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ABSTRACT 

A new approach to solving two of the cosmological constant problems (CCPs) is proposed by introducing the Abbott- 
Deser (AD) method for defining Killing charges in asymptotic de Sitter space as the only consistent means for defining 
the ground-state vacuum for the CCP. That granted, Einstein gravity will also need to be modified at short-distance 
nuclear scales, using instead a nonminimally coupled scalar-tensor theory of gravitation that provides for the existence 
of QCD’s two-phase vacuum having two different zero-point energy states as a function of temperature. Einstein 
gravity alone cannot accomplish this. The scalar field will be taken from bag theory in hadron physics, and the origin of 
the bag constant B is accounted for by gravity’s CC as Bag   B—noting that the Higgs mechanism does not account 

for either the curved-space origin of λ or the mass of composite hadrons. A small Hubble-scale graviton mass 

 naturally appears external to the hadron bag, induced by 3310 eVgm  0  . This mass is unobservable and 

gravitationally gauge-dependent. It is shown to be related to the cosmological event horizon in asymptotic de Sitter 
space. 
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Zero-Point Energy 

1. Introduction 

The cosmological constant problem (CCP) continues to 
represent a serious circumstance for the unification of 
gravity with quantum field theory (QFT) on curved back- 
grounds, quantum gravity (QG), zero-point energy fluc- 
tuations, and our understanding of vacuum energy den- 
sity V

culated in particle [10] and hadron physics.1 
In parallel with EG, relativistic QFT has pursued VED 

physics in flat Minkowski space, resulting for example in 
the remarkable spontaneous symmetry breaking (SSB) 
mechanism that will be used later in Section 3. Even 
though EG is nonrenormalizable, its gravitational field 
g  couples minimally and universally to all of the 
fields of QFT’s renormalizable standard model [11]. To 
turn on gravity one simply introduces EG along with 
covariant derivatives in QFT that represent the transition 
from flat to curved background metrics. This ties to- 
gether everything except for one major shortcoming, the 
gravitational versus flat-space VED problem usually re- 
ferred to as the CCP. Hence there are dramatic differ- 

   in particle physics as well as cosmology. The 
point of view to be taken here is that the CCP(s) cannot 
be fixed without two things: (a) a consistent definition 
and usage of global energy (Killing charge) in asymp- 
totic spacetime; and (b) a modification of Einstein grav- 
ity (EG) where the cosmological constant (CC) λ was 
first introduced and discovered [1-3]. It has been subse- 
quently identified as a vacuum energy density (VED) 
[4-6] which is a gravitational effect resulting in a curved 
de Sitter spacetime referred to as cosmological gravity 
(CG) (metrics with 

1Note that this study does not address “the” CCP because it is becoming 
increasingly apparent that we still do not seem to understand what “the 
CCP” is. Instead, the approach here is to try and define two CCPs, and 
devise a consistent method for solving them later when satisfactory 
theories of QG and QCD (quantum chromodynamics) confinement 
exist.

0 

 V

). The dilemma presented by 
various proposed CCP’s today is the disparity between 
cosmological measurements of   [7-9] and those cal-  
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ences in QFT and its renormalization when cosmological 
gravity becomes involved.2 

The literature [12,13] speaks of using Minkowski 
counterterms to subtract from the bare V   in Fried- 
mann-Lemaitre-Robertson-Walker (FLRW) cosmology 
in order to derive the physical, renormalized VED ren  
in curved spacetime. This creates major confusion. It 
uses flat metrics to fix the asymptotic states of cosmo- 
logical metrics that are never flat. One theme here will be 
to take this reasoning a step further to preclude cross- 
comparison of asymptotic spacetimes. This will involve 
the Abbott-Deser (AD) method of identifying mass and 
energy [14] and their Killing-charge successors as the 
unique quantities associated with the asymptotic geome- 
try at spatial infinity of de Sitter spacetime. 

As mentioned, it has been said that there are at least 
two CCP’s [15,16]. (a) The old one is to understand why 

V   measured by current Type Ia supernova observa- 
tions [7-9], 

56 2 29 310 cm 10 g cm       47 410 GeV ,



   (1) 

(where λ is positive) is orders of magnitude smaller than 
values suggested by particle physics where ρQCD ~ 10−6 
GeV4 appears in QCD [10] or the bag constant B ~ (145 
MeV)4 in hadron physics. This is the fine-tuning problem 
of reconciling (1) with expectations from particle physics. 
It also is illustrated by the cutoff c  in effective field 
theory represented by the Planck mass as 

4 71 410 GeVPl c   .3 (b) In contrast, the second CCP 
[15,16] is to understand why   is of the same order of 
magnitude as the present mass density of the universe 

M  in Freidmann-Lemaitre-Robertson-Walker (FLRW) 
cosmology. 

We will paraphrase the CCP(s) differently here with 
the goal of identifying a well-posed statement of two of 
the problems. Then an attempt will be made to show how 
they can be approached in hadron physics using scalar- 
tensor theory. 

The original CCP assumed here (CCP-1) is to explain 
how gravity theory can have two different vacuum en- 
ergy states or two different cosmological constant (CC) 
values when Einstein gravity only permits one as a uni- 
versal constant throughout all of spacetime. The second 
(CCP-2) is to understand how quantum fluctuations re- 
late to the ground-state energy of curved spacetime in 
order to define the zero-point energy of the gravitational 

background in a consistent fashion. Resolving CCP-2 is 
essential to defining the ground-state energy for investi- 
gating CCP-1. 

We will take these in reverse order, addressing the 
zero-point fluctuation issue in FLRW cosmology in Sec- 
tion 2, and developing the scalar-tensor model in Section 
3. Experimental questions will be addressed in Section 4. 
Assumptions and postulates are identified in Section 5. 
And conclusions follow in Section 6. An Appendix gives 
the derivation of the cosmological constant as a gauge- 
dependent graviton mass gm

0

 in the weak-field limit, a 
result that is directly related to the AD formalism and the 
cosmological event horizon present in asymptotic de- 
Sitter spacetime and the FLRW universe (Section 4). At 
late times the latter presently behaves like an accelerating 
de-Sitter spacetime [7-9], discussed in Section 2.  

The appearance of a graviton mass [see derivation in 
Appendix, (65) and (66)] is natural, following directly 
from EG with    and having an obvious smooth 
zero-mass limit g  as 0m  0  . It is not introduced 
ad hoc in the usual manner based upon adding the Pauli- 
Fierz Lagrangrian for a mass g PF  (where m m 0   
was originally assumed) adopted in particle physics. 

2. Zero-Point Vacuum Fluctuations 

2.1. A Digression on Asymptotic de Sitter Space 

It is well known that the Schwarzschild-de-Sitter metric 
(SdS) [17] 

   2 2 1 2 2 2d d d d ,s c r t c r r r    

 

   (2) 

where 

22
1 ,

3

m
c r r

r


          (3)   

represents important global properties that relate to the 
definition of energy and energy conservation in Einstein 
theory. In (2) and (3), we have 2m GM c  with  

 2 2 2d d sin d      a unit 2-sphere metric, and M 
the Schwarzschild mass.4 

Arnowitt, Deser, and Misner (ADM) [18] were first to 
derive a canonical formulation of general relativity (GR) 
as a Hamiltonian system for the simple Schwarzschild 
case  0   in (3). They determined the ADM energy, 
momentum, and mass defined by the asymptotic symme- 
tries of (2) and (3) at spatial infinity. Conserved charge 
(mass, energy, etc.) is associated with a conserved vector 
(Noether) current which is determined by reducing the 
stress tensor density conservation law 

2Double-counting is commonplace in current methods, introducing V
in both (9) and (11)-(14) that follow. This affects the renormalization 
loop equations. An attempt to preclude double-counting will be made 
here. 
3Note that the quartic cut-offs  are QFT values derived in flat Min-

kowski space. These imply a gravitational curvature 10118 times that in 
(1) in EG where the Ricci scalar 

T 

ADM

  in EG to 
a conserved vector current law using Killing vectors ξμ. 
The ADM mass results and is equivalent to the Schwarz- 
schild mass M, 

4

c

4R

M M  in (3). 

 1c is not flat. Curvature and EG 
are ignored completely. This is the inconsistent cross-comparison prob-
lem that will be addressed in Section 2.

4In general, natural units  ħ  , , ,   , metric signature , and a 

4-dimensional spacetime are assumed. 
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Note that the Schwarzschild metric, (2) and (3) with 
, is asymptotically flat as . Note also that 

assuming  and 
 0  r 

00M     results in flat Minkowski 
space. In either case, the energy of Minkowski space is 
zero as expected. Classically speaking, it likewise has no 
VED. In this sense, the natural vacuum of EG without λ 
is flat space with all its Poincaré symmetries. 

Re-instating 0 

r 

0m

 in (3), however, changes circum- 
stances significantly. The full SdS metric (2) is not as- 
ymptotically flat and becomes an asymptotic de Sitter 
space as  that is forever distinguished from 
Minkowski space.5 When a CC λ is present, flat Min- 
kowski space is no longer a relevant background because 
it is not a solution of the Einstein equations [14]. The 
vacuum is now either de Sitter [SO(4,1)] or anti-de Sitter 
[SO(3,2)] depending upon whether λ is positive or nega- 
tive.6 

Abbott and Deser [14,20] extended the fundamental 
ADM approach used in the Schwarzschild case and de- 
fined the AD Killing charges for the full SdS metric 
when it asymptotically becomes de Sitter space (dS), as 
opposed to the asymptotic flat case above. These AD 
charges have become very important because of their 
direct relevance to cosmological gravity and, as will be 
shown here, the CCP. This work has been extended by 
Deser and Tekin [21-24], and the collective results will 
be referred to as the ADT formalism. 

There is an apparent singularity in (3) for   at 
3rEH 

1r

, that keeps the observer from proceeding 
smoothly to infinity. Gibbons & Hawking (G-H) [25] 
developed rEH as a cosmological event horizon charac- 
terizing asymptotic dS whose surface gravity is c EH

 . 
AD [14] further pointed out that the Killing vector ξμ is 
timelike only within the background cosmological event 
horizon EH . The usual meaning of global energy E 
and the timelike Killing vector are lost on the super-ho- 
rizon scale for 

r r

EHr r

  1
EG dS ,V  

V

0M 

1
EG

. This will be discussed further in 
Section 4. 

Adding Weyl and Gauss-Bonnet quadratic curvature 
terms7 (scaled by α and β respectively) to the Einstein- 
Hilbert Lagrangian [21,22], Deser and Tekin generalized 
the AD mass to 

1
GB8 4E M M          (4) 

where the term dS  is the volume of the spacetime and 
has been added here to account for the pure dS case with 

 in (3) and (4), involving higher-order terms not 
addressed by ADT. Dividing (4) by dSV  to create an 
energy density, this same term has been found by Pad- 

manabhan [30] using different methods. 
Obviously, an empty dS with a VED due to  

1E V

 
will contain a vacuum energy of that amount, 

EG dS 

r

 22 2 2d d d ,

. In an infinite dS space with finite VED, 
there is an infinite E. For a finite VdS, then E is finite such 
as within the G-H cosmological horizon .8 EH

In summary, the total gravitational energy E of space- 
time is well-defined using ADM and ADT methods, pro- 
vided it is being compared with a metric that has the 
same asymptotic structure [31]. However, there is a ca- 
veat. Comparison of energies between asymptotically flat 
Minkowski and asymptotically de Sitter metrics is a mis- 
leading exercise because the concepts of global energy 
and energy conservation become ill-defined in EG. In- 
sistence upon comparison will result in an infinite energy 
between the two spacetimes.9 

Cross-comparison of cosmological gravity with flat 
metrics contributes to the disparity in the old CCP where 
conclusions are being drawn based upon a comparison of 
incompatible asymptotic spacetime vacuum states in EG 
for dS versus flat QFT. Such comparison breaks the 
principle of compatible asymptotic states.9 Yet this pro- 
cedure is commonplace in the CCP literature, an example 
being the fine tuning problem where quadratic and quar- 
tic divergences in flat Minkowski space are being com- 
pared with asymptotically pure de Sitter (APdS) space- 
time in cosmological gravity. 

2.2. Ground State Vacua in Asymptotic de Sitter 
Space 

First and foremost, we must recognize that FLRW cos- 
mology is the basis for conclusion (1). The metric is 

Ks t a t              (5) 

where a is the scale factor and 

 
 

2

2 2 2

2

d
d d ,

1
K

r
r

Kr
  



0K 

          (6) 

with Gaussian curvature  [32-34]. In its late 
stages (current epoch), (5) is asymptotically an acceler- 
ating de Sitter space determined by the cosmological 
parameter 2q aa a   

0M

 as derived from the Einstein- 
Friedmann equations [34]. 

The global energy of this universe is determined by the 
ADT charges for APdS spacetime with   in (2), 
(3), and (4) (no ADM mass). This is a critical point to 
make when defining the zero-point vacuum fluctuations 

8There is no coordinate invariant gravitational energy or energy density 
of a finite volume. The global energy of the total spacetime is well-
defined but only with respect to another spacetime having the same 
asymptotic structure [31]. 
9This subject will be elevated to a principle of compatible asymptotic 
structure or states (Section 5).

5For a different interpretation, see [19]. 
6Negative λ will not be considered, for reasons given later in Section
4.2. 
7These have been characterized as improving the renormalizability of 
QG [26,27] although at the price of sacrificing unitarity [28,29]. 
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and renormalization issues in general for the CCP. 
The suggestion by Maggiore et al. [12,13] for re-de- 

fining the counter-term subtraction scheme to eliminate 
the quartic divergence c  is a promising idea. However, 
it is beset with at least one problem. It violates the com- 
patibility principle of Section 2.1. Renormalization coun- 
ter-term methods must conform with the ADT prescrip- 
tion for APdS spacetimes involving cosmological gravity 
having metric 

4

g . Flat Minkowski space is not relevant 
because there is no g  in that metric. 

That is, the metric g  of cosmological gravity typi- 
cally is decomposed into a background   plus a fluc- 
tuation or perturbation h  of arbitrary strength, 

,g h                 (7) 

where the background   is often defined symboli- 
cally as g   . When   the 
result is flat Minkowski space which has no gravity. 

 1, 1, 1, 1     

,CGH   

Following ADM and AD, the energy E can be ob- 
tained from the Hamiltonian in cosmological gravity HCG 
by 

CGE H g           (8) 

where   must be the APdS spacetime representing 
FLRW cosmology in the current epoch, an accelerating 
dS with 0  . That granted, assuming that   is flat 
Minkowski space violates the principle of compatibility. 
The ground-state vacuum of nonflat APdS spacetime has 
little to do with the ADM charges that derive from the 
asymptotically flat Schwarzschild metric and flat Min- 
kowski spacetime. 

The standard textbook procedure for analyzing quan- 
tum vacuum fluctuations inspired by inflation in cos- 
mology is given by Weinberg [35] and is the same me- 
thod that appears in the ADT procedure discussed above, 
while adopting (7) [14,21-24]. The gravitational field 
equations (9) are separated into a part linear in h  plus 
all of the nonlinear terms that constitute the total source, 
the stress tensor T  which is conserved using the Bi- 
anchi identities. Hence, global conservation of energy- 
momentum in the universe is assumed in these deriva- 
tions. However, the catch like the caveat is that the glo- 
bal Killing charges may not be understood or consis- 
tently defined. 

Having made the point that the origin of the CCP 
originates in (1), which derives from FLRW cosmology 
and which is currently interpreted as an accelerating de 
Sitter phase, the asymptotically pure de Sitter metric is 
the vacuum ground state for addressing this problem, as 
depicted in (8). This is not an assumption. It is the only 
conclusion that seems to follow from consistency and the 
principle of compatible asymptotic states (Sections 2.1 
and 5). Flat Minkowski spacetime is not relevant because 
it has no g , breaks the principle, and invokes the ca- 

veat. 
We are now prepared to advance to CCP-1 which in 

our opinion is the original and most important problem to 
address. 

3. Modifying Einstein Gravity 

Attempts to modify EG are nothing new. The real issue is 
the motivation for doing so. Einstein’s theory10 

1
,

2
R g R g T       

500 
40,000 

JFBD EG

       (9) 

is remarkably successful on long-distance scales from 
binary pulsars [36] and planetary orbits [37] to short- 
distances of 1 mm [38]. 

However, one of the lessons from particle physics and 
QFT has been that SSB clearly involves a scalar field 
(below in Section 3.2) which generates a VED contribu- 
tion to the CCP. Furthermore, SSB is involved in the bag 
model whose scalar has been proposed as responsible for 
confinement in hadron physics (below in Section 3.3) 
since there is no scalar in QCD [39] save for gluon and 
quark condensates. 

Because hadrons comprise most of the matter in the 
universe, such a scalar field must be a gravitational one 
since only gravity is coupled universally to all physics. It 
couples attractively to all hadronic matter in proportion 
to mass and therefore behaves like gravitation similar to 
the scalar Spin-0 component of a graviton. Also, hadrons 
are a primary example of SSB known to exist experi- 
mentally and whose VED is determinable in the labora- 
tory. 

This means that a JFBD-type scalar-tensor theory of 
gravitation [40-42] should be an obvious candidate for 
modifying (9) in order to incorporate the SSB features of 
bag theory and hadron physics into gravitation theory at 
sub-mm scales. Einstein gravity has prevailed experi- 
mentally over JFBD scalar-tensor theory since the para- 
meter Ω appearing in the latter has planetary time-delay 
measurements that place it at best as while Cas- 
sini data indicates it may be  [43-45]. There- 
fore Ω is very large and , although there 
are exceptions to this limit [46]. 

Hence EG and the Newtonian inverse-square law are 
the correct theory of gravity above 1 mm. The use of 
JFBD theory here will only introduce new experimental 
possibilities at sub-mm scales involving hadrons where 
Ω has never been measured. This modification will not 
change experimental EG as we currently understand it. 

10R is the scalar curvature, Rμν is the Ricci tensor, gμν is the spacetime 
metric, Tμν is the energy-momentum tensor, and 48πG c  with 

2c  where G is Newton’s gravitation constant, c is the speed of light

and  ,t x . x
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3.1. Breaking Lorentz Invariance 

A remarkable property of (9) is its cosmological term 
λgμν, a fact that did not go unnoticed by Zel’dovich [6]. 
The energy level of the vacuum state (as in Section 2) 
must be defined. The first obvious point is that the Ein- 
stein vacuum in (9) is Lorentz invariant. Its stress tensor 
Tμν must be the same in all frames. As a consequence, its 
vacuum average value can only be of the type like the 
Einstein term λgμν, 

0 0 vacT g .            (10) 

That the QFT vacuum is Lorentz invariant as in (10) is 
a fundamental cornerstone of QCD [47]. Similarly, the 
vacuum fluctuations (again Section 2) in QCD have infi- 
nitely many degrees of freedom, contributing an infinite 
energy to (10). These are gotten rid of by “renormaliza- 
tion”; physicists are rarely interested in the very high- 
frequency modes, so their zero-point energy is assumed 
to be an unimportant additive constant which can be set 
to zero [47]. 

Now consider the APdS vacuum in (7). Physicists as 
observers can never “see” beyond the Gibbons-Hawking 
event horizon EH . But the global Killing charges in (4) 
are typically conserved, and this guarantees that the vac- 
uum fluctuations on the APdS vacuum for 

r

EHr r  can 
likewise be set to zero by the same convention as in the 
flat Minkowski case for QCD. Regardless of their vac- 
uum fluctuations, their vacuum averaged value vac  
must be zero, in spite of the uncertainty principle, else 
the Killing charges representing the background space- 
time are not conserved. 

Next we come to another important point in this pic- 
ture. In modern cosmology, the notion of phase transi- 
tions plays a fundamental role. These involve SSB and 
contribute to the VED V . The consequence is that the 
effective vacuum potential  U   responsible for SSB 
has two phases [48] and takes on two vacuum states. In 
hadron physics, there is the bag constant  which 
represents an internal negative pressure  that 
subtends the hadron (Figure 1, later). It is not the same 
as 

0B 
p B 

vac  for the background   in (7). 
These multiple values of the gravitational APdS vacua 

are not space-time-dependent. Rather they are tempera- 
ture-dependent. They occur because the vacuum exists at 
a finite temperature produced by curvature-induced 
quantum corrections in gauge theories with scalar fields 
[49]. Spacetime thus has a chemical potential and is 
temperature-dependent in these asymptotic metrics for 
temperature T. It is the presence of thermal matter (had- 
rons) that breaks the Lorentz invariance of these vacuum 
states [50]. 

Hence, during a phase transition in the early FLRW 
universe, the formation of hadrons has locally broken the  

 

Figure 1. The two vacuum states of the cosmological con- 
stant    

Bagλ vacλ

 in the scalar-tensor model. The scalar 

σ-field has undergone a phase transition and breaks the 
symmetry of the temperature-dependent vacuum, creating 
two vacuum states , and . Inside the hadron at 

Bag0, λ λ   . Outside the hadron at vacσ  , the 

gravitational ground-state energy density of the vacuum 
Evac is defined by the background metric ημν in (7) with 

F Lλ λ   for the Friedmann-Lemaitre accelerating universe. 

Both are a de Sitter space. 
 
Lorentz invariance of the global vacuum in (10). A local 
Lorentz boost and Poincaré translation from the outside 
of the hadron, into its interior, do not result in the same 
vacuum. This will become evident in Section 3.2. 

Therefore, the fundamental basis for (9) and (10) can- 
not explain the existence of hadrons in the universe today. 
For this reason, we turn here to the original standard sca- 
lar-tensor theory [40-42] for an answer. The historical 
motivation for the JFBD theory was to create a time- 
dependent, variable gravitation constant  G G t



. That 
is not the purpose here. Rather, the self-interacting scalar 
field ϕ will be regulated by the SSB process and must 
allow both G and λ to have two different states or values, 
one inside and one outside the hadron, that are tempera- 
ture-dependent. EG in (9) cannot accomplish this. 

U3.2. Symmetry Breaking Potentials   

There are many examples of symmetry breaking poten- 
tials  U  . These include the well-known quartic Higgs 
potential for the Higgs complex doublet    

 †  2U       2† ,  

2 0  0

       (11) 

where  and  

 
. (11) has minimum potential  

T

min 0, 2  2energy for  with    . Viewed  

as a quantum field,   has the vacuum expectation 
value min  

  
. Following SSB, one finds  

T

min 0, 2x    , indicating the appearance of  
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the Higgs particle η. In order to determine the mass of η 
one expands (11) about the minimum  and obtains min

  2 2
oU U 3 41

,
4

            (12) 

where 2 21 4oU     is negative definite (wrong sign 
for solving the CCP), and η acquires the mass  

22m . Another example is the more general self-  

interacting quartic case 

  2 21
oU U m 3 4 ,

2 4!

c           (13) 

investigated by [51,52] to examine the ground states of 
nonminimally coupled, fundamental quantized scalar 
fields ϕ in curved spacetime. Uo is arbitrary. (13) is based 
upon the earlier work of T.D. Lee et al. [39,53-57] and 
Wilets [58] for modelling the quantum behavior of had- 
rons in bag theory 

2 3 4 ,
3! 4!

b c

2 2o

d a
U U T           (14) 

where  
U B

 represents the self-interacting scalar 
σ-field as a nontopological soliton (NTS).11 o   is 
the bag constant and is positive. The work of Friedberg, 
Lee, and Wilets (FLW) is reviewed in [58-61]. See also 
[62]. 

In all cases (12)-(14), Uo represents a cosmological 
term,12 and all are unrelated except that they represent the 
VED of the associated scalar field. The terms in  U   
have a mass-dimension of four as required for renor- 
malizability. In the case of (11) and (12), it is the addition 
of the Higgs scalar η that makes the standard electroweak 
theory a renormalizable gauge theory. Also, the elec- 
troweak bosons obtain a mass as a result of their interac- 
tion with the Higgs field η if it is present in the vacuum. 

Note finally that (11)-(14) all have the same basic 
quartic form. The focus here will be on the hadron bag 
(14) in FLW theory. As pointed out by Creutz [63,64] the 
bag is an extended, composite object subject to nonlocal 
dynamics and not subject to perturbation theory. Follow- 
ing symmetry breaking, the soliton bag potential is de- 
picted in Figure 1. The ground-state vacuum 

atc  va vac  is the APdS background defined 
by   in (7) as argued in Section 2 and is given by (1). 
The second vacuum state at 0   is internal to the 
hadron and is given by the bag constant 1B Bag

is determinable by experimental hadron spectroscopy that 
models all hadrons, and is defined below. 

On the other hand, quark and gluon confinement is 
generally attributed to the nonperturbative structure of 
the QCD vacuum. This is the basis for the MIT bag 
model [65,66] which first introduced B and visualized 
hadrons as bubbles of perturbative (PT) vacuum im- 
mersed in the nonperturbative (NP) QCD vacuum. In that 
case, a truly NP VED in Yang-Mills theory has been de- 
rived [67,68]. The difference between PT and NP vacua 
is by definition B, provided of course that someday back- 
reaction of the APdS spacetime is properly accounted for 
in QFT and QCD [69]. 

In what follows, we will show how to resolve CCP-1 
in hadron physics using (14). This will be done in the 
fashion of a modified JFBD scalar σ nonminimally cou-
pled to the tensor field g  in (9). 

3.3. Merging Hadrons with Gravity 

As discussed regarding (14), λ in (9) is actually a 
potential term    U that contributes to   . In that 
manner it couples to the SSB self-interacting quartic field 
σ added to give QCD a scalar field [39] in the FLW bag 
model. However, here σ will be treated as a gravitational 
field in order to address CCP-1. 

 Matter will be limited to hadron bags and     
will be moved to become a part of the bag potential in 
(14) as 1U B Bago    . This transposes λ to the right- 
hand side13 of (9) and gives the scalar-tensor field equ- 
ations 

 
B

. 

o  in (14) is not a bare parameter determinable by 
a calculation, any more than Uo in (12) derives a Higgs 
mass. B is a fundamental parameter of FLW bag theory,  

U 

1
,

2
R g R T     

,MT T T

        (15) 


  
                (16) 

Bag ,B                  (17)  

 where now   
T

 contributes to the σ-field tensor 

 . The matter tensor is T M T   in (9), and their 

sum 


T
  in (16) is conserved by the Bianchi identities. 

We will derive T 
  below using scalar-tensor methods. 

Note that (17) resolves the mass dimensionality of λ and 
B in that both sides of the equation have mass dimension 
two. 

This amounts to moving λ about within the total La- 
grangian £ T U 
S S S S

 for the action involved,  
 Gravity Matter ,G M  . Recalling that the Lagrangian 

for the FLW bag model FLW£  is that for QCD 
 £ £ *£q C  supplemented by the nonlinear σ-field   
plus a quark-σ mixing term £q 

*£ £ £ £ £ ,

, 

      (18) FLW q q C    11The asterisk in (14) is used to indicate that . T *σ is a chiral SB 0d 
0dterm that represents the cloud of pions surrounding the bag. 

restores the symmetry. 
12Uo in (13) and (14) is an absolute number that is not experimentally 
measurable. This will become apparent in the definition of B that follows.

13Geometry in EG is determined by gμν—not which side of the equation 
λ is on. Also λ can only be introduced once, not both in (9) and (14) else 
there is double-counting. 
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the *£  term here will become the σ-field interaction 
term with scalar-tensor gravity ,G

*£ £   in the total 
Lagrangian that includes a nonminimally coupled Ein- 
stein-Hilbert term  as 



£ £ £ ,q q C  

JFBD£

Total JFBD£ £ £ 
    (19) 

where 

  ,£ ,G
* 1

£
2

U
   

£

[59

         (20) 

and  will be introduced shortly as (27). JFBD
The σ-field may be interpreted as a gluon condensate 

arising from nonlinear interactions of the color fields £C  
]. Regardless of its origin and composition, this scalar 

is the basis for the model under discussion.  
For quarks ψ, scalar σ, and colored gluons C, these 

terms in (18) and (19) are 

 £ ,i D m
q              (21) 

£ ,fq                  (22) 

 1

4 2



1

£ ,c
C s cg A   F F     (23) 

where counterterms are not shown. m is the quark flavor 
mass matrix, f the σ-quark coupling constant, gs the 
strong coupling, Fμν the non-Abelian gauge field tensor, 
Dμ the gauge-covariant derivative, and 



the gravi- 
tation-covariant derivative (also in Fμν) with the spin 
connection derivable upon solution of (15) above, de- 
fining the geodesics.  

 

 is the phenomenological 
dielectric function introduced by Lee et al. [53-55], 
where  and vac 0 1   0  in order to guarantee 
color confinement. The SU3 Gell-Mann matrices and 
structure factors are λc and fabc respectively. 

Variation of (18) which neglects gravity in (19), using 
(20)-(23), gives the FLW equations of motion for σ and 
ψ, 

 ' ,U f  



 

– – 0,m f  

         (24) 

i D     (25) 

if one neglects the gluonic contribution (23). □ is the 
curved-space Laplace-Beltrami operator, and  

d dU U     is 

2 3 .
4 2 3!

d b c
U T a   

0d 

         (26) 

A variant adopts  to simplify (26) when pion 
physics is not involved. 

In the same fashion that   
  

1  

 is a function of the 
σ-field, κ is likewise as . For purposes here, the 
original JFBD ansatz  is adopted although there 
are others. This ansatz directly relates to (17). Taking 
into account (20), the nonminimally coupled scalar- 

tensor Lagrangian is 

 

JFBD

matter

£

1
8π£ .

2
g R U




   


          

 (27) 

The task now is to complete the scalar-tensor picture. 
The energy-momentum tensor in (16) is comprised of 
two terms. The first is the usual matter contribution MT  
which includes all matter fields in the universe except 
gravitation, 

   
 

2 M MM
g L g L

T
gg g


   

    
 . 
   



*£

  (28) 



It is thereby independent of the gravitational σ-field.14 
The second term in (16) T g      is 

new and must include the effects of ,G

    
£   in (20). Con- 

solidating all of the σ terms and introducing a superscript 
“R” for renormalizable, we have in short-hand derivative 
notation 

 ; ; ; ;

1
.

2
RT g g U 

           

0MT  
T

  (29) 

With (28) and (29), variation of (27) will now give the 
final equations of motion. 

A principal assumption follows Brans and Dicke (BD). 
In order not to sacrifice the success of the principle of 
equivalence in Einstein’s theory [11], only gμν and not σ 
enters the equations of motion for matter consisting of 
particles and photons. The interchange of energy be- 
tween matter and gravitation thus must follow geodesics 
as assumed by Einstein [70]. Therefore, the energy- 
momentum tensor for matter is assumed to be conserved 
in the standard fashion, .15 ;

The derivation of 
  is a textbook problem [70] 

except that the latter was a classical treatment following 
BD—both of which neglected λ, any potential  U 

 U
, 

and the renormalization restrictions on 

     
     

;
; ; ; ; ;

 .

T

A B C

D E g U






 in (14). 
The most general symmetric tensor of the form (29) 

which can be built up from terms each of which involves 
two derivatives of one or two scalar σ-fields, and σ itself, 
is 

     

 

        

    

  

 

 ; ; ; ; ; ; .RT U  

  (30) 

We want to find the coefficients A, B, C, D, and E. 
Taking the covariant divergence of (29) gives 

            

matter£ML 

   (31) 

14In (28), . 
15Exceptions can be made, but will not be entertained here. See the 
earlier study in Ref. [71].
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and that of (30) results in 

   
   
   
   
    

;

; ;

;

;

2

T

A B

A D

A B

D C

E U U

 
 







   

 
   
  

;

; ; ;

;

; .

C

E

 


 





    

  

 

 



  

 

   

   
   

  

     

 



 

  


  

 

1

   (32) 

Recalling the ansatz    , next multiply (15) by σ 
and take its divergence, 

;

1 1

2 2
g R

;

; ;8π 8π .M

R g R R

T T




  

  
 

   
 

   
 

  

  (33) 

The first term on the l.h.s. of (33) is zero by the 
Bianchi identities; the first on the r.h.s is zero by the 
principle of equivalence. The net result is 

; ;8π .T
1

2
R g R   

 

R

    
 

    (34) 

Using an identity [70] involving the Riemann tensor 



   ;;
 .

  

0f 

, the first term in (34) is 

; ; ; ; ; ; ;R   
           (35) 

Take the trace of (15) and (16) for R. Next modify (24) 
to include the gravitational coupling with σ (still assum- 
ing ) to produce the trace for MT . Lastly obtain 
the remaining trace for T  from (30). These three 
traces are 

,MR T T  

 ' ,U    

 
 
 

;
;

4 .

B

C D

 

               (36) 

1
12MT           (37) 

 
 
 

4

4

T A

E U

   

  

 

  


  



 
 

 
    

1

;
;

4

4 .

C D

E U



 

 



     (38) 

It follows that the collective trace for R is 

 
 

12 '

4

R U

A B 

 

 



  

  

 

 



  

  

  

  



 

 

 





  (39) 

Placing (39) into the left-hand-side of (34) with some 
re-arrangement gives 

   
        

     

;

; ; ;

1
1 ;

; ; ; ;;

1
1 ;

1

2

1 2 4

1 2 2

0 1 1

1 2 2 ' 4 .

R g R

A B

C D

U E U


 


 




  



     

     

   

     



  

  
 

    
    

   

   



 

 E

  (40) 

In order that (34) be true, the bracketted coefficients in 
(32) and (40) must be equal term by term. Renor- 
malization problems created by   are addressed in 
Ref. [71]. These include the insolvability of a quintic and 
the Galois-Abel theorem.16 Finally, one encounters the 
result   1

11 2 3 2A         which prompts the de- 
finition 

1
1

3
,

2
   

1

              (41) 

  in (37) is whereby 

1

2
.

3 2
 

 
              (42) 

The desired energy-momentum tensor for the σ-field 
follows as  

 

;
; ; ;2

; ;

1

2

1 1
.

T g

g g U

 
    

   

    


   
 



     

       
 (43) 

Inserting (43) into (15) and (16) gives the full field 
equations 

 

;
; ; ;2

; ;

1

2

8π 1

2

1 1
,

M

R g R

T g

g g U

 


    

   

   
 

   
 



  
 

       

       

0f

  (44) 

while (43) in (37) gives the scalar wave equation (for 
 ) for the  -field 

 8π
' ,

3 2
T U   

 
          (45) 

where 1
1 3 2     and κ1 is the source of  -  

coupling to the traditional trace MT  in JFBD theory. 
There is now coupling to the trace  in (45) compared 
to (24). If 

T 

3 2   , (44) is a conformally mapped set 
of Einstein field equations. 

 E   1E 16Hence   must be  . 
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3.4. Characterizing Scalar-Tensor Gravity and 
Hadrons 

In order to visualize the results (44), (45), and (25), Fig- 
ure 2 illustrates this scalar-tensor approach to CCP-1. 

Bag Boundary Conditions. Bag surface boundary con- 
ditions are discussed in Ref. [72], p. 103, where the fol- 
lowing can be adopted:  0n F

0
 for gauge fields; and 

   for quark fields. As a problem in bubble dynam- 

ics, one uses  11 4 J Jn B 


  

 

 F F  for a  

quark current J and surface tension Σ. Alternatively the 
more recent Lunev-Pavlovsky bag with a singular Yang- 
Mills solution on the bag surface [73-76] can be utilized 
(also probably eliminating the need for  

 

 in (23), a 
point that is yet to be addressed). 

From the dimensionality of U 

 U

 in (14), we see 
that a has mass-dimension two or m2. Taking the deriva- 
tive   as in (26) along with (45), the  -field has 
mass 

.m a 

 

                 (46) 

Therefore it is a short-range field with only short- 
range interaction. (45) can be re-written 

 

2

,MU T f
8π

3 2

m 

 



 
 





U 

 e r  m

   (47) 

where  is the remainder of (26) after moving the 
aσ term to the left-hand side. Hence a static solution must 
have a Yukawa cutoff  where   . 
 

 

Figure 2. The existence of two vacuum states for      

characterized by Equations (16), (44), (45), and (47). The 
exterior is traditional Einstein gravity where F Lλ λ  . (a) 

A single hadron bag is depicted with 1
BagB  κ λ

T

; (b) The 

general interior solution is depicted as a many-bag problem 
using a Swiss-cheese (modified Einstein-Straus) model with 
zero pressure on the bag surfaces. Applicable boundary 
conditions are in [72-76]. 

This is characterized in Figure 2 by indicating that the 
energy-momentum tensor 

  is confined to the hadron 
which is consistent with the original conjecture of FLW 
that the σ-field be related to confinement. 

Bag Interior Conditions. By virtue of the bag condi- 
tion (17), several new features come into play. First, this 
relation is specific to the interior of the bag. Second, the 
BD ansatz 1 1G    

0B 

 is now tied to the cosmologi- 
cal parameter λ too.17 This means that when the phase 
transition and SSB occur, there exist two de Sitter spaces 
in Figures 1 and 2. Both λ and G can differ between the 
two vacuum states. When  (no bags), vac 

1G

 
in Figure 1, restoring itself to the ground-state vacuum 
of the APdS background (Section 2). Similarly,  

G

 

 
is not guaranteed in theory to be the same in the hadron 
interior as Newton  outside. This is a matter for experi- 
mental investigation (Section 4.2 below). 

Summary. Semi-classically speaking, the scalar-tensor 
theory of gravity in the presence of the QCD Lagrangian 
representing FLW bag theory in (18) and (19) has no 
apparent problem associated with the existence of two 
vacuum states, one in the exterior and one in the interior 
of hadrons. 

This model has been done entirely in de Sitter space, 
whereby the principle of compatible asymptotic Killing 
charges (Section 2) has not been broken. Thus, CCP-1 
does not appear to apply to scalar-tensor gravity when 
nonminimally coupled to hadron physics. The model al- 
lows for two vacuum states, as bags indicate experimen- 
tally. One is the F-L ground state F L  

  
 and the 

other is the hadron interior . Bag

However, the issue of vacuum stability for this model 
is a crucial assumption because one can argue that it is 
unstable to radiative corrections. But radiative correc- 
tions have long been suggested as the origin of SSB to 
begin with [77]. These similarly are important for dy- 
namical SB (DSB) models as well [78,79]. Since SSB 
has been adopted for the basic quartic potential  U   
in (13) and (14), then there has been an implicit assump- 
tion that the scalar-tensor configuration presented here is 
stable to radiative corrections. Vacuum stability of this 
model is a subject for further study, in particular when 
QCD confinement is more thoroughly understood. 

4. Cosmological Event Horizons, Finite 
Temperature, and Experiment 

The connection between λ and graviton mass (Appendix) 
has a bearing upon identifying the APdS spacetime as the 
ground state vacuum for the CCP with its associated 
Killing charges in the AD formalism, in order to rectify 
CCP-2 in Section 2. Because there exists the G-H event 
horizon in such cosmological spacetimes, any association 

17λ as a VED is thereby possibly related to the origin of G. 
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of λ with a graviton mass is very pertinent even if it is 
gauge dependent. 

In the Appendix as (67), it is shown in the weak-field 
approximation that a graviton mass 3mg   is asso- 
ciated with a small λ such as (1) for de Sitter spacetime.  

It is equivalent to the surface gravity 3C   found  

by G-H [25]. These in turn relate directly to the radius of 
the event horizon EH  defined by the singularity in (2) 
and (3) at 

r
1

EH C

Next, finite temperature effects must be discussed and 
this is done below in Section 4.1. Experimental aspects 
follow in Section 4.2 and are recapitulated in Table 1. 

r  

 U

. 

4.1. Finite Temperature Effects 

A digression on the effect of finite temperature T upon 


 

 is pertinent because it is relevant to experiment. 
The subject is also pertinent to the basic concept of a 
temperature-dependent spacetime in gravitation theory, 
and equally so to the topic of cosmological event hori- 
zons. 

The subject is treated in the usual fashion [80-82]. The 
classical, zero temperature potential U   in (14) 
becomes        , , ,T V T V U S FV       . This 
involves scalar VS and fermionic VF correction terms for 
chemical potential μ, by shifting σ as  T    . 
The result is a temperature-dependent cosmological bag 
parameter [83,84]    , ,T B T 

 0B

Bag Bag  which 
decreases with increasing temperature T until the bag in 
Figure 2 dissolves and symmetry is restored 

  

  in 
Figure 1. 

In such a case and in simplest form [85], the bag mo- 
del equations of state are 

  4 ,SBT k T B              (48) 

  41
,

3 SBk T B p T            (49) 

2π

30SB

7
,

8B Fk d d   
 

0T 

          (50) 

where energy density ε and pressure p now have a tem- 
perature dependence  . The Stefan-Boltzmann 
 
Table 1. Summary of the masses, VED’s, and λ’s in space-
time. 

Spacetime 
Region 

mg 
(cm−1) 

mg 

(eV) 
mσ 

(GeV) 
VED, B 
(GeV)4 

λ 

(cm−2)

Hadron exterior  

0F L     0.6 × 10−28 1.1 × 10−33  2 × 10−47 0.7 × 10−56

Hadron interior      

MIT bag [65] 2.6 × 10−7 5.2 × 10−12 a  0.0045 2 × 10−13

Y-M cluster [67] 1.7 × 10−6 3 × 10−11 a  0.02 9 × 10−12

(SB) constant kSB is a function of the degeneracy factors 
dB for bosons (gluons) and dF for fermions (quarks and 
antiquarks). The absence of the baryonic chemical poten- 
tial μ in (48) is a valid approximation for ongoing ex- 
periments involving nucleus-nucleus collisions. All are 
relevant to quark-hadron phase transitions and the quark- 
gluon plasma (QGP). 

4.2. Experimental Aspects 

As mentioned previously (Section 3), EG appears to be 
the correct theory of gravity above 1 mm. The subject 
here is below that scale in the Large Hadron Collider 
(LHC) realm of particle and nuclear physics. Granted, 
the treatment in this paper has neglected the standard 
model in order to present a tractable discussion of had- 
rons, gravity, and the CCPs. 

Within the hadron bag. Here one has g 0m   due to 
(17) and (67). Adopting a simplified view of the hadron 
interior and a bag constant value from one of the con- 
ventional bag models, the MIT bag [65,66] where  

1 4 146 MeVB  360 MeV fmB  
13 22 10 cmB

 or , then  

Bag
   

7 12.6 10 cmm
 follows from (17).18 Using (67) 

in the Appendix, a graviton mass g
  

125.2 10 eV

1 64 10 cmm  

 
or  is found within the bag. Although this 
appears to represent a Compton wavelength of  

g or range of 1 62 10 cmm  1 2 g , it is 
derived from Bag  and is only applicable for the interior 
solution. This is depicted in Figure 2. It has no range 
outside of the bag where Bag . 0 

40.02 GeVYMB 
12 28.7 10 cmYM

A similar calculation for the Yang-Mills condensate 
[67,68]  gives  

   6 11.7 10  cmgm   
113 10 eV

and or  
, and 1 51 2 3.5 10 cmm  

NG G
G

BagG

g

Regarding G, adopting Bag ewton  is the sensible 
assumption to make. However, Bag  is a free parameter, 
independent of B. It has never been experimentally 
measured. For any B determined in Table 1,  can 
be anything except zero.19 

. 

The bag per se. The σ-field has a mass (46) in Table 1 
subject to experimental measurement, perhaps at the 
LHC in scalar gluon jets related to ongoing boson 
searches to complete the Standard Model [86,87]. It is 
conceivable that evidence for both the Higgs boson and 
the scalar σ-field used here for the bag can be found.20 

18In terms of units, the following conversions are helpful:  
4 5 31 MeV 2.3201 10 gcm , then   27 11.8658 10 cmg     or 

22 2 44.3288 10 cm  MeV     . Thus 13 2

Bag 2 10 cmB     
3 5 4gcm 2.3201 10 MeVB B  

 for 

       NewtonG G. This assumes . 
19This would move the Planck mass, M Planck Bag1 G  . 
20The recent suggestion of Friedberg and Lee [88] that the Higgs itself 
is composite and not elementary is very relevant to the experimental
interpretations. See their references to earlier work on this subject [e.g. 
89] and Lee’s website. 
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External to the hadron. By taking the well-known 
JFBD limit  in (44) and (45), we in fact obtain 
Einstein gravity (for exceptions see Ref. [46]) due to the 
experimental limits [43-45]. The small graviton mass mg 
in (67), on the other hand, results in a finite-range gravity 
whose mass is g

2 3m 


1 28 10 cm0.6m    331 10 eV

 432 10 eV  56 210 cm

 or 1. . 
This follows from the vacuum energy density  

 which is equivalent to    ,  

for the de Sitter background   in (7) for the F-L 
accelerating universe [7,8]. 

Obviously,  in the exterior. Newton

Summary. The results for this model are as follows. In 
the exterior we have a graviton mass  

 and a range of  

G G

28 110 cm  0.6gm
1 278 10 cm

1

1 2 gm which is approximately the Hubble 
radius. That is, gravitation outside of the bag is finite- 
ranged reaching to the G-H cosmological event horizon 

. Gravitation within the bag is short-ranged. C

Clearly the sign of λ must be positive (de Sitter space) 
in (67) in order that an imaginary mass not be possible. 
The latter represents an unstable condition with patho- 
logical problems such as tachyons and negative proba- 
bility. (67) is a physical argument against such a circum- 
stance. 

EHr 

5. Assumptions and Postulates 

At this point the fundamental postulates that have been 
made are summarized. These have been discussed and 
alluded to throughout but are now recapitulated. 

1) Einstein gravity is the true theory of gravity at 
length scales above 1 mm. 

2) The gravitational field g  couples minimally and 
universally to all of the fields of the Standard Model, as 
does Einstein gravity [11]. However, g  also couples 
nonminimally to the composite features of FLW  and 

. The  term represents hadron physics which  
£

£

FLW QCD£
1

QCD FLW

includes QCD in the exact limit  (see Ref.  
£

£

[59], p. 19). The JFBD ansatz   

£

 is assumed. 
3) The nonlinear self-interacting scalar σ-field re- 

presented by Lagrangian 
  is a gravitational field, 

because it couples universally to all hadronic matter. 
Since σ has a mass (46) it and T

  in (16) have a cutoff 
and are confined to the hadron in Figure 2(a). 

4) General covariance is necessary in order that the 
Bianchi identities determine conservation of energy- 
momentum from T

  in (15). However, in the hadron  

exterior, MT T 
 

0f 

. That means matter follows Einstein  

geodesics and obeys the principle of equivalence as 
expected there. 

5) Stability must be assumed for δTμν in the Appendix. 
Use of the harmonic gauge,   in (53), suppresses 
the vector gravitons and manifests a tiny graviton mass 

g  , but breaks general covariance. The con- 
sequence is not measurable within the observer’s cos- 
mological event horizon. 

6) Temperature-dependent quantum vacuum fluctu- 
ations result in a broken vacuum symmetry, producing 
two distinct vacua containing two different vacuum 
energy densities F L   and Bag . Lorentz and Poincaré 
invariance are broken by T 

  in the interior of hadrons. 
Because  T  , this broken symmetry is subject to 
restoration. 

7) The stability of the bag is assured by the vacuum 
energy density B which is a negative vacuum pressure. 
Similarly, the scalar-tensor representation of the hadron 
interior is stable against radiative corrections. 

8) The principle of compatible asymptotic states (Kill- 
ing charges) is assumed. This means that the global ener- 
gies of flat ADM metrics are not compatible with those 
of APdS metrics. ADM energies cannot be consistently 
compared globally with AD energies in the definition of 
ground-state vacua for de Sitter space, lest infinities be 
introduced. Hence, derivations in flat Minkowski space 
are not relevant to the CCP if (1) is accepted as evidence 
for λ contributing to the acceleration of the universe in 
FLRW cosmology whose current phase is an APdS met-
ric. 

6. Conclusions 

A tenable model for the origin of hadron bound states in 
bag theory has been shown to derive from the cos- 
mological constant λ in scalar-tensor gravity, noting that 
the familiar Higgs mechanism does not account for the 
mass of composite particles such as hadrons. The bag 
model of Friedberg, Lee, and Wilets (FLW) is used in- 
stead. 

According to the development in Section 3, a scalar- 
tensor treatment of gμν nonminimally coupled to hadrons 
using the nonlinear self-interacting scalar field σ results 
in a model of gravity that has two different ground-state 
vacua. Such a theory exists and resolves CCP-1 adopting 
the assumptions made here. Experiment and theory must 
eventually settle the differences between the MIT bag 
model and the Yang-Mills condensate solution for bag 
constant B in Section 3.2, but this does not alter these 
results. As a model, this point of view represents a ten- 
able strategy for reconsidering CCP-1 and CCP-2 from 
hadron physics to cosmology. Without directly relating 
the bag constant to the global energy in APdS spacetime, 
any of the other proposed “solutions” of the CCP(s) are 
incomplete. 

There is little surprise regarding CCP-2 for the large 
disparity between ground-state VEDs when derivations 
in flat Minkowski spacetime are being directly compared 
with those from APdS in cosmological gravity. This 
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breaks the principle of compatible asymptotic states, by 
comparing energies derived from spacetimes that have 
entirely different Killing charges and global energy pro- 
perties. A great deal of work on APdS structure and its 
relation to VEDs is therefore required before we will 
truly understand the CCP. 

Finally, conventional massive gravity g PF  has 
not been used in the strategy proposed here to address the 
CCP PF . This investigation involves only λ and 
its relationship to asymptotic infinity, with a graviton 
mass mg (65) and (67) that manifests itself by suppress- 
ing the vector gravitons fμ in (53). In this study, mg arises 
instead by introducing 

m m

 0m 

0   into the well-known 
Regge-Wheeler problem (see Appendix). 
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Appendix: The Cosmological Constant as a 
Gravitational Mass 

It was shown some time ago by this author [90] that the 
cosmological term λ in General Relativity can be inter- 
preted as a graviton mass in the weak-field approxima- 
tion, by introducing 0   into the Regge-Wheeler pro- 
blem.  

Note with caution that an unqualified graviton mass is 
beset with numerous problems in QFT. Tμν in (9) has an 
admixture of Spin 2, three Spin-1, and two Spin-0 com- 
ponents. These can lead to loss of unitarity, negative en- 
ergy states, and ghosts.21 They possess 16 degrees of 
freedom which are reduced to 10 by energy conservation, 
then to six (6) by symmetry  T T   leaving Spin-2, 
Spin-1, and two Spin-0 helicities. Invoking a Lorentz- 
type gauge condition such as   in (53) that fol- 
lows in Section A.2, eliminates the Spin-1 vector gravi- 
tons. A pure Spin-2 plus a Spin-0 that is coupled to the 
trace 



0f 

T T 


0

 remains. If trace-free (such as empty 
space), pure Spin-2 remains. If the trace and the Spin-0 
term remain, a scalar-tensor theory survives [93] which is 
what we assume here to begin with. 

The above Spin-2 problems in fact motivated Pauli 
and Fierz [94] to introduce a graviton mass mPF (with 
  ) patterned after the Klein-Gordon mass in particle 
physics using the Lagrangian  

 2 2h h 
 

£

£ 1 4PF PFm h  so as to achieve a mas- 

sive graviton without loss of unitarity. PF  and its as-
sociated mass PF  are never introduced in this study 

. There also has been controversy involving 
mPF graviton propagators in the massless limit PF  
known as the vDVZ discontinuity. This has been re- 
solved only recently (Section A.4 below). 

m
0

0m 
 PFm 

In Sections A.1 and A.2 the graviton mass associated 
with λ is derived. Section A.3 shows that there is no hid- 
den λ-term in the curved-space Laplace-Beltrami term 
that cancels out the result. Section A.4 discusses PF , 
the vDVZ discontinuity, its resolution, and unitarity of λ 
as a graviton mass. Lastly, the issue of relaxing the as- 
sumption   in (53) that suppresses the vector gra- 
vitons, and why is also discussed. 

m

0f 

A.1. Weak-Field Limit, Schwarzschild-de-Sitter 
Metric 

The curved background first adopted is the Schwarz- 
schild-de-Sitter (SdS) metric (2) and (3) applied to the 
Regge-Wheeler-Zerilli (RWZ) problem [95-100] for gra- 
vitational radiation perturbations produced by a particle 
falling onto a large mass 

One considers a small perturbative expansion of EG (9) 
about the known exact solution   given in (2)-(3) 
subject to the boundary condition that g  becomes 



M  0 with   . 

  as . The metric tensor r  g  is thus as- 
sumed to be (7) g h   h where   0h g

 is the dy- 
namic perturbation such that   

The wave equation for gravitational radiation hμν fol- 
lows as (56) below, derived exactly from the RWZ for- 
malism. Perturbation analysis of (9) for a stable back- 
ground 

.  

 0g  

 

; ; ;
; ; ; ; ;

; ; ;
;

2

2 .

h h h h

h h

h R h R

T

   
        

   
   


  





 



 produces the following 

    
   

  

 

T

    (51) 

Stability must be assumed in order that   is small. 
This equation can be simplified by defining the function 
(introduced by Einstein himself) 

1

2
h h h               (52) 

and its divergence 
;f h                (53) 

Substituting (52) and (53) into (51) and re-grouping 
terms gives 

 

 

; ;
; ; ;

2

2

2 .

h f f f

h R h R h R

h R h R

T

 
       

   
     


  





 



  

  

  

 

     (54) 

Now impose the Hilbert-Einstein-de-Donder gauge 
which sets (53) to zero  0f  , and suppresses the 
vector gravitons. Wave equation (54) reduces to 

 

;
; 2

2

2 .

h h R h R h R

h R h R

T

    
       


  



 



  

  

 

  (55) 

 0T  , Ricci-flat  0RIn an empty   space 
without  4 0R   , (55) further reduces to 

;
; 2 2h R h T  

            (56) 

which is the starting point for the RWZ formalism. 

A.2. Weak-Field Limit, de Sitter Metric 

The Schwarzschild character of the RWZ problem above 
will now be relaxed, with 

21Since a ghost has a negative degree of freedom (DOF), more ghosts 
must be introduced due to perturbative Feynman rules that over-count 
the correct degrees of freedom [91,92]. 

  again diagonal, but 
0m   and 0   in (2) and (3). The wave equation of 
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paramount importance will follow as (64). 
We know that the trace of the field equations (9) gives 

4 R T    , whereby they become  

1
.

2
T g T R g         

      (57) 

For an empty space ( 0T   and T ), (57) re- 
duces to de Sitter space 

0

R g 

4R

              (58) 

and the trace to 

0

. 
Substitution of R and Rμν from (58) into (55) using (52) 

shows that the contributions due to    are of second 
order in hμν. Neglecting these terms (particularly if λ is 
very, very small) simplifies (55) to 

;
; 2 2h R h T   .      

R

    (59) 

One can arrive at (59) to first order in hμν by using gμν 
as a raising and lowering operator rather than the back- 
ground ημν—a result which incorrectly leads some to the 
conclusion that λ terms cancel in the gravitational wave 
equation. 

Note with caution that (59) and the RWZ equation (56) 
are not the same wave equation. Overtly, the cosmologi- 
cal terms have vanished from (59), just like (56) where λ 
was assumed in the RWZ problem to be nonexistent in 
the first place. However, the character of the Riemann 
tensor  

  is significantly different in these two re- 
lations. 

Simplifying the SdS metric by setting the central mass 
M  in ημν to zero, produces the de Sitter space (58) of 
constant curvature 21K R

  ,g g g  

  ,g g g 


, where we can focus on the 
effect of λ. The Riemann tensor is now 

R K g       (60) 

and reverts to 

R K g  
       (61) 

for use in (59). This substitution (raising and lowering 
with ημν) into (59) next gives K and λ term contributions  

 
 

2

2

2 ,

K h h

h h h h hh

h h h

 

 
    


   





 

  

   

h h
     (62) 

to second order in hμν. Recalling that curvature K is re- 
lated to λ by 3K  , substitution of (62) back into (59) 
gives to first order 

;
;

2 2

3 3
h h 2 .h T            (63) 

There is no cancellation of the λ contributions to first 

order. Noting from (52) that  1 1 2h h   , then a 
traceless gauge 0h means either that  or 0h  2   . 
Since 4  , (63) reduces to 

;
;

2
2

3
h h T
              (64) 

in a traceless Hilbert-Einstein-de Donder gauge where 
; 0h 

  and 0h 
  . (64) is a wave equation involving 

the Laplace-Beltrami operator term ;h ;


   for the Spin- 
2 gravitational perturbation h bearing a mass 

2 3gm 

 2 0m  

                (65) 

similar to the Klein-Gordon equation  for  

a Spin-0 scalar field   in flat Minkowski space. Sec- 

tion A.3 below demonstrates that ;
;h h

  
0r 

 in (64) 

for the limit . From (64) and Section A.3 then 

 2 2gm h T   

1r 

         (66) 

in the locally flat-space limit .22 
By rescaling h  as 2 11 2h h  in (59) and (64), (65) 

becomes 

3.gm 

m 

              (67) 

which is the surface gravity C g  of the cosmologi- 
cal event horizon identified by G-H [25]. 

A.3. Locally Flat Limit of Wave Equation (64) 

It is necessary to demonstrate that hidden λ-terms arising 
from ;

;h 
 

0r 
 in (64) do not cancel the mass term in  

(64)-(67) when  and ; ,
; ,h h h 

      

2 2dr 
0r 

, the  

d’Alembertian in a locally flat region of dS studied in 
Section A.2. λ-terms appear but cancel out as shown be- 
low. 

To simplify calculations, note that the  in (3) is 
of second-order in r and negligible as . Thus the 
focus is on  c r 0M 

c
 (with ) in (3) appearing in the 

diagonal of ημν and its inverse ημν. Hence, 00  
00 1c

 and 
 1

11 c, while  11 c  and . Also, note that  

  1c r    1
 1c r

  0r  and  as . 
Introducing the Christoffel symbol  , we can write 

   

;
;

; ;

, ; ; ;
.

h

g h

g h h h


 


  

  
       

   (68) 

       

22The symbol □ in this Appendix refers specifically to an approximately 
flat space  1r   in (66), as opposed to its more general curved-

space meaning in the text used in (24) and (40)-(47). See the close of 
Section A.3. 
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Define 

 ;
;h h ,A B C           (69) 

where 

,
, h h 

                (70) 

, ,

, ,

A h h

h h

,h  
    

  
   

  
  



  

 


 (71) 

   , ,
h

 B h
       

 

        (72) 

 
  .

C

h

h h

h

h h

 
  




 



    
   

  
    

   
   

 
  

       
   

    

  

  

 
  

 

 

  

B

 (73) 

  is the term of interest. A  and C  contain 
terms of second order, or terms that vanish in locally flat 
space  1r 

r
. Furthermore, only the first-order second 

derivatives in Bμν remain as .  These terms are 0

 
 

, , ,
, , ,

, , ,
, , ,

2
B h

h

 
       

  

1 

        

   

   

,B F G H

    
 (74) 

which can be defined as 

   
            (75) 

where 

   1

2
F h h
              (76) 

, ,
,

1
G h h  

,2                 (77) 

, ,
,,

1

2
H h h  

            

2 2 2 

    (78) 

In this approximation, . Also  t 
2

00 00 2 3      and 2
11 11 2 3     . 

We find that 

   

   

00
0 0 0 0

1 1

1

11
1 1

2
1

2

F h h

h h

    

 

  



    



 

 

 

   

 (79) 

whereby (all other terms do not contribute) 

00
00 00 00 00

2

3
F h h       

 

     (80) 

11
11 11 11 11

2
.

3
h h       F       (81) 

Next 

11 ,1 ,1
11, 1 11, 1

1

2
G h h              (82)  

whereby (all other terms do not contribute) 

01 01 10 10 11 11

1 1 2
; ;

3 3 3
G h G h G h .          (83) 

And lastly, 

11 , ,
,1 1 ,1 1

1
,

2
H h h 

             (84)  

whereby  

00 11 11

01 01 10 10

2
0; ;

3
1 1

; .
3 3

H H h

h H h



 

 

 
        (85) 

H

Summarizing, the two contributing terms to F  in 
(80) and (81) are equal and opposite thereby cancelling 
in (79). Thus,  0F  . Similarly, the collective Gμν and 
Hμν terms in (83) and (85) cancel one another, giving  

0G H   0B B
 
  . Hence  in (75) and (72).  

Therefore ; ,
; ,h h h 

      

£

in the locally flat limit 
of (64). 

A.4. Problems with the Pauli-Fierz (P-F) 
Lagrangian, Averting the vDVZ 
Discontinuity, and Unitarity 

The traditional method for introducing a graviton mass in 
Spin-2 QG is using the P-F Lagrangian PF  because it 
does not introduce ghosts. Its Spin-0 helicity can survive 
in the massless limit, also leading to a JFBD scalar-  
tensor theory of gravitation [93] as used here. 

Problems with the P-F Lagrangian. Unfortunately, 
P-F was originally done on a flat background ημν in (7) 
which possibly violates the principle of compatible as- 
ymptotic states discussed earlier in Section 2.1. There- 
fore, it needs to be re-analyzed. Secondly, it has not 
seemed to reproduce EG when m DVZ below).
Thirdly, P-F ignored 

0PF   (v  
 0 . Th  e work-around for 

this oversight is to conduct the P-F method with ημν rep- 
resenting a de Sitter space. This has been done by Higu- 
chi [101,102] who obtains (66) above when one assumes 

0PFm  , a point that reinforces the derivation and con- 
clusions in Section A.2. 

 

0PFm

vDVZ Discontinuity. The subject of finite-range gravi- 
tation resulted historically in what is known as the vDVZ 
discontinuity [93,103-111]. In the linear approximation 
to EG with  , the zero-mass limit  0PFm 
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0m 
does not produce the same one-graviton propagator as 
the PF  case. The consequence of the one-graviton 
approximation is that giving a nonzero mass g PF

Co t © 20

m m  
to a graviton results in a bending angle of light near the 
Sun that is 3 4

h

 that of Einstein’s value, and the differ- 
ence may be measurable [93]. The resolution of this QG 
dilemma is making mg small enough and not using per- 
turbative approximations [112]. It has since been found 
that there is no mass discontinuity in the full nonlinear 
theory [109,110] and none in supergravity [111]. The 
one-graviton exchange approximation does not produce 
the correct result for the full nonlinear QG problem 
[112]. 

Unitarity. Symmetry h   and energy conser- 
vation reduce the 16 unknowns in hμν to six (6). By sup- 
pressing the vector gravitons 



 0 f  four (4) more are 
eliminated, leaving only two (2) for the supposedly 
“massless” 2S + 1 graviton—except that the cosmologi- 
cal term λ has survived in (63) and (64) as a mass term. It 
is a “transverse-traceless” gauge ( ; 0h 

  and 0h 
  ) 

with all of the other spin admixtures removed. λ survives 
because the background 4R   is a curved de Sitter 
space and can be viewed as the origin of mass in (65)- 
(67). 

For the massive Spin-2 problem with mPF, the same 
procedure does not give the same result. The Hilbert-type 
gauge condition   does not produce four addi- 
tional constraints, but rather reduces the field equations 
in conjunction with energy conservation to provide a re- 

lation between the traces h and T. That provides only one 
more constraint, reducing the variables to five (5) or 

0f 

2 1S   for the Spin-2 massive graviton.23 
Bag Exterior, Free Graviton. From the discussion in 

Section A.2 and without the use of a P-F mass, the free 
graviton has a tiny F L  -induced mass g  
(Table 1) in the empty space of the hadron exterior that 
appears naturally in GR. This obviously has a smooth 
zero-mass limit g  as 

3310 eVm 

0m  0 

1

, as can be seen in 
(67) above. It has a range equal to the cosmological event 
horizon radius EH Cr    (Section 4). Such a small mass 
makes mg immeasurable. 

Bag Interior, Confined Graviton. In the interior case, 
there is a significant increase in Bag 

0f 

T 

 due to the bag 
constant B as seen in Table 1. The vector gravitons are 
coupled to the gluon fields via   in (53), relaxing 
that gauge condition. The Spin-0 graviton component is 
coupled to the σ-field via the trace  in (45).  

There is need to analyze strong interaction physics 
within hadrons (Figure 2). That may possibly utilize the 
Pauli-Fierz mass PF  in massive Spin-2 dynamics in- 
volving tensor mesons [93] because they can be present. 
Such calculations are far beyond the scope of this study. 

m

The extent to which PF  plays a part will have to be 
determined by experiment and a better understanding of 
strong interaction physics and QCD confinement. Should 
this type of analysis prove necessary, it can readily pro- 
ceed from the work of Higuchi [101,102]. 

m

 

23Only for a massless particle like the photon must masslessness be 
invoked, else QFT makes no sense—and hence gauge invariance. How-
ever, there is no experimental evidence that the graviton is massless.
Hence, gauge invariance for a graviton is an open issue—particularly 
since EG is not a gauge theory. 


