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Chapter	1	

General	

1.1.	Periodic	Motion	

Harmonic	Periodic	motion	  x t 	 is	when	motion	is	repeated	itself	regularly,	in	
equal	intervals	of	time	T	(the	period	of	oscillation)	and	is	designated	by	the	time	
function,	
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which	is	sinusoidal,	where	A	is	the	amplitude	of	oscillation	measured	from	equi‐	 	

librium	 position	 and	 for	 repeated	 motion	 t T .	 Quantity	
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  and	 the	 speed	of	 a	wave	 is	 v f  	 or	 w v k  	 and	because	 of	 rela‐

tion	of	angular	velocity	
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i.e.	Velocity,	 x ,	and	Acceleration	 x 	 are	also	harmonic	with	the	same	frequency	
of	oscillation,	and	when	evaluated	lead	to	the	displacement,	x,	by	π/2	and	π	ra‐
dians	respectively	and	the	whole	system	reveals	at	 2x w A  ,	so	that	accelera‐
tion	In	harmonic	motion	to	be	proportional	to	the	displacement	and	directed	to‐
ward	the	origin,	and	because	also	Newton’s	second	law	of	motion	states	that	the	
acceleration	is	proportional	to	the	force,	then	harmonic	motion	can	be	expected	
with	force	varying	as	kx.	 (which	is	Hook’s	 law	F	=	kx	and	k,	 the	stiffness	coeffi‐
cient,	directed	in	centrifugal	velocity	vector	 vr ,	on	the	radius	r).	
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In	Free	vibration	of	monads	  AB q s v i    	 andbecause	velocity	vector	 is	
composed	 of	 the	 centrifugal	 velocity	 vr ,	 and	 the	 rotational	 velocity	 vq ,	 per‐
pendicular	 to	 displacement,	 x,	 and	 because	 viscous	 damping	 represented	 by	 a	
dashpot,	 is	 described	 by	 a	 force	 proportional	 to	 the	 velocity	 as	 holds	 F cx  	
where,	c,	is	the	damping	coefficient,	it	is	a	constant	of	transverse	proportionality	
and	 this	because	 x dx ,	 then	 it	 is	directional	 to	 transverse	velocity	 vy x dt  	
and	is	holding	the	homogenous	differential	equation	 0mx cx kx    .	

For	a	 flexible	string	of	mass,	ρ,	per	unit	dx	 is	stretched	under	Tension	T	and	
analyzing	 Newton	 Laws	 for	 tiny	 length,	 dx,	 then	 Net	 Force,	 Tx a 	 and	 the	
equation	of	motion	is	
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The	general	solution	of	(1)	is	    1 2y F ct x F ct x    	 where	F1,	F2	are	ar‐
bitrary	functions	and	regardless	of	the	type	of	function	F,	the	argument	  ct x 	
upon	differentiation	leads	to	the	equation,	
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where	F	=	The	tension,	v	=	the	velocity	of	wave	propagation	

Another	general	solution	of	(1)	is	that	of	separation	of	variables	as	
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where	 then	 (1)	 becomes	 →
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	 and	 because	 of	 independent	

variables	x,	t	are	both	constant	the	general	solutions	are,	
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where	 arbitrary	 constants	 A,	 B,	 C,	 D	 depend	 on	 boundary	 conditions	 and	 for	

 0, 0y t  	 will	require	 0B  	 and	for	  , 0y l t  	 the	solution	lead	to	equations,	


