90042-Y

  118. 118. El Naschie, M.S. (1995) Statistical Geometry of a Cantor Discretum and Semiconductors. Computers & Mathematics with Applications, 29, 103-110.
    https://doi.org/10.1016/0898-1221(95)00062-4

  119. 119. El Naschie, M.S. (2003) Kleinian Groups in E(∞) and Their Connection to Particle Physics and Cosmology. Chaos, Solitons & Fractals, 16, 637-649.
    https://doi.org/10.1016/S0960-0779(02)00489-7

  120. 120. El Naschie, M.S. (2014) Electromagnetic—Pure Gravity Connection via Hardy’s Quantum Entanglement. Journal of Electromagnetic Analysis and Applications, 6, 233.
    https://doi.org/10.4236/jemaa.2014.69023

  121. 121. El Naschie, M.S. (2013) Experimentally Based Theoretical Arguments That Unruh’s Temperature, Hawking’s Vacuum Fluctuation and Rindler’s Wedge Are Physically Real. American Journal of Modern Physics, 2, 357-361.
    https://doi.org/10.11648/j.ajmp.20130206.23

  122. 122. El Naschie, M.S. (2015) Kerr Black Hole Geometry Leading to Dark Matter and Dark Energy via E-Infinity Theory and the Possibility of a Nano Spacetime Singularities Reactor. Natural Science, 7, 210.
    https://doi.org/10.4236/ns.2015.74024

  123. 123. Castro, C. (2000) Is Quantum Space-Time Infinite Dimensional. Chaos, Solitons & Fractals, 11, 1663-1670.
    https://doi.org/10.1016/S0960-0779(00)00018-7

  124. 124. El Naschie, M.S. (2014) Calculating the Exact Experimental Density of the Dark Energy in the Cosmos Assuming a Fractal Speed of Light. International Journal of Modern Nonlinear Theory and Application, 3, 1-5.
    https://doi.org/10.4236/ijmnta.2014.31001

  125. 125. El Naschie, M.S. (2004) Topological Defects in the Symplictic Vacuum, Anomalous Positron Production and the Gravitational Instanton. International Journal of Modern Physics E, 13, 835-849.
    https://doi.org/10.1142/S0218301304002429

  126. 126. El Naschie, M.S. (2000) Towards a Geometrical Theory for the Unification of All Fundamental Forces. Chaos, Solitons & Fractals, 11, 1459-1469.
    https://doi.org/10.1016/S0960-0779(99)00194-0

  127. 127. El Naschie, M.S. (2014) From Modified Newtonian Gravity to Dark Energy via Quantum Entanglement. Journal of Applied Mathematics and Physics, 2, 803.
    https://doi.org/10.4236/jamp.2014.28088

  128. 128. El Naschie, M.S. (2001) On a Heterotic String-Based Algorithm for the Determination of the Fine Structure Constant. Chaos, Solitons & Fractals, 12, 539-549.
    https://doi.org/10.1016/S0960-0779(00)00187-9

  129. 129. El Naschie, M.S. (2005) Determining the Number of Higgs Particles Starting from General Relativity and Various Other Field Theories. Chaos, Solitons & Fractals, 23, 711-726.
    https://doi.org/10.1016/j.chaos.2004.06.048

  130. 130. El Naschie, M.S. (2015) Quantum Fractals and the Casimir-Dark Energy Duality—The Road to a Clean Quantum Energy Nano Reactor. Journal of Modern Physics, 6, 1321.
    https://doi.org/10.4236/jmp.2015.69137

  131. 131. Iovane, G. and Giordano, P. (2007) Wavelets and Multiresolution Analysis: Nature of ε(∞) Cantorian Space-Time. Chaos, Solitons & Fractals, 32, 896-910.
    https://doi.org/10.1016/j.chaos.2005.11.097

  132. 132. He, J.H., Liu, Y., Xu, L. and Yu, J.Y. (2007) Micro Sphere with Nanoporosity by Electrospinning. Chaos, Solitons & Fractals, 32, 1096-1100.
    https://doi.org/10.1016/j.chaos.2006.07.045

  133. 133. Chen, W. (2006) Time-Space Fabric Underlying Anomalous Diffusion. Chaos, Solitons & Fractals, 28, 923-929.
    https://doi.org/10.1016/j.chaos.2005.08.199

  134. 134. El Naschie, M.S. (2006) Is Gravity Less Fundamental than Elementary Particles Theory? Critical Remarks on Holography and E-Infinity Theory. Chaos, Solitons & Fractals, 29, 803-807.
    https://doi.org/10.1016/j.chaos.2006.01.012

  135. 135. El Naschie, M.S. (2008) Average Exceptional Lie and Coxeter Group Hierarchies with Special Reference to the Standard Model of High Energy Particle Physics. Chaos, Solitons & Fractals, 37, 662-668.
    https://doi.org/10.1016/j.chaos.2008.01.018

  136. 136. El Naschie, M.S. (2015) Hubble Scale Dark Energy Meets Nano Scale Casimir Energy and the Rational of Their T-Duality and Mirror Symmetry Equivalence. World Journal of Nano Science and Engineering, 5, 57.
    https://doi.org/10.4236/wjnse.2015.53008

  137. 137. El Naschie, M.S. (2005) Determining the Mass of the Higgs and the Electroweak Bosons. Chaos, Solitons & Fractals, 24, 899-905.
    https://doi.org/10.1016/j.chaos.2004.11.003

  138. 138. El Naschie, M.S. (2015) From Kantian-Reinen Fernunft to the Real Dark Energy Density of the Cosmos via the Measure Concentration of Convex Geometry in Quasi Banach Spacetime. Open Journal of Philosophy, 5, 123.
    https://doi.org/10.4236/ojpp.2015.51014

  139. 139. El Naschie, M.S. (2014) Rindler Space Derivation of Dark Energy. Journal of Modern Physics and Applications, 6, 1-10.

  140. 140. Marek-Crnjac, L. and El Naschie, M.S. (2013) Chaotic Fractal Tiling for the Missing Dark Energy and Veneziano Model. Applied Mathematics, 4, 22.
    https://doi.org/10.4236/am.2013.411A2005

  141. 141. Nottale, L. (1999) The Scale-Relativity Program. Chaos, Solitons & Fractals, 10, 459-468.
    https://doi.org/10.1016/S0960-0779(98)00195-7

  142. 142. El Naschie, M.S. (2013) The Hydrogen Atom Fractal Spectra, the Missing Dark Energy of the Cosmos and Their Hardy Quantum Entanglement. International Journal of Modern Nonlinear Theory and Application, 2, 167.
    https://doi.org/10.4236/ijmnta.2013.23023

  143. 143. El Naschie, M.S. (2005) A New Solution for the Two-Slit Experiment. Chaos, Solitons & Fractals, 25, 935-939.
    https://doi.org/10.1016/j.chaos.2005.02.029

  144. 144. He, J.H. (2007) On the Number of Elementary Particles in a Resolution Dependent Fractal Spacetime. Chaos, Solitons & Fractals, 32, 1645-1648.
    https://doi.org/10.1016/j.chaos.2006.08.015

  145. 145. Gottlieb, I., Agop, M., Ciobanu, G. and Stroe, A. (2006) El Naschie’s ε(∞) Space-Time and New Results in Scale Relativity Theories. Chaos, Solitons & Fractals, 30, 380-398.
    https://doi.org/10.1016/j.chaos.2005.11.018

  146. 146. El Naschie, M.S. (2015) The Cantorian Monadic Plasma behind the Zero Point Vacuum Spacetime Energy. American Journal of Nano Research and Application, 3, 66-70.

  147. 147. Gottlieb, I., Agop, M. and Jarcau, M. (2004) El Naschie’s Cantorian Space-Time and General Relativity by Means of Barbilian’s Group: A Cantorian Fractal Axiomatic Model of Space-Time. Chaos, Solitons & Fractals, 19, 705-730.
    https://doi.org/10.1016/S0960-0779(03)00244-3

  148. 148. El Naschie, M.S. (2009) On Zero-Dimensional Points Curvature in the Dynamics of Cantorian-Fractal Spacetime Setting and High Energy Particle Physics. Chaos, Solitons & Fractals, 41, 2725-2732.
    https://doi.org/10.1016/j.chaos.2008.10.001

  149. 149. El Naschie, M.S. (2008) High Energy Physics and the Standard Model from the Exceptional Lie Groups. Chaos, Solitons & Fractals, 36, 1-17.
    https://doi.org/10.1016/j.chaos.2007.08.058

  150. 150. El Naschie, M.S. (2001) On Twistors in Cantorian E(∞) Space. Chaos, Solitons & Fractals, 12, 741-746.
    https://doi.org/10.1016/S0960-0779(00)00193-4

  151. 151. El Naschie, M.S. (2005) Non-Euclidean Spacetime Structure and the Two-Slit Experiment. Chaos, Solitons & Fractals, 26, 1-6.
    https://doi.org/10.1016/j.chaos.2005.02.031

  152. 152. El Naschie, M.S. and Rossler, O.E. (1994) Quantum Mechanics and Chaotic Fractals. Chaos, Solitons & Fractals, 4, 307-309.
    https://doi.org/10.1016/0960-0779(94)90049-3

  153. 153. Nottale, L. (1995) Scale Relativity: From Quantum Mechanics to Chaotic Dynamics. Chaos, Solitons & Fractals, 6, 399-410.
    https://doi.org/10.1016/0960-0779(95)80047-K

  154. 154. Marek-Crnjac, L. (2009) A Short History of Fractal-Cantorian Space-Time. Chaos, Solitons & Fractals, 41, 2697-2705.
    https://doi.org/10.1016/j.chaos.2008.10.007

  155. 155. Marek-Crnjac, L. (2015) On El Naschie’s Fractal-Cantorian Space-Time and Dark Energy—A Tutorial Review. Natural Science, 7, 581.
    https://doi.org/10.4236/ns.2015.713058

  156. 156. He, J.H. (2014) A Tutorial Review on Fractal Spacetime and Fractional Calculus. International Journal of Theoretical Physics, 53, 3698-3718.
    https://doi.org/10.1007/s10773-014-2123-8

  157. 157. El Naschie, M.S. (2005) Kahler-Like Manifolds, Weyl Spinor Particles and E-Infinity High Energy Physics. Chaos, Solitons & Fractals, 26, 665-670.
    https://doi.org/10.1016/j.chaos.2005.01.018

  158. 158. El Naschie, M.S. (2005) A P-Brane Vindication of the Two Higgs-Doublet Minimally Super-Symmetric Standard Model and Related Issues. Chaos, Solitons & Fractals, 23, 1511-1514.
    https://doi.org/10.1016/j.chaos.2004.08.008

  159. 159. Agop, M., Griga, V., Ciobanu, B., Ciubotariu, C., Buzea, C.G., Stan, C. and Buzea, C. (1998) Gravity and Cantorian Space-Time. Chaos, Solitons & Fractals, 9, 1143-1181.
    https://doi.org/10.1016/S0960-0779(98)80005-2

  160. 160. Giordano, P., Iovane, G. and Laserra, E. (2007) El Naschie ε(∞) Cantorian Structures with Spatial Pseudo-Spherical Symmetry: A Possible Description of the Actual Segregated Universe. Chaos, Solitons & Fractals, 31, 1108-1117.
    https://doi.org/10.1016/j.chaos.2006.03.114

  161. 161. El Naschie, M.S. (2005) The Supersymmetric Components of the Riemann-Einstein Tensor as Nine Dimensional Spheres in Ten Dimensional Space. Chaos, Solitons & Fractals, 24, 29-32.
    https://doi.org/10.1016/j.chaos.2004.09.002

  162. 162. He, J.H. (2007) E-Infinity Theory and the Higgs Field. Chaos, Solitons & Fractals, 31, 782-786.
    https://doi.org/10.1016/j.chaos.2006.04.041

  163. 163. Iovane, G., Giordano, P. and Salerno, S. (2005) Dynamical Systems on El Naschie’s ε(∞) Cantorian Space-Time. Chaos, Solitons & Fractals, 24, 423-441.
    https://doi.org/10.1016/j.chaos.2004.09.068

  164. 164. El Naschie, M.S. (2003) On John Nash’s Crumpled Surface. Chaos, Solitons & Fractals, 18, 635-641.
    https://doi.org/10.1016/S0960-0779(03)00007-9

  165. 165. El Naschie, M.S. (2016) On a Fractal Version of Witten’s M-Theory. International Journal of Astronomy and Astrophysics, 6, 135.
    https://doi.org/10.4236/ijaa.2016.62011

  166. 166. El Naschie, M.S. (2008) The Exceptional Lie Symmetry Groups Hierarchy and the Expected Number of Higgs Bosons. Chaos, Solitons & Fractals, 35, 268-273.
    https://doi.org/10.1016/j.chaos.2007.07.036

  167. 167. El Naschie, M.S. (2015) The Casimir Topological Effect and a Proposal for a Casimir-Dark Energy Nano Reactor. World Journal of Nano Science and Engineering, 5, 26.
    https://doi.org/10.4236/wjnse.2015.51004

  168. 168. El Naschie, M.S. (2008) Exact Non-Perturbative Derivation of Gravity’s Fine Structure Constant, the Mass of the Higgs and Elementary Black Holes. Chaos, Solitons & Fractals, 37, 346-359.
    https://doi.org/10.1016/j.chaos.2007.10.021

  169. 169. El Naschie, M.S. (2015) From Fusion Algebra to Cold Fusion or from Pure Reason to Pragmatism. Open Journal of Philosophy, 5, 319.
    https://doi.org/10.4236/ojpp.2015.56040

  170. 170. El Naschie, M.S. (2015) If Quantum “Wave” of the Universe Then Quantum “Particle” of the Universe: A Resolution of the Dark Energy Question and the Black Hole Information Paradox. International Journal of Astronomy and Astrophysics, 5, 243.
    https://doi.org/10.4236/ijaa.2015.54027

  171. 171. Rossler, O.E. (1996) Relative-State Theory: Four New Aspects. Chaos, Solitons & Fractals, 7, 845-852.
    https://doi.org/10.1016/0960-0779(95)00117-4

  172. 172. Nottale, L. (1998) Scale Relativity and Schrodinger’s Equation. Chaos, Solitons & Fractals, 9, 1051-1061.
    https://doi.org/10.1016/S0960-0779(97)00190-2

  173. 173. El Naschie, M.S. (2005) On Penrose View of Transfinite Sets and Computability and the Fractal Character of E-Infinity Spacetime. Chaos, Solitons & Fractals, 25, 531-533.
    https://doi.org/10.1016/j.chaos.2005.01.001

  174. 174. Iovane, G. (2006) Cantorian Space-Time and Hilbert Space: Part II—Relevant Consequences. Chaos, Solitons & Fractals, 29, 1-22.
    https://doi.org/10.1016/j.chaos.2005.10.045

  175. 175. Czajko, J. (2000) On Conjugate Complex Time—I: Complex Time Implies Existence of Tangential Potential That Can Cause Some Equipotential Effects of Gravity. Chaos, Solitons & Fractals, 11, 1983-1992.
    https://doi.org/10.1016/S0960-0779(99)00091-0

  176. 176. El Naschie, M.S. (2005) Dead or Alive: Desperately Seeking Schrodinger’s Cat. Chaos, Solitons & Fractals, 26, 673-676.
    https://doi.org/10.1016/j.chaos.2005.02.030

  177. 177. Nottale, L. (1994) Scale Relativity, Fractal Space-Time and Quantum Mechanics. Chaos, Solitons & Fractals, 4, 361-388.
    https://doi.org/10.1016/0960-0779(94)90051-5

  178. 178. El Naschie, M.S. (2015) Application of Dvoretzky’s Theorem of Measure Concentration in Physics and Cosmology. Open Journal of Microphysics, 5, 11.
    https://doi.org/10.4236/ojm.2015.52002

  179. 179. El Naschie, M.S. (2004) Quantum Collapse of Wave Interference Pattern in the Two-Slit Experiment: A Set Theoretical Resolution. Nonlinear Science Letter A, 2, 1-9.

  180. 180. Iovane, G. (2006) Cantorian Spacetime and Hilbert Space: Part I—Foundations. Chaos, Solitons & Fractals, 28, 857-878.
    https://doi.org/10.1016/j.chaos.2005.08.074

  181. 181. El Naschie, M.S. (1992) On the Uncertainty of Information in Quantum Space-Time. Chaos, Solitons & Fractals, 2, 91-94.
    https://doi.org/10.1016/0960-0779(92)90050-W

  182. 182. Iovane, G., Gargiulo, G. and Zappale, E. (2006) A Cantorian Potential Theory for Describing Dynamical Systems on El Naschie’s Space-Time. Chaos, Solitons & Fractals, 27, 588-598.
    https://doi.org/10.1016/j.chaos.2005.05.015

  183. 183. El Naschie, M.S. (1998) COBE Satellite Measurement, Hyperspheres, Superstrings and the Dimension of Spacetime. Chaos, Solitons & Fractals, 9, 1445-1471.
    https://doi.org/10.1016/S0960-0779(98)00120-9

  184. 184. El Naschie, M.S. (2006) On the Vital Role Played by the Electron-Volt Units System in High Energy Physics and Mach’s Principle of “Denkokonomie”. Chaos, Solitons & Fractals, 28, 1366-1371.
    https://doi.org/10.1016/j.chaos.2005.11.001

  185. 185. El Naschie, M.S. (2015) Computing Dark Energy and Ordinary Energy of the Cosmos as a Double Eigenvalue Problem. Journal of Modern Physics, 6, 384.
    https://doi.org/10.4236/jmp.2015.64042

  186. 186. Elnaschie, M.S. (2005) The Feynman Path Integral and Ε-Infinity from the Two-Slit Gedanken Experiment. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 335-342.
    https://doi.org/10.1515/IJNSNS.2005.6.4.335

  187. 187. Iovane, G., Chinnici, M. and Tortoriello, F.S. (2008) Multifractals and El Naschie E-Infinity Cantorian Space-Time. Chaos, Solitons & Fractals, 35, 645-658.
    https://doi.org/10.1016/j.chaos.2007.07.051

  188. 188. El Naschie, M.S. (2015) A Cold Fusion-Casimir Energy Nano Reactor Proposal. World Journal of Nano Science and Engineering, 5, 49.
    https://doi.org/10.4236/wjnse.2015.52007

  189. 189. El Naschie, M.S. (2014) From Highly Structured E-Infinity Rings and Transfinite Maximally Symmetric Manifolds to the Dark Energy Density of the Cosmos. Advances in Pure Mathematics, 4, 641.
    https://doi.org/10.4236/apm.2014.412073

  190. 190. Selvam, A.M. and Fadnavis, S. (1999) Superstrings, Cantorian-Fractal Spacetime and Quantum-Like Chaos in Atmospheric Flows. Chaos, Solitons & Fractals, 10, 1321-1334.
    https://doi.org/10.1016/S0960-0779(98)00150-7

  191. 191. El Naschie, M.S. (2006) Advanced Prerequisite for E-Infinity Theory. Chaos, Solitons & Fractals, 30, 636-641.
    https://doi.org/10.1016/j.chaos.2006.04.044

  192. 192. He, J.H. (2006) Application of E-Infinity Theory to Turbulence. Chaos, Solitons & Fractals, 30, 506-511.
    https://doi.org/10.1016/j.chaos.2005.11.033

  193. 193. Marek-Crnjac, L. (2013) Modification of Einstein’s E = mc2 to E = (1/22)mc2. American Journal of Modern Physics, 2, 255-263.
    https://doi.org/10.11648/j.ajmp.20130205.14

  194. 194. El-Ahmady, A.E. and Rafat, H. (2006) A Calculation of Geodesics in Chaotic Flat Space and Its Folding. Chaos, Solitons & Fractals, 30, 836-844.
    https://doi.org/10.1016/j.chaos.2005.05.033

  195. 195. El Naschie, M.S. (2016) Quantum Dark Energy from the Hyperbolic Transfinite Cantorian Geometry of the Cosmos. Natural Science, 8, 152.
    https://doi.org/10.4236/ns.2016.83018

  196. 196. Selvam, A.M. and Fadnavis, S. (1999) Cantorian Fractal Spacetime, Quantum-Like Chaos and Scale Relativity in Atmospheric Flows. Chaos, Solitons & Fractals, 10, 1577-1582.
    https://doi.org/10.1016/S0960-0779(98)00209-4

  197. 197. He, J.H. and Marek-Crnjac, L. (2013) The Quintessence of El Naschie’s Theory of Fractal Relativity and Dark Energy. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 130-137.

  198. 198. El Naschie, M.S. (2008) Noether’s Theorem, Exceptional Lie Groups Hierarchy and Determining 1/α 137 of Electromagnetism. Chaos, Solitons & Fractals, 35, 99-103.
    https://doi.org/10.1016/j.chaos.2007.05.005

  199. 199. El Naschie, M.S. (2007) Quantum Probability without a Phase and a Topological Resolution of the Two-Slit Experiment. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 195-198.
    https://doi.org/10.1515/IJNSNS.2007.8.2.195

  200. 200. El Naschie, M.S. (2009) Higgs Mechanism, Quarks Confinement and Black Holes as a Cantorian Spacetime Phase Transition Scenario. Chaos, Solitons & Fractals, 41, 869-874.
    https://doi.org/10.1016/j.chaos.2008.04.013

  201. 201. El Naschie, M.S. (1994) Quantum Measurement, Diffusion and Cantorian Geodesics. Chaos, Solitons & Fractals, 4, 1235-1247.
    https://doi.org/10.1016/0960-0779(94)90034-5

  202. 202. Ozgür, C. (2008) N (k)-Quasi Einstein Manifolds Satisfying Certain Conditions. Chaos, Solitons & Fractals, 38, 1373-1377.
    https://doi.org/10.1016/j.chaos.2008.03.016

  203. 203. He, J.H. (2007) Shrinkage of Body Size of Small Insects: A Possible Link to Global Warming? Chaos, Solitons & Fractals, 34, 727-729.
    https://doi.org/10.1016/j.chaos.2006.04.052

  204. 204. Castro, C. (2001) Noncommutative Geometry, Negative Probabilities and Cantorian-Fractal Spacetime. Chaos, Solitons & Fractals, 12, 101-104.
    https://doi.org/10.1016/S0960-0779(00)00196-X

  205. 205. Rami, E.N.A. (2009) On the Fractional Minimal Length Heisenberg-Weyl Uncertainty Relation from Fractional Riccati Generalized Momentum Operator. Chaos, Solitons & Fractals, 42, 84-88.
    https://doi.org/10.1016/j.chaos.2008.10.031

  206. 206. Babchin, A.J. and El Naschie, M.S. (2015) On the Real Einstein Beauty E = Kmc2. World Journal of Condensed Matter Physics, 6, 1-6.
    https://doi.org/10.4236/wjcmp.2016.61001

  207. 207. He, J.H. (2008) String Theory in a Scale Dependent Discontinuous Space-Time. Chaos, Solitons & Fractals, 36, 542-545.
    https://doi.org/10.1016/j.chaos.2007.07.093

  208. 208. Nagasawa, M. (1996) Quantum Theory, Theory of Brownian Motions, and Relativity Theory. Chaos, Solitons & Fractals, 7, 631-643.
    https://doi.org/10.1016/0960-0779(95)00115-8

  209. 209. Iovane, G., Giordano, P. and Laserra, E. (2004) Fantappiè’s Group as an Extension of Special Relativity on ε(∞) Cantorian Space-Time. Chaos, Solitons & Fractals, 22, 975-983.
    https://doi.org/10.1016/j.chaos.2004.04.019

  210. 210. El Naschie, M.S. (2015) A Casimir-Dark Energy Nano Reactor Design—Phase One. Natural Science, 7, 287-298.
    https://doi.org/10.4236/ns.2015.76032

  211. 211. Ord, G.N. (1997) Classical Particles and the Dirac Equation with an Electromagnetic Field. Chaos, Solitons & Fractals, 8, 727-741.
    https://doi.org/10.1016/S0960-0779(96)00059-8

  212. 212. Agop, M., Paun, V. and Harabagiu, A. (2008) El Naschie’s ε(∞) Theory and Effects of Nanoparticle Clustering on the Heat Transport in Nanofluids. Chaos, Solitons & Fractals, 37, 1269-1278.
    https://doi.org/10.1016/j.chaos.2008.01.006

  213. 213. El Naschie, M.S., Marek-Crnjac, L., He, J.H. and Helal, M.A. (2013) Computing the Missing Dark Energy of a Clopen Universe Which Is Its Own Multiverse in Addition to Being both Flat and Curved. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 3-10.

  214. 214. El Naschie, M.S. (2005) A Tale of Two Kleins Unified in Strings and E-Infinity Theory. Chaos, Solitons & Fractals, 26, 247-254.
    https://doi.org/10.1016/j.chaos.2005.01.016

  215. 215. Nottale, L. (2005) On the Transition from the Classical to the Quantum Regime in Fractal Space-Time Theory. Chaos, Solitons & Fractals, 25, 797-803.
    https://doi.org/10.1016/j.chaos.2004.11.071

  216. 216. El Naschie, M.S. (2007) Rigorous Derivation of the Inverse Electromagnetic Fine Structure Constant Using Super String Theory and the Holographic Boundary of E-Infinity. Chaos, Solitons & Fractals, 32, 893-895.
    https://doi.org/10.1016/j.chaos.2006.09.055

  217. 217. Saniga, M. (2001) Cremona Transformations and the Conundrum of Dimensionality and Signature of Macro-Spacetime. Chaos, Solitons & Fractals, 12, 2127-2142.
    https://doi.org/10.1016/S0960-0779(00)00183-1

  218. 218. El Naschie, M.S. (1995) Quantum Measurement, Information, Diffusion and Cantorian Geodesies. In: El Naschie, M.S., Rossler, O.E. and Prigogine, I., Eds., Quantum Mechanics, Diffusion and Chaotic Fractals, Pergamon Press, Oxford, 191-205.

  219. 219. Mejias, A., Sigalotti, L.D.G., Sira, E. and De Felice, F. (2004) On El Naschie’s Complex Time, Hawking’s Imaginary Time and Special Relativity. Chaos, Solitons & Fractals, 19, 773-777.
    https://doi.org/10.1016/S0960-0779(03)00273-X

  220. 220. Munceleanu, G.V., Paun, V.P., Casian-Botez, I. and Agop, M. (2011) The Microscopic-Macroscopic Scale Transformation through a Chaos Scenario in the Fractal Space-Time Theory. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 21, 603.
    https://doi.org/10.1142/S021812741102888X

  221. 221. Ho, M.E.N. and Giuseppe Vitiello, M.W. (2015) Is Spacetime Fractal and Quantum Coherent in the Golden Mean? Global Journal of Science Frontier Research, 15, 61-80.

  222. 222. El Naschie, M.S. (2003) The Cantorian Interpretation of High Energy Physics and the Mass Spectrum of Elementary Particles. Chaos, Solitons & Fractals, 17, 989-1001.
    https://doi.org/10.1016/S0960-0779(03)00006-7

  223. 223. El Naschie, M.S. (2006) Thomas Mann and Heinrich Mann, Dual Brothers and Complimentary Genius Embraced by Complex Reality. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 1-6.
    https://doi.org/10.1515/IJNSNS.2006.7.1.1

  224. 224. Castro, C., Granik, A. and El Naschie, M.S. (2000) Why We Live in 3 Dimensions. arXiv Preprint hep-th/0004152.

  225. 225. Selvam, A.M. (2005) A General Systems Theory for Chaos, Quantum Mechanics and Gravity for Dynamical Systems of All Space-Time Scales. arXiv Preprint Physics/0503028.

  226. 226. Iovane, G. and Benedetto, E. (2006) A Projective Approach to Dynamical Systems, Applications in Cosmology and Connections with El Naschie ε(∞) Cantorian Space-Time. Chaos, Solitons & Fractals, 30, 269-277.
    https://doi.org/10.1016/j.chaos.2005.11.005

  227. 227. Goldfain, E. (2005) Local Scale Invariance, Cantorian Space-Time and Unified Field Theory. Chaos, Solitons & Fractals, 23, 701-710.
    https://doi.org/10.1016/j.chaos.2004.05.020

  228. 228. El Naschie, M.S. (2016) On a Quantum Gravity Fractal Spacetime Equation: QRG HD + FG and Its Application to Dark Energy—Accelerated Cosmic Expansion. Journal of Modern Physics, 7, 729-736.
    https://doi.org/10.4236/jmp.2016.78069

  229. 229. El Naschie, Μ.S. (2007) Deterministic Quantum Mechanics versus Classical Mechanical Indeterminism. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 5-10.
    https://doi.org/10.1515/IJNSNS.2007.8.1.5

  230. 230. El Naschie, M.S. (2009) Arguments for the Compactness and Multiple Connectivity of Our Cosmic Spacetime. Chaos, Solitons & Fractals, 41, 2787-2789.
    https://doi.org/10.1016/j.chaos.2008.10.011

  231. 231. El Naschie, M.S. (2016) Negative Norms in Quantized Strings as Dark Energy Density of the Cosmos. World Journal of Condensed Matter Physics, 6, 63-67.
    https://doi.org/10.4236/wjcmp.2016.62009

  232. 232. El Naschie, M.S. (2015) The Casimir Effect as a Pure Topological Phenomenon and the Possibility of a Casimir Nano Reactor—A Preliminary Conceptual Design. American Journal of Nano Research and Applications, 3, 33-40.

  233. 233. El Naschie, M.S. (2000) Scale Relativity in Cantorian ε(∞) Space-Time. Chaos, Solitons & Fractals, 11, 2391-2395.
    https://doi.org/10.1016/S0960-0779(99)00209-X

  234. 234. Stakhov, A. and Rozin, B. (2005) The Golden Shofar. Chaos, Solitons & Fractals, 26, 677-684.
    https://doi.org/10.1016/j.chaos.2005.01.057

  235. 235. He, J.H. (2009) Hilbert Cube Model for Fractal Spacetime. Chaos, Solitons & Fractals, 42, 2754-2759.
    https://doi.org/10.1016/j.chaos.2009.03.182

  236. 236. El Naschie, M.S. (2016) Einstein’s Dark Energy via Similarity Equivalence, ‘t Hooft Dimensional Regularization and Lie Symmetry Groups. International Journal of Astronomy and Astrophysics, 6, 56-81.
    https://doi.org/10.4236/ijaa.2016.61005

  237. 237. El Naschie, M.S. (2005) A Few Hints and Some Theorems about Witten’s M Theory and T-Duality. Chaos, Solitons & Fractals, 25, 545-548.
    https://doi.org/10.1016/j.chaos.2005.01.009

  238. 238. Sidharth, B.G. (2003) The New Cosmos. Chaos, Solitons & Fractals, 18, 197-201.
    https://doi.org/10.1016/S0960-0779(02)00632-X

  239. 239. El Naschie, M.S. (2004) The Higgs—Physical and Number Theoretical Arguments for the Necessity of a Triple Elementary Particle in Super Symmetric Spacetime. Chaos, Solitons & Fractals, 22, 1199-1209.
    https://doi.org/10.1016/j.chaos.2004.04.026

  240. 240. El Naschie, M.S. (1999) From Implosion to Fractal Spheres: A Brief Account of the Historical Development of Scientific Ideas Leading to the Trinity Test and beyond. Chaos, Solitons & Fractals, 10, 1955-1965.
    https://doi.org/10.1016/S0960-0779(99)00030-2

  241. 241. Dariescu, M.A., Dariescu, C. and Pirghie, A.C. (2009) Mass Spectrum in 5D Warped Einstein Universe and El Naschie’s Quantum Golden Field Theory. Chaos, Solitons & Fractals, 42, 247-252.
    https://doi.org/10.1016/j.chaos.2008.11.021

  242. 242. Maker, D. (1999) Quantum Physics and Fractal Space Time. Chaos, Solitons & Fractals, 10, 31-42.
    https://doi.org/10.1016/S0960-0779(98)00108-8

  243. 243. El Naschie, M.S. (2008) Using Witten’s Five Brane Theory and the Holographic Principle to Derive the Value of the Electromagnetic Fine Structure Constant. Chaos, Solitons & Fractals, 38, 1051-1053.
    https://doi.org/10.1016/j.chaos.2008.06.001

  244. 244. Iovane, G., Laserra, E. and Giordano, P. (2004) Fractal Cantorian Structures with Spatial Pseudo-Spherical Symmetry for a Possible Description of the Actual Segregated Universe as a Consequence of Its Primordial Fluctuations. Chaos, Solitons & Fractals, 22, 521-528.
    https://doi.org/10.1016/j.chaos.2004.02.026

  245. 245. He, J.H. and Xu, L. (2009) Number of Elementary Particles Using Exceptional Lie Symmetry Groups Hierarchy. Chaos, Solitons & Fractals, 39, 2119-2124.
    https://doi.org/10.1016/j.chaos.2007.06.088

  246. 246. Naschie, M.E. (2006) The “Discreet” Charm of Certain Eleven Dimensional Spacetime Theories. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 477-482.
    https://doi.org/10.1515/IJNSNS.2006.7.4.477

  247. 247. Auffray, J.P. (2014) E-Infinity Dualities, Discontinuous Spacetimes, Xonic Quantum Physics and the Decisive Experiment. Journal of Modern Physics, 5, 1427-1436.
    https://doi.org/10.4236/jmp.2014.515144

  248. 248. El Naschie, M.S. (2015) A Fractal Rindler-Regge Triangulation in the Hyperbolic Plane and Cosmic de Sitter Accelerated Expansion. Journal of Quantum Information Science, 5, 24-31.
    https://doi.org/10.4236/jqis.2015.51004

  249. 249. El Naschie, M.S. (2006) Holographic Correspondence and Quantum Gravity in E-Infinity Spacetime. Chaos, Solitons & Fractals, 29, 871-875.
    https://doi.org/10.1016/j.chaos.2006.01.005

  250. 250. Greene, B. (2004) The Fabric of the Cosmos. Penguin Books, London.

  251. 251. El Naschie, M.S. (2016) From Witten’s 462 Supercharges of 5-D Branes in Eleven Dimensions to the 95.5 Percent Cosmic Dark Energy Density behind the Accelerated Expansion of the Universe. Journal of Quantum Information Science, 6, 57-61.
    https://doi.org/10.4236/jqis.2016.62007

  252. 252. El-Ahmady, A.E. and Al-Hesiny, E. (2011) The Topological Folding of the Hyperbola in Minkowski 3-Space. The International Journal of Nonlinear Science, 11, 451-458.

  253. 253. Iovane, G. (2004) Varying G, Accelerating Universe, and Other Relevant Consequences of a Stochastic Self-Similar and Fractal Universe. Chaos, Solitons & Fractals, 20, 657-667.
    https://doi.org/10.1016/j.chaos.2003.09.036

  254. 254. El Naschie, M.S. (2005) Spinorial Content of the Standard Model, a Different Look at Super-Symmetry and Fuzzy E-Infinity Hyper Kahler. Chaos, Solitons & Fractals, 26, 303-311.
    https://doi.org/10.1016/j.chaos.2005.03.004

  255. 255. El Naschie, M.S. (2015) The Counterintuitive Increase of Information Due to Extra Spacetime Dimensions of a Black Hole and Dvoretzky’s Theorem. Natural Science, 7, 483-487.
    https://doi.org/10.4236/ns.2015.710049

  256. 256. Marek-Crnjac, L. (2003) The Mass Spectrum of High Energy Elementary Particles via El Naschie’s ε(∞) Golden Mean Nested Oscillators, the Dunkerly-Southwell Eigenvalue Theorems and KAM. Chaos, Solitons & Fractals, 18, 125-133.
    https://doi.org/10.1016/S0960-0779(02)00587-8

  257. 257. Marek-Crnjac, L. (2009) Partially Ordered Sets, Transfinite Topology and the Dimension of Cantorian-Fractal Spacetime. Chaos, Solitons & Fractals, 42, 1796-1799.
    https://doi.org/10.1016/j.chaos.2009.03.094

  258. 258. Ozgür, C. (2009) On Some Classes of Super Quasi-Einstein Manifolds. Chaos, Solitons & Fractals, 40, 1156-1161.
    https://doi.org/10.1016/j.chaos.2007.08.070

  259. 259. Sidharth, B.G. (2002) Quantum Superstrings and Quantized Fractal Space-Time. Chaos, Solitons & Fractals, 13, 189-193.
    https://doi.org/10.1016/S0960-0779(00)00269-1

  260. 260. Iovane, G. (2006) Cantorian Space-Time, Fantappie’s Final Group, Accelerated Universe and Other Consequences. Chaos, Solitons & Fractals, 27, 618-629.
    https://doi.org/10.1016/j.chaos.2005.04.093

  261. 261. El Naschie, M.S. (2008) The Exceptional Eightfold Way to a Possible Higgs Field. Chaos, Solitons & Fractals, 35, 664-667.
    https://doi.org/10.1016/j.chaos.2007.07.082

  262. 262. Tanaka, Y., Mizuno, Y. and Kado, T. (2005) Chaotic Dynamics in the Friedmann Equation. Chaos, Solitons & Fractals, 24, 407-422.
    https://doi.org/10.1016/j.chaos.2004.09.034

  263. 263. Auffray, J.P. (2015) E Infinity, the Zero Set, Absolute Space and the Photon Spin. Journal of Modern Physics, 6, 536-545.
    https://doi.org/10.4236/jmp.2015.65058

  264. 264. Martienssen, W. (2005) Mohamed El Naschie and the Geometrical Interpretation of Quantum Physics. Chaos, Solitons & Fractals, 25, 805-806.
    https://doi.org/10.1016/j.chaos.2005.02.001

  265. 265. Agop, M. and Vasilica, M. (2006) El Naschie’s Supergravity by Means of the Gravitational Instantons Synchronization. Chaos, Solitons & Fractals, 30, 318-323.
    https://doi.org/10.1016/j.chaos.2006.01.105

  266. 266. Chen, Q. and Shi, Z. (2008) Biorthogonal Multiple Vector-Valued Multivariate Wavelet Packets Associated with a Dilation Matrix. Chaos, Solitons & Fractals, 35, 323-332.
    https://doi.org/10.1016/j.chaos.2007.06.065

  267. 267. Qiu, H. and Su, W. (2007) 3-Adic Cantor Function on Local Fields and Its p-Adic Derivative. Chaos, Solitons & Fractals, 33, 1625-1634.
    https://doi.org/10.1016/j.chaos.2006.03.024

  268. 268. Nottale, L. (2001) Relativitéd’ échelle structure de la théorie. Revue de Synthèse, 122, 11-25.
    https://doi.org/10.1007/BF02990499

  269. 269. El Naschie, M.S. (2003) Complex Vacuum Fluctuation as a Chaotic “Limit” Set of Any Kleinian Group Transformation and the Mass Spectrum of High Energy Particle Physics via Spontaneous Self-Organization. Chaos, Solitons & Fractals, 17, 631-638.
    https://doi.org/10.1016/S0960-0779(02)00630-6

  270. 270. Vrobel, S. (2011) Why a Watched Kettle Never Boils.

  271. 271. Gottlieb, I., Ciobanu, G. and Buzea, C.G. (2003) El Naschie’s Cantorian Space Time, Toda Lattices and Cooper-Agop Pairs. Chaos, Solitons & Fractals, 17, 789-796.
    https://doi.org/10.1016/S0960-0779(02)00484-8

  272. 272. He, J.H. (2009) Nonlinear Science as a Fluctuating Research Frontier. Chaos, Solitons & Fractals, 41, 2533-2537.
    https://doi.org/10.1016/j.chaos.2008.09.027

  273. 273. Argyris, J., Ciubotariu, C.I. and Weingaertner, W.E. (2000) Fractal Space Signatures in Quantum Physics and Cosmology—I. Space, Time, Matter, Fields and Gravitation. Chaos, Solitons & Fractals, 11, 1671-1719.
    https://doi.org/10.1016/S0960-0779(99)00065-X

  274. 274. El Naschie, M.S. (2007) From Pointillism to E-Infinity Electromagnetism. Chaos, Solitons & Fractals, 34, 1377-1381.
    https://doi.org/10.1016/j.chaos.2007.02.016

  275. 275. Agop, M. and Craciun, P. (2006) El Naschie’s Cantorian Gravity and Einstein’s Quantum Gravity. Chaos, Solitons & Fractals, 30, 30-40.
    https://doi.org/10.1016/j.chaos.2006.01.006

  276. 276. Agop, M., Ioannou, P.D. and Buzea, C.G. (2002) Cantorian ε(∞) Space-Time, Gravitation and Superconductivity. Chaos, Solitons & Fractals, 13, 1137-1165.
    https://doi.org/10.1016/S0960-0779(01)00123-0

  277. 277. Sidharth, B.G. (2001) A Reconciliation of Electromagnetism and Gravitation. arXiv Preprint Physics/0110040.

  278. 278. El-Nabulsi, A.R. (2009) Fractional Nottale’s Scale Relativity and Emergence of Complexified Gravity. Chaos, Solitons & Fractals, 42, 2924-2933.
    https://doi.org/10.1016/j.chaos.2009.04.004

  279. 279. Weiss, H. and Weiss, V. (2003) The Golden Mean as Clock Cycle of Brain Waves. Chaos, Solitons & Fractals, 18, 643-652.
    https://doi.org/10.1016/S0960-0779(03)00026-2

  280. 280. Wu, G.C. and He, J.H. (2009) On the Menger-Urysohn Theory of Cantorian Manifolds and Transfinite Dimensions in Physics. Chaos, Solitons & Fractals, 42, 781-783.
    https://doi.org/10.1016/j.chaos.2009.02.007

  281. 281. Czajko, J. (2004) On Cantorian Spacetime over Number Systems with Division by Zero. Chaos, Solitons & Fractals, 21, 261-271.
    https://doi.org/10.1016/j.chaos.2003.12.046

  282. 282. Sidharth, B.G. (2002) Consequences of a Quantized Space-Time Model. Chaos, Solitons & Fractals, 13, 617-620.
    https://doi.org/10.1016/S0960-0779(01)00017-0

  283. 283. De, A., De, U.C. and Gazi, A.K. (2011) On a Class of N(κ)-Quasi Einstein Manifolds. Communications of the Korean Mathematical Society, 26, 623-634.
    https://doi.org/10.4134/CKMS.2011.26.4.623

  284. 284. El Naschie, M.S. (2008) Asymptotic Freedom and Unification in a Golden Quantum Field Theory. Chaos, Solitons & Fractals, 36, 521-525.
    https://doi.org/10.1016/j.chaos.2007.09.004

  285. 285. Sidharth, B.G. (2000) Quantized Space-Time and Time’s Arrow. Chaos, Solitons & Fractals, 11, 1045-1046.
    https://doi.org/10.1016/S0960-0779(98)00331-2

  286. 286. El Naschie, M.S. (2001) The Exact Value of the Smallest Quantum Gravity Coupling Constant Is 1/αg = 42.36067977. Chaos, Solitons & Fractals, 12, 1361-1368.
    https://doi.org/10.1016/S0960-0779(01)00008-X

  287. 287. Iovane, G., Laserra, E. and Tortoriello, F.S. (2004) Stochastic Self-Similar and Fractal Universe. Chaos, Solitons & Fractals, 20, 415-426.
    https://doi.org/10.1016/j.chaos.2003.08.004

  288. 288. Saniga, M. (2002) Onspatially Anisotropic’ Pencil-Space-Times Associated with a Quadro-Cubic Cremona Transformation. Chaos, Solitons & Fractals, 13, 807-814.
    https://doi.org/10.1016/S0960-0779(01)00056-X

  289. 289. Nottale, L. (2001) Scale Relativity and Gauge Invariance. Chaos, Solitons & Fractals, 12, 1577-1583.
    https://doi.org/10.1016/S0960-0779(01)00015-7

  290. 290. El Naschie, M.S. (2008) Quarks Confinement. Chaos, Solitons & Fractals, 37, 6-8.
    https://doi.org/10.1016/j.chaos.2007.09.057

  291. 291. El Naschie, M.S., Olsen, S. and He, J.H. (2013) Dark Energy of the Quantum Hawking-Hartle Wave of the Cosmos from the Holographic Boundary and Lie Symmetry Groups-Exact Computation and Physical Interpretation. Fractal Spacetime and Noncommutative Geometry, 3, 11-20.

  292. 292. El Naschie, M.S. (1997) Introduction to Nonlinear Dynamics, General Relativity and the Quantum: The Uneven Flow of Fractal Time. Chaos, Solitons & Fractals, 8, vii-x.
    https://doi.org/10.1016/S0960-0779(97)83767-8

  293. 293. El Naschie, M.S. (2004) On the Possibility of Two New “Elementary” Particles with Mass Equal to m(k) = 1.80339 MeV and m(αgs) = 26.180339 MeV. Chaos, Solitons & Fractals, 20, 649-654.
    https://doi.org/10.1016/j.chaos.2003.10.010

  294. 294. Xu, L. and Zhong, T. (2011) Golden Ratio in Quantum Mechanics. Nonlinear Science Letters B, 1, 10-11.

  295. 295. Giordano, P. (2006) Numerical Analysis of Hypersingular Integral Equations in the Ε-Infinite Cantorian Spacetime. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 451-460.
    https://doi.org/10.1515/IJNSNS.2006.7.4.451

  296. 296. Nozari, K. and Mehdipour, S.H. (2009) Failure of Standard Thermodynamics in Planck Scale Black Hole System. Chaos, Solitons & Fractals, 39, 956-970.
    https://doi.org/10.1016/j.chaos.2007.02.018

  297. 297. Benedetto, E. (2009) Fantappié-Arcidiacono Spacetime and Its Consequences in Quantum Cosmology. International Journal of Theoretical Physics, 48, 1603-1621.
    https://doi.org/10.1007/s10773-009-9933-0

  298. 298. El Naschie, M.S. (2007) A Derivation of the Electromagnetic Coupling α0 ~= 137.036. Chaos, Solitons & Fractals, 31, 521-526.
    https://doi.org/10.1016/j.chaos.2006.06.028

  299. 299. Zmeskal, O., Nezadal, M. and Buchnicek, M. (2003) Fractal-Cantorian Geometry, Hausdorff Dimension and the Fundamental Laws of Physics. Chaos, Solitons & Fractals, 17, 113-119.
    https://doi.org/10.1016/S0960-0779(02)00412-5

  300. 300. Castro, C. (2000) On the Four Dimensional Conformal Anomaly, Fractal Spacetime and the Fine Structure Constant. arXiv Preprint Physics/0010072.

  301. 301. Marek-Crnjac, L. (2008) From Arthur Cayley via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and Superstrings to Cantorian Space-Time. Chaos, Solitons & Fractals, 37, 1279-1288.
    https://doi.org/10.1016/j.chaos.2008.01.021

  302. 302. Ozgür, C. (2009) Hypersurfaces Satisfying Some Curvature Conditions in the Semi-Euclidean Space. Chaos, Solitons & Fractals, 39, 2457-2464.
    https://doi.org/10.1016/j.chaos.2007.07.018

  303. 303. Sidharth, B.G. (2001) The Unification of Electromagnetism and Gravitation in the Context of Quantized Fractal Space-Time. Chaos, Solitons & Fractals, 12, 2143-2147.
    https://doi.org/10.1016/S0960-0779(00)00181-8

  304. 304. Fred, Y.Y. (2009) From Chaos to Unification: U Theory vs. M Theory. Chaos, Solitons & Fractals, 42, 89-93.
    https://doi.org/10.1016/j.chaos.2008.10.030

  305. 305. Colotin, M., Pompilian, G.O., Nica, P., Gurlui, S., Paun, V. and Agop, M. (2009) Fractal Transport Phenomena through the Scale Relativity Model. Acta Physica Polonica A, 116, 157-164.
    https://doi.org/10.12693/APhysPolA.116.157

  306. 306. Rossler, O.E., Frohlich, D., Movassagh, R. and Moore, A. (2007) Hubble Expansion in Static Spacetime. Chaos, Solitons & Fractals, 33, 770-775.
    https://doi.org/10.1016/j.chaos.2006.06.046

  307. 307. El Naschie, M.S. (2004) Anomalous Positron Peaks and Experimental Verification of ε(∞) Super Symmetric Grand Unification. Chaos, Solitons & Fractals, 20, 455-458.
    https://doi.org/10.1016/j.chaos.2003.10.008

  308. 308. Agop, M., Ioannou, P.D., Nica, P., Buzea, C.G. and Jarcau, M. (2003) ε(∞) Cantorian Space-Time, Polarization Gravitational Field and van der Waals-Type Forces. Chaos, Solitons & Fractals, 18, 1-16.
    https://doi.org/10.1016/s0960-0779(02)00633-1

  309. 309. Agop, M., Ciobanu, G. and Zaharia, L. (2003) Cantorian ε(∞) Space-Time, Frames and Unitary Theories. Chaos, Solitons & Fractals, 15, 445-453.
    https://doi.org/10.1016/S0960-0779(02)00139-X

  310. 310. Rami, E.N.A. (2009) Fractional Dynamics, Fractional Weak Bosons Masses and Physics beyond the Standard Model. Chaos, Solitons & Fractals, 41, 2262-2270.
    https://doi.org/10.1016/j.chaos.2008.08.033

  311. 311. Zmeskal, O., Vala, M., Weiter, M. and Stefkova, P. (2009) Fractal-Cantorian Geometry of Space-Time. Chaos, Solitons & Fractals, 42, 1878-1892.
    https://doi.org/10.1016/j.chaos.2009.03.106

  312. 312. Iovane, G., Bellucci, S. and Benedetto, E. (2008) Projected Space-Time and Varying Speed of Light. Chaos, Solitons & Fractals, 37, 49-59.
    https://doi.org/10.1016/j.chaos.2007.09.022

  313. 313. Goldfain, E. (2005) Higgs-Free Derivation of Gauge Boson Masses Using Complex Dynamics of Levy Flows. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 351-356.
    https://doi.org/10.1515/ijnsns.2005.6.4.351

  314. 314. deFelice, F., Sigalotti, L.D.G. and Mejias, A. (2004) Lorentz Transformations and Complex Space-Time Functions. Chaos, Solitons & Fractals, 21, 573-578.
    https://doi.org/10.1016/j.chaos.2003.12.091

  315. 315. El Naschie, M.S. (2005) Supergravity and the Number of Fundamental Particles in the Standard Model. Chaos, Solitons & Fractals, 23, 1941-1943.
    https://doi.org/10.1016/j.chaos.2004.08.005

  316. 316. Elokaby, A. (2009) Knot Wormholes and the Dimensional Invariant of Exceptional Lie Groups and Stein Space Hierarchies. Chaos, Solitons & Fractals, 41, 1616-1618.
    https://doi.org/10.1016/j.chaos.2008.07.003

  317. 317. Nottale, L. (2000) Scale Relativity, Fractal Space-Time and Morphogenesis of Structures. In: Diebner, H., Druckrey, T. and Weibel, P., Eds., Sciences of the Interface, ZKM Karlruhe, Tübingen, 38.

  318. 318. Agop, M., Ioannou, P.D., Buzea, C. and Nica, P. (2003) Cantorian ε(∞) Space-Time, a Hydrodynamical Model and Unified Superconductivity. Chaos, Solitons & Fractals, 16, 321-338.
    https://doi.org/10.1016/S0960-0779(02)00413-7

  319. 319. Rami, E.N.A. (2009) Fractional Illusion Theory of Space: Fractional Gravitational Field with Fractional Extra-Dimensions. Chaos, Solitons & Fractals, 42, 377-384.
    https://doi.org/10.1016/j.chaos.2008.12.008

  320. 320. El Naschie, M.S. (2000) On the Unification of Heterotic Strings, M Theory and ε(∞) Theory. Chaos, Solitons & Fractals, 11, 2397-2408.
    https://doi.org/10.1016/S0960-0779(00)00108-9

  321. 321. El Naschie, M.S. and He, J.H. (2013) Quantum Gravity and Dark Energy via a New Planck Scale. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 106-119.

  322. 322. Dickau, J.J. (2009) Fractal Cosmology. Chaos, Solitons & Fractals, 41, 2103-2105.
    https://doi.org/10.1016/j.chaos.2008.07.056

  323. 323. El Naschie, M.S. (2008) Roots Lattice Hierarchies of Exceptional Lie Symmetry Groups and the Elementary Particles Content of the Standard Model. Chaos, Solitons & Fractals, 35, 684-687.
    https://doi.org/10.1016/j.chaos.2007.07.084

  324. 324. Tomaschitz, R. (1997) Chaos and Topological Evolution in Cosmology. International Journal of Bifurcation and Chaos, 7, 1847-1853.
    https://doi.org/10.1142/S0218127497001412

  325. 325. Ho, M.W. (2014) E-Infinity Spacetime, Quantum Paradoxes and Quantum Gravity. Journal of the Institute of Science in Society, 62, 40-43.

  326. 326. Sidharth, B.G. (2003) A Note on the Modified Uncertainity Principle. Chaos, Solitons & Fractals, 15, 593-595.
    https://doi.org/10.1016/S0960-0779(02)00159-5

  327. 327. Ciric, L.B., Jesic, S.N. and Ume, J.S. (2008) The Existence Theorems for Fixed and Periodic Points of Nonexpansive Mappings in Intuitionistic Fuzzy Metric Spaces. Chaos, Solitons & Fractals, 37, 781-791.
    https://doi.org/10.1016/j.chaos.2006.09.093

  328. 328. El Naschie, M.S. (2005) Tadpoles, Anomaly Cancellation and the Expectation Value of the Number of the Higgs Particles in the Standard Model. Chaos, Solitons & Fractals, 24, 659-663.
    https://doi.org/10.1016/j.chaos.2004.11.002

  329. 329. Yildiz, A., De, U.C. and Cetinkaya, A. (2011) N(k)-Quasi Einstein Manifolds Satisfying Certain Curvature Conditions. No. 2011-25, Dumlupinar University Research Found.

  330. 330. Sidharth, B.G. (2002) A Note on Duality and Scale. Chaos, Solitons & Fractals, 13, 1369-1370.
    https://doi.org/10.1016/S0960-0779(01)00114-X

  331. 331. Tanaka, Y. (2005) Relativistic Field Theory and Chaotic Dynamics. Chaos, Solitons & Fractals, 23, 33-41.
    https://doi.org/10.1016/j.chaos.2004.03.031

  332. 332. Nagasawa, M. (1997) On the Locality of Hidden-Variable Theories in Quantum Physics. Chaos, Solitons & Fractals, 8, 1773-1792.
    https://doi.org/10.1016/S0960-0779(97)00036-2

  333. 333. El Naschie, M.S. (2008) String Theory, Exceptional Lie Groups Hierarchy and the Structural Constant of the Universe. Chaos, Solitons & Fractals, 35, 7-12.
    https://doi.org/10.1016/j.chaos.2007.06.023

  334. 334. El Naschie, M.S. (2008) On Quarks Confinement and Asymptotic Freedom. Chaos, Solitons & Fractals, 37, 1289-1291.
    https://doi.org/10.1016/j.chaos.2008.02.002

  335. 335. El Naschie, M.S. (2009) E-Eight Exceptional Lie Groups, Fibonacci Lattices and the Standard Model. Chaos, Solitons & Fractals, 41, 1340-1343.
    https://doi.org/10.1016/j.chaos.2008.05.015

  336. 336. Iovane, G. and Salerno, S. (2005) Dynamical Systems on Cantorian Spacetime and Applications. WSEAS Transactions on Mathematics, 4, 184-195.

  337. 337. Liu, S.D., Liu, S.K., Fu, Z.T., Ren, K. and Guo, Y. (2003) The Most Intensive Fluctuation in Chaotic Time Series and Relativity Principle. Chaos, Solitons & Fractals, 15, 627-630.
    https://doi.org/10.1016/S0960-0779(02)00138-8

  338. 338. Yang, C.D. (2008) On the Existence of Complex Spacetime in Relativistic Quantum Mechanics. Chaos, Solitons & Fractals, 38, 316-331.
    https://doi.org/10.1016/j.chaos.2008.01.019

  339. 339. El Naschie, M.S., Olsen, S., He, J.H., Nada, S., Marek-Crnjac, L. and Helal, A. (2012) On the Need for Fractal Logic in High Energy Quantum Physics. International Journal of Modern Nonlinear Theory and Application, 1, 84-92.
    https://doi.org/10.4236/ijmnta.2012.13012

  340. 340. Marek-Crnjac, L. (2006) Different Higgs Models and the Number of Higgs Particles. Chaos, Solitons & Fractals, 27, 575-579.
    https://doi.org/10.1016/j.chaos.2005.04.099

  341. 341. Pavlos, G.P., Iliopoulos, A.C., Karakatsanis, L.P., Tsoutsouras, V.G. and Pavlos, E.G. (2011) Complexity Theory and Physical Unification: From Microscopic to Macroscopic Level. In: Budyansky, M.V., et al., Eds., Chaos Theory: Modeling, Simulation and Applications, World Scientific Publishing, Singapore, 297-308.
    https://doi.org/10.1142/9789814350341_0035

  342. 342. El Naschie, M.S. (1993) Semiconductors, Fermi Statistics and Multi-Dimensional Cantor Sets. Chaos, Solitons & Fractals, 3, 481-488.
    https://doi.org/10.1016/0960-0779(93)90032-V

  343. 343. Gottlieb, I. and Agop, M. (2007) El Naschie’s ε(∞) Theory and an Alternative to Gauged Spacetime Scale Relativity Theory. Chaos, Solitons & Fractals, 34, 1025-1029.
    https://doi.org/10.1016/j.chaos.2006.03.108

  344. 344. El Naschie, M.S. (2013) Electromagnetic and Gravitational Origin of Dark Energy in Kaluza-Klein D = 5 Spacetime. Progress in Electromagnetics Research Symposium, Stockholm, 12-15 August 2013, 91-97.

  345. 345. Sigalotti, L.D.G. and Rendón, O. (2007) Quantum Decoherence and El Naschie’s Complex Temporality. Chaos, Solitons & Fractals, 32, 1611-1614.
    https://doi.org/10.1016/j.chaos.2006.08.034

  346. 346. Ord, G.N. (1996) The Schrodinger and Diffusion Propagators Coexisting on a Lattice. Journal of Physics A: Mathematical and General, 29, L123-L128.
    https://doi.org/10.1088/0305-4470/29/5/007

  347. 347. Saniga, M. (2005) Cremonian Space-Time(s) as an Emergent Phenomenon. Chaos, Solitons & Fractals, 23, 645-650.
    https://doi.org/10.1016/j.chaos.2004.05.018

  348. 348. El Naschie, M.S. (2016) High Energy Physics and Cosmology as Computation. American Journal of Computational Mathematics, 6, 185-199.
    https://doi.org/10.4236/ajcm.2016.63020

  349. 349. El Naschie, M.S. (1996) Wick Rotation, Cantorian Spaces and the Complex Arrow of Time in Quantum Physics. Chaos, Solitons & Fractals, 7, 1501-1506.
    https://doi.org/10.1016/0960-0779(96)80001-B

  350. 350. Rossler, O.E. and Kuypers, H. (2005) The Scale Change of Einstein’s Equivalence Principle. Chaos, Solitons & Fractals, 25, 897-899.
    https://doi.org/10.1016/j.chaos.2004.11.097

  351. 351. El Naschie, M.S. (2016) The Emergence of Spacetime from the Quantum in Three Steps. Advances in Pure Mathematics, 6, 446-454.
    https://doi.org/10.4236/apm.2016.66032

  352. 352. El Naschie, M.S. (2013) Using Varying Speed of Light Theory to Elucidate and Calculate the Exact Experimental Percentage of the Dark Energy in the Cosmos. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 35-38.

  353. 353. El Naschie, M.S. (2008) The Standard Model Physical Degrees of Freedom Interpretation of the Electromagnetic Fine Structure Coupling. Chaos, Solitons & Fractals, 38, 609-611.
    https://doi.org/10.1016/j.chaos.2008.04.015

  354. 354. He, J.H., Zhong, T., Xu, L., Marek-Crnjac, L., Nada, S.I. and Helal, M.A. (2011) The Importance of the Empty Set and Noncommutative Geometry in Underpinning the Foundations of Quantum Physics. Nonlinear Science Letters B, 1, 15-24.

  355. 355. El Naschie, M.S. (2008) Derivation of Newton’s Gravitational Fine Structure Constant from the Spectrum of Heterotic Superstring Theory. Chaos, Solitons & Fractals, 35, 303-307.
    https://doi.org/10.1016/j.chaos.2007.07.025

  356. 356. Agop, M. and Enache, V. (2007) Gauge Theories on El Naschie’s ε(∞) Space-Time Topology. Chaos, Solitons & Fractals, 32, 296-301.
    https://doi.org/10.1016/j.chaos.2006.04.068

  357. 357. Ho, M.W. (2014) Golden Geometry of E-Infinity Fractal Spacetime, Story of Phi Part 5.

  358. 358. Agop, M. and Craciun, P. (2006) El Naschie’s ε(∞) Space-Time and the Two Slit Experiment in the Weyl-Dirac Theory. Chaos, Solitons & Fractals, 30, 441-452.
    https://doi.org/10.1016/j.chaos.2005.12.048

  359. 359. El Naschie, M.S. (2008) On a Canonical Equation for All Fundamental Interactions. Chaos, Solitons & Fractals, 36, 1200-1204.
    https://doi.org/10.1016/j.chaos.2007.09.039

  360. 360. Marek-Crnjac, L. (2012) Quantum Gravity in Cantorian Space-Time. INTECH Open Access Publisher, Rijeka, Croatia.

  361. 361. El Naschie, M.S. (2003) VAK, Vacuum Fluctuation and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 17, 797-807.
    https://doi.org/10.1016/S0960-0779(02)00684-7

  362. 362. El Naschie, M.S. (2014) The Gap Labelling Integrated Density of States for a Quasi Crystal Universe Is Identical to the Observed 4.5 Percent Ordinary Energy Density of the Cosmos. Natural Science, 6, 1259-1265.
    https://doi.org/10.4236/ns.2014.616115

  363. 363. Agop, M. and Gottlieb, I. (2006) Gravitation Theory in a Fractal Space-Time. Journal of Mathematical Physics, 47, 53503-53503.
    https://doi.org/10.1063/1.2196747

  364. 364. Giné, J. (2008) On the Origin of the Deflection of Light. Chaos, Solitons & Fractals, 35, 1-6.
    https://doi.org/10.1016/j.chaos.2007.06.097

  365. 365. Auffray, J.P. (2015) On an Intriguing Invention Albert Einstein Made Which Has Gone Unnoticed Hitherto. Journal of Modern Physics, 6, 1478-1491.
    https://doi.org/10.4236/jmp.2015.611152

  366. 366. Agop, M., Ioannou, P.D., Nica, P., Galusca, G. and Stefan, M. (2005) El Naschie’s Coherence on the Subquantum Medium. Chaos, Solitons & Fractals, 23, 1497-1509.
    https://doi.org/10.1016/S0960-0779(04)00439-4

  367. 367. He, J.H. and Huang, Z. (2006) A Novel Model for Allometric Scaling Laws for Different Organs. Chaos, Solitons & Fractals, 27, 1108-1114.
    https://doi.org/10.1016/j.chaos.2005.04.082

  368. 368. Iovane, G. (2007) Hypersingular Integral Equations, Kahler Manifolds and Thurston Mirroring Effect in ε(∞) Cantorian Spacetime. Chaos, Solitons & Fractals, 31, 1041-1053.
    https://doi.org/10.1016/j.chaos.2006.03.109

  369. 369. Argyris, J., Ciubotariu, C. and Andreadis, I. (1998) Complexity in Spacetime and Gravitation I. From Chaos to Superchaos. Chaos, Solitons & Fractals, 9, 1651-1701.
    https://doi.org/10.1016/S0960-0779(97)00193-8

  370. 370. Agop, M., Ioannou, P.D., Luchian, D., Nica, P., Radu, C. and Condurache, D. (2004) El Naschie’s Cantorian Strings and Dendritic Morphogenesis. Chaos, Solitons & Fractals, 21, 515-536.
    https://doi.org/10.1016/j.chaos.2003.12.053

  371. 371. Rossler, O.E., Frohlich, D., Kleiner, N., Pfaff, M. and Argyris, J. (2004) On the Possibility of a New Relativistic Contraction Law. Chaos, Solitons & Fractals, 20, 205-208.
    https://doi.org/10.1016/S0960-0779(03)00358-8

  372. 372. Agop, M., Ioannou, P.D., Coman, P., Ciobanu, B. and Nica, P. (2001) Cantorian ε(∞) Space-Time and Generalized Superconductivity. Chaos, Solitons & Fractals, 12, 1947-1982.
    https://doi.org/10.1016/S0960-0779(00)00161-2

  373. 373. Mukhamedov, A.M. (2007) E-Infinity as a Fiber Bundle and Its Thermodynamics. Chaos, Solitons & Fractals, 33, 717-724.
    https://doi.org/10.1016/j.chaos.2006.11.016

  374. 374. Harabagiu, A., Niculescu, O., Colotin, M., Bibire, T.D., Gottlieb, I. and Agop, M. (2009) Particle in a Box by Means of a Fractal Hydrodynamic Model. Romanian Reports in Physics, 61, 395-400.

  375. 375. Ord, G.N. (1999) Gravity and the Spiral Model. Chaos, Solitons & Fractals, 10, 499-512.
    https://doi.org/10.1016/S0960-0779(98)00255-0

  376. 376. Castro, C. and Granik, A. (2000) How the New Scale Relativity Theory Resolves Some Quantum Paradoxes. Chaos, Solitons & Fractals, 11, 2167-2178.
    https://doi.org/10.1016/S0960-0779(00)00027-8

  377. 377. Castro, C. (2002) On the Four-Dimensional Conformal Anomaly, Fractal Cantorian Space-Time and the Fine Structure Constant. Chaos, Solitons & Fractals, 13, 203-207.
    https://doi.org/10.1016/S0960-0779(00)00268-X

  378. 378. Ahmed, N. (2004) Cantorian Small World, Mach’s Principle, and the Universal Mass Network. Chaos, Solitons & Fractals, 21, 773-781.
    https://doi.org/10.1016/j.chaos.2004.01.013

  379. 379. Sidharth, B.G. (2001) The Substructure of Space-Time and Some Related Issues. Chaos, Solitons & Fractals, 12, 2357-2361.
    https://doi.org/10.1016/S0960-0779(00)00182-X

  380. 380. El Naschie, M.S. (2008) A Derivation of the Fine Structure Constant from the Exceptional Lie Group Hierarchy of the Micro Cosmos. Chaos, Solitons & Fractals, 36, 819-822.
    https://doi.org/10.1016/j.chaos.2007.09.020

  381. 381. Mills, R. (1984) Space, Time and Quanta. WH Freeman, New York.

  382. 382. El Naschie, M.S. (2008) Freudental Magic Square and Its Dimensional Implication for and High Energy Physics. Chaos, Solitons & Fractals, 36, 546-549.
    https://doi.org/10.1016/j.chaos.2007.09.017

  383. 383. Fred, Y.Y. (2009) A Clifford-Finslerian Physical Unification and Fractal Dynamics. Chaos, Solitons & Fractals, 41, 2301-2305.
    https://doi.org/10.1016/j.chaos.2008.09.004

  384. 384. El-Okaby, A.A. (2008) Exceptional Lie Groups, E-Infinity Theory and Higgs Boson. Chaos, Solitons & Fractals, 38, 1305-1317.
    https://doi.org/10.1016/j.chaos.2008.02.034

  385. 385. Sidharth, B. and Altaisky, M.V. (Eds.) (2012) Frontiers of Fundamental Physics 4. Springer, Berlin.

  386. 386. Buzea, C.G., Agop, M., Galusca, G., Vizureanu, P. and Ionita, I. (2007) El Naschie’s Superconductivity in the Time Dependent Ginzburg-Landau Model. Chaos, Solitons & Fractals, 34, 1060-1074.
    https://doi.org/10.1016/j.chaos.2006.03.122

  387. 387. El Naschie, M.S. (2005) A Note on Various Supersymmetric Extensions of the Standard Model of High-Energy Particles and E-Infinity Theory. Chaos, Solitons & Fractals, 23, 683-688.
    https://doi.org/10.1016/j.chaos.2004.06.032

  388. 388. Taylor, J.C. (2001) Hidden Unity in Nature’s Laws. Cambridge University Press, Cambridge.
    https://doi.org/10.1017/CBO9780511612664

  389. 389. Ahmed, E. and Hegazi, A.S. (2000) On Infinitesimally Deformed Algebra and Fractal Space-Time Theory. Chaos, Solitons & Fractals, 11, 1759-1761.
    https://doi.org/10.1016/S0960-0779(99)00082-X

  390. 390. Tomaschitz, R. (1997) Chaos in the Galactic Dynamics. Fractals, 5, 215-220.
    https://doi.org/10.1142/S0218348X97000206

  391. 391. Castro, C. (2000) The String Uncertainty Relations Follow from the New Relativity Principle. Foundations of Physics, 30, 1301-1316.
    https://doi.org/10.1023/A:1003640606529

  392. 392. Christianto, V. (2003) The Cantorian Super Fluid Vortex Hypothesis. Apeiron, 10, 231-248.

  393. 393. Colotin, M., Niculescu, O., Bibire, T.D., Gottlieb, I., Nica, P. and Agop, M. (2009) Fractal Fluids of Conductive Type Behavior through Scale Relativity Theory. Romanian Reports in Physics, 61, 387-394.

  394. 394. Dariescu, C., Dariescu, M.A. and Murariu, G. (2007) TE Modes in Einstein’s Universe. Chaos, Solitons & Fractals, 34, 1030-1036.
    https://doi.org/10.1016/j.chaos.2006.04.070

  395. 395. Agop, M., Jarcau, M. and Stroe, A. (2005) El Naschie’s Instanton by Means of the Schwarzschild’s Gravitational Field. Chaos, Solitons & Fractals, 25, 781-790.
    https://doi.org/10.1016/j.chaos.2004.12.036

  396. 396. Lorenzi, M.G., Francaviglia, M. and Iovane, G. (2008) The Golden Mean Revisited: From Fidia to the Structure of “Kosmos”. Journal of Applied Mathematics, 1, 109-119.

  397. 397. He, J.H., Liu, Y., Mo, L.F., Wan, Y.Q. and Xu, L. (2008) Electrospunnanofibres and Their Applications. iSmithers, Shawbury.

  398. 398. Yildiz, A., De, U.C. and Cetinkaya, A. (2013) On Some Classes of N(k)-Quasi Einstein Manifolds. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 83, 239-245.
    https://doi.org/10.1007/s40010-013-0071-y

  399. 399. Sidharth, B.G. (2002) The Nature of Quantum Space-Time and the Cantorian ε(∞) Proposal. Chaos, Solitons & Fractals, 14, 1325-1330.
    https://doi.org/10.1016/S0960-0779(02)00085-1

  400. 400. Ord, G.N. and Gualtieri, J.A. (1998) Information Loss in the Continuum Limit and Schrodinger’s Equation in an Electromagnetic Field. BioSystems, 46, 21-28.
    https://doi.org/10.1016/S0303-2647(97)00077-4

  401. 401. Zhong, T. and He, J.H. (2013) Elnaschie’s Resolution of the Mystery of Missing Dark Energy of the Cosmos via Quantum Field Theory in Curved Spacetime. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 46-49.

  402. 402. Dariescu, C. and Dariescu, M.A. (2007) TE-Compatible Maxwell Fields in Spatially Closed Friedman-Robertson-Walker Universe. Chaos, Solitons & Fractals, 32, 8-14.
    https://doi.org/10.1016/j.chaos.2006.05.042

  403. 403. Sidharth, B.G. (2002) Dimension and Metric. Chaos, Solitons & Fractals, 14, 525-527.
    https://doi.org/10.1016/S0960-0779(01)00197-7

  404. 404. Agop, M., Oprea, I., Sandu, C., Vlad, R., Buzea, C.G. and Matsuzawa, H. (2000) Some Properties of the World Crystal in Fractal Spacetime Theory. Australian Journal of Physics, 53, 231-240.

  405. 405. Castro, C. and Granik, A. (2000) On M Theory, Quantum Paradoxes and the New Relativity. arXiv Preprint Physics/0002019.

  406. 406. El Naschie, M.S. (2005) Kaluza-Klein and Felix Klein: The Stringy Relationship with the Portrait of the Artist as a Young Man. Chaos, Solitons & Fractals, 25, 911-913.
    https://doi.org/10.1016/j.chaos.2004.12.002

  407. 407. Meissner, W. (1996) On a Realistic Interpretation of Spontaneous Decay Processes. Chaos, Solitons & Fractals, 7, 697-709.
    https://doi.org/10.1016/0960-0779(94)00220-7

  408. 408. Buzea, C.G., Rusu, I., Bulancea, V., Badarau, G., Paun, V.P. and Agop, M. (2010) The Time Dependent Ginzburg-Landau Equation in Fractal Space-Time. Physics Letters A, 374, 2757-2765.
    https://doi.org/10.1016/j.physleta.2010.04.044

  409. 409. Cristescu, C.P., Mereu, B., Stan, C. and Agop, M. (2009) Feigenbaum Scenario in the Dynamics of a Metal-Oxide Semiconductor Heterostructure under Harmonic Perturbation. Golden Mean Criticality. Chaos, Solitons & Fractals, 40, 975-980.
    https://doi.org/10.1016/j.chaos.2007.08.054

  410. 410. Penrose, R. (2004) The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London.

  411. 411. Green, B. (2004) The Fabric of the Cosmos. Penguin Books, London.

  412. 412. Hawkings, S and Ellis, G. (1973) The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge.
    https://doi.org/10.1017/CBO9780511524646

  413. 413. ‘T Hooft, G. (1997) In Search of the Ultimate Building Blocks. Cambridge University Press, Cambridge.

  414. 414. Davies, P. (1989) The New Physics. Cambridge University Press, Cambridge.

  415. 415. Halpern, P. (2004) The Great beyond. John Wiley, Hoboken.

  416. 416. Zeilinger, A. (2003) Einstein’s Schleier. CH Beck Verlog, Munchen.

  417. 417. Crowell, L.B. (2005) Quantum Fluctuations of Spacetime. World Scientific, Singapore.

  418. 418. Smolin, L. (2000) Three Roads to Quantum Gravity. Weidenfeld and Nicolson, London.

  419. 419. ‘T Hooft, G. (1994) Under the Spell of the Gauge Principle. World Scientific, Singapore.

  420. 420. Kaku, M. (2000) Strings, Conformal Fields and M-Theory. Springer, New York.
    https://doi.org/10.1007/978-1-4612-0503-6

  421. 421. Connes, A. (1994) Non-Commutative Geometry. Academic Press, San Diego.

  422. 422. Becker, K., Becker, M. and Schwarz, J. (2007) String Theory and M-Theory. Cambridge University Press, Cambridge.

  423. 423. Green, M., Schwarz, J. and Witten, E. (1987) Superstring Theory. Vol. I and II. Cambridge University Press, Cambridge.

  424. 424. El Naschie, M.S. (2016) Kahler Dark Matter, Dark Energy Cosmic Density and Their Coupling. Journal of Modern Physics, 7, 1953-1962.
    https://doi.org/10.4236/jmp.2016.714173

  425. 425. Weinberg, S. (1995) The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge University Press, Cambridge.
    https://doi.org/10.1017/CBO9781139644167

  426. 426. Oriti, D. (Editor) (2009) Approaches to Quantum Gravity. Cambridge University Press, Cambridge.

  427. 427. El Naschie, M.S. (2016) Completing Einstein’s Spacetime. Journal of Modern Physics, 7, 1972-1994.
    https://doi.org/10.4236/jmp.2016.715175

  428. 428. El Naschie, M.S. (2016) The Speed of the Passing of Time as Yet Another Facet of Cosmic Dark Energy. Journal of Modern Physics, 7, 2103-2125.
    https://doi.org/10.4236/jmp.2016.715184

  429. 429. Roukema, B.F. (2012) Topological Acceleration in Relativistic Cosmology. arXiv Preprint arXiv:1212.5426.

  430. 430. Ostrowski, J.J., Roukema, B.F. and Bulinski, Z.P. (2012) A Relativistic Model of the Topological Acceleration Effect. Classical and Quantum Gravity, 29, Article ID: 165006.
    https://doi.org/10.1088/0264-9381/29/16/165006

  431. 431. Mark, J.J. (2012) Zeno’s Paradoxes: The Illusion of Motion. Ancient History Encyclopedia.
    http://www.ancient.eu/article/60/

  432. 432. El Naschie, M.S. (2016) Cantorian-Fractal Kinetic Energy and Potential Energy as the Ordinary and Dark Energy Density of the Cosmos Respectively. Natural Science, 8, 511-540.
    https://doi.org/10.4236/ns.2016.812052