nd injected Tβ4 twice per week for six months. The current study adopted an acute ischemic model and daily injected Tβ4 for four weeks. The different pathophysiological condition of skeletal muscle may have a different response to Tβ4. A much higher dose of Tβ4 was used in Spurney’s study also. This may stimulate the fusion of skeletal muscle progenitor cells, which in turn contributes to the muscle regeneration.

In summary, the current study demonstrates that Tβ4 stimulates angiogenesis and increased skeletal muscle progenitor cell density, but failed to increase regenerating muscle fiber in ischemic limb muscle. Further study should be performed to investigate the underlying mechanism that the role of Tβ4 on homing and migrating of Pax3/7+ muscle progenitor cells has.


The project was funded by Singapore National Medical Research Council (NMRC) grant EDG09may058.


  1. Pollard, T.D. and Borisy, G.G. (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112, 453-465. doi:10.1016/S0092-8674(03)00120-X
  2. Bock-Marquette, I., et al. (2004) Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature, 432, 466-472. doi:10.1038/nature03000
  3. Yang, H., et al. (2008) The promotive effects of thymosin β4 on neuronal survival and neurite outgrowth by upregulating L1 expression. Neurochemical Research, 33, 2269-2280. doi:10.1007/s11064-008-9712-y
  4. Philp, D., et al. (2004) Thymosin β4 increases hair growth by activation of hair follicle stem cells. The FASEB Journal, 18, 385-387.
  5. Philp, D., Scheremeta, B., Sibliss, K., Zhou, M., Fine, E.L., Nguyen, M., et al. (2006) Thymosin β4 promotes matrix metalloproteinase expression during wound repair. Journal of Cellular Physiology, 208, 195-200. doi:10.1002/jcp.20650
  6. Sosne, G., et al. (2005) Thymosin β4 modulates corneal matrix metalloproteinase levels and polymorphonuclear cell infiltration after alkali injury. Investigative Ophthalmology & Visual Science, 46, 2388-2395. doi:10.1167/iovs.04-1368
  7. Qiu, P., et al. (2011) Thymosin β4 inhibits TNF-alphainduced NF-κB activation, IL-8 expression, and the sensitizing effects by its partners PINCH-1 and ILK. The FASEB Journal, 25, 1815-1826. doi:10.1096/fj.10-167940
  8. Sosne, G., et al. (2005) Thymosin β4 modulates corneal matrix metalloproteinase levels and polymorphonuclear cell infiltration after alkali injury. Investigative Ophthalmology & Visual Science, 46, 2388-2395. doi:10.1167/iovs.04-1368
  9. Ferre, P.J., et al. (2007) Longitudinal analysis of gene expression in porcine skeletal muscle after post-injection local injury. Pharmaceutical Research, 24, 1480-1489. doi:10.1007/s11095-007-9266-8
  10. Ye, L., Su, L.P., Pi, W.F. and Law, P.K. (2012) Role of thymosin β4 on skeletal myoblast migration, proliferation, and survival. Recent Patents on Regenerative Medicine, 2, 146-155. doi:10.2174/2210297311202020146
  11. Ye, L., et al. (2010) Liposome-based vascular endothelial growth factor-165 transfection with skeletal myoblast for treatment of ischaemic limb disease. Journal of Cellular and Molecular Medicine, 14, 323-336. doi:10.1111/j.1582-4934.2008.00454.x
  12. Smart, N., et al. (2007) Thymosin β4 is essential for coronary vessel development and promotes neovascularization via adult epicardium. Annals of the New York Academy of Science, 1112, 171-188. doi:10.1196/annals.1415.000
  13. Malinda, K.M., Goldstein, A.L. and Kleinman, H.K. (1997) Thymosin β4 stimulates directional migration of human umbilical vein endothelial cells. The FASEB Journal, 11, 474-481.
  14. Chiu, L.L. and Radisic, M. (2011) Controlled release of thymosin β4 using collagen-chitosan composite hydrogels promotes epicardial cell migration and angiogenesis. Journal of Controlled Release, 155, 376-385. doi:10.1016/j.jconrel.2011.05.026
  15. Grant, D.S., et al. (1999) Thymosin β4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis, 3, 125-135. doi:10.1023/A:1009041911493
  16. Qiu, F.Y., et al. (2009) Thymosin β4 induces endothelial progenitor cell migration via PI3K/Akt/eNOS signal transduction pathway. Journal of Cardiovascular Pharmacology, 53, 209-214. doi:10.1097/FJC.0b013e318199f326
  17. Kassar-Duchossoy, L., et al. (2005) Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes & Development, 19, 1426-1431. doi:10.1101/gad.345505
  18. Relaix, F., et al. (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature, 435, 948- 953. doi:10.1038/nature03594
  19. Maroto, M., et al. (1997) Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell, 89, 139-148. doi:10.1016/S0092-8674(00)80190-7
  20. Kuang, S., et al. (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. Journal of Cell Biology, 172, 103-113. doi:10.1083/jcb.200508001
  21. Relaix, F., et al. (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. Journal of Cell Biology, 172, 91-102. doi:10.1083/jcb.200508044
  22. Spurney, C.F., et al. (2010) Evaluation of skeletal and cardiac muscle function after chronic administration of thymosin β4 in the dystrophin deficient mouse. PLOS One, 5, p. e8976. doi:10.1371/journal.pone.0008976

Journal Menu >>