Optimization in Computer Engineering—Theory and Applications

Zoltán Ádám Mann

With contributions from:
Dániel András Drexler
István Harmati
Milán Magdics
András Recski
Anikó Szajkó
Dávid Szeszlér
László Szirmay-Kalos

Scientific Research Publishing, USA
2011
Biography of Author

Zoltán Ádám MANN studied Computer Science at Budapest University of Technology and Economics (Hungary) and Karlsruhe University (Germany), and received the MSc degree in Computer Science in 2001. He also studied Mathematics at Eötvös Loránd University (Hungary), where he received another MSc degree in 2004. In parallel, he conducted his PhD research and was awarded the PhD degree from Budapest University of Technology and Economics in 2005. In his PhD dissertation, he investigated the hardware/software partitioning problem – a combinatorial problem in electronic design automation – and developed highly efficient new algorithms for it.

Currently, he works as associate professor at the Department of Computer Science and Information Theory, Budapest University of Technology and Economics. His research interests include the complexity of combinatorial algorithms and the elaboration of efficient algorithms for real-world engineering problems. At the same time, he also works for Capgemini, one of the world’s leading IT service providers, where he is the head of the Business Technology Consulting team of Capgemini Hungary.

The author of over 40 widely-cited papers in renowned scientific journals and conferences, Dr. Mann is editor of the Journal of Software and the Circuits and Systems journal and serves regularly as reviewer of journal articles and as program committee member of conferences. For his scientific achievements, he has been awarded several national and international prizes, such as the Werner von Siemens Excellence Award and the Dimitris N. Chorafas Award.

Dr. Mann can be contacted at zoltan.mann@gmail.com.
Contents at a Glance

Biography of Author ... I

Chapter 1 Introduction ... I

Part I Theory

Chapter 2 Fundamentals of Optimization Algorithms ... 7
Chapter 3 Some Common Combinatorial Problems and Algorithms .. 23
Chapter 4 Recent Advances in Typical-Case Complexity ... 35
Chapter 5 Metric-Based Approximation Algorithms for Graph Cut Problems 45

Part II Applications

Chapter 6 Redundant Manipulators .. 79
Chapter 7 Suboptimal Robot Team Coordination ... 99
Chapter 8 Applying Graph Coloring to Frequency Assignment .. 127
Chapter 9 Routing in the 3-Dimensional Grid ... 143
Chapter 10 Total Variation Regularization in Maximum Likelihood Estimation 153