
Wireless Sensor Network, 2009, 1, 233-244
doi:10.4236/wsn.2009.14030 Published Online November 2009 (http://www.scirp.org/journal/wsn).

Copyright © 2009 SciRes. WSN

LDAP Injection Techniques

Jose Maria ALONSO1, Antonio GUZMAN2, Marta BELTRAN2, Rodolfo BORDON
1Informatica 64, S. L., Madrid, Spain

2Rey Juan Carlos University, Madrid, Spain
Email: chema@informatica64.com, {antonio.guzman, marta.beltran }@urjc.es

Received March 12, 2009; revised July 3, 2009; accepted July 5, 2009

Abstract

The increase in the number of databases accessed only by some applications has made code injection attacks
an important threat to almost any current system. If one of these applications accepts inputs from a client and
executes these inputs without first validating them, the attackers are free to execute their own queries and
therefore, to extract, modify or delete the content of the database associated to the application. In this paper a
deep analysis of the LDAP injection techniques is presented. Furthermore, a clear distinction between classic
and blind injection techniques is made.

Keywords: Web Applications Security, Code Injection Techniques, LDAP

1. Introduction

The amount of data stored in organizational databases
has increased very fast in last years due to the rapid ad-
vancement of information technologies. A high percent-
age of these data are sensitive, private and critical to the
organizations, their clients and partners.

Therefore, the databases are usually installed behind
internal firewalls, protected with intrusion detection
mechanisms and accessed only by applications. To ac-
cess a database, users have to connect to one of these
applications and to submit queries trough them to the
database. The threat to databases arises when these ap-
plications do not behave properly and construct these
queries without sanitizing user inputs first.

Over a 50% of web applications vulnerabilities are
input validation related [1], which allows the exploitation
of code injection techniques.

These attacks have proliferated in recent years causing
severe damages in several systems and applications. The
SQL injection techniques are the most widely used and
studied [2–5] but there are other injection techniques
associated to other languages or protocols such as XPath
[6,7] or LDAP (Light Directory Access Protocol) [8,9].

Preventing the consequences of these kinds of attacks,
lies in studying the different code injection possibilities
and in making them public and well known for all pro-
grammers and administrators [10–12]. In this paper the
LDAP injection techniques are analyzed in depth, be-
cause all the web applications based on LDAP trees
might be vulnerable to this kind of attacks.

The key to exploiting injection techniques with LDAP
is to manipulate the filters used to search in the directory
services. Using these techniques, an attacker may obtain
direct access to the database underlying an LDAP tree,
and thereby to important corporate information. This can
be even more critical because the security of many ap-
plications and services are based on LDAP directories in
current single sign-on environments [13,14].

Although the vulnerabilities that lead to these conse-
quences are easy to understand and to solve, they persist
due to the lack of information about these attacks and
their effects.

Although the vulnerabilities that lead to these conse-
quences are easy to understand and fix, they persist be-
cause of the lack of information about these attacks and
their effects. Though previous references to the exploita-
tion of this kind of vulnerability exist the presented tech-
niques don’t apply to the vast majority of modern LDAP
service implementations. The main contribution of this
paper is the presentation and deep analysis of new LDAP
injection techniques which can be used to exploit these
vulnerabilities. Furthermore, a real environment has been
implemented to perform different experiments in typical
LDAP scenarios and to evaluate the possible danger of
this kind of attacks.

It is important to note that the use of filters to limit the
information that is showed to a client sending an LDAP
search to the server does not increase the security of the
applications, because these filters does not prevent the
use of blind code injection techniques, capable of ex-
ploiting injection techniques without having detailed
error messages from the server. Therefore, both, the

234 J. M. ALONSO ET AL.

classic and the blind code injection techniques will be
studied in depth in this paper.

This paper is organized as follows: sections 2 and 3
explain the LDAP fundamentals needed to understand
the techniques presented in the following sections. Sec-
tion 4 presents the two typical environments where
LDAP injection techniques can be used and exemplify
these techniques with illustrative cases. Section 5 de-
scribes how BLIND LDAP Injection attacks can be done
with more examples. In Sections 6 and 7, some recom-
mendations for securing systems against this kind of at-
tack are given and, finally, Section 7 presents conclu-
sions and future work.

2. LDAP Overview

Lightweight Directory Access Protocol is a protocol for
querying and modifying directory services running over
TCP/IP [15,16]. The most widely used implementations
of LDAP services are Microsoft ADAM (Active Direc-
tory Application Mode, [17]) and OpenLDAP [18].
LDAP directory services are software applications that
store and organize information sharing certain common
attributes; the information is structured based on a tree of
directory entries, and the server provides powerful
browsing and search capabilities, etcetera.

LDAP is object oriented, therefore every entry in an
LDAP directory services is an instance of an object and
must correspond to the rules fixed for the attributes of
that object. Due to the hierarchical nature of LDAP di-
rectory services read-based queries are optimized to the
detriment of write-based queries. LDAP is also based on
the client/server model.

The most frequent operation is to search for directory
entries using filters. Clients send queries to the server
and the server responds with the directory entries match-
ing these filters. LDAP filters are defined in the RFC
4515. The structure of these filters can be summarized
as:

• Filter = (filtercomp)
• Filtercomp = and / or / not / item
• And = & filterlist
• Or = | filterlist
• Not = ! filter
• Filterlist = 1*filter
• Item= simple / present / substring
• Simple = attr filtertype assertionvalue
• Filtertype = ”=” /” =”/ ”¿=” / ”¡=”
• Present = attr = *
• Substring = attr ”=” [initial] * [final]
• Initial = assertionvalue

Final = assertionvalue All the filters must be in brack-

ets, only a reduced set of logical (AND, OR and NOT)
and relational (:, ~, =, *) operators is available to con-
struct them. The special character “*” can be used to
replace one or more characters in the construction of the
filters. Apart from being logic operators, RFC 4256 al-
lows the use of the following standalone symbols as two
special constants:

• (&) Absolute TRUE
• (|) Absolute FALSE

Figure 1. Typical LDAP scenario.

Copyright © 2009 SciRes. WSN

J. M. ALONSO ET AL. 235

Copyright © 2009 SciRes. WSN

3. Common LDAP Environments

LDAP services are a key component for the daily opera-
tion in many companies and institutions. Directory Ser-
vices such as Microsoft Active Directory, Novell
E-Directory and RedHat Directory Services are based on
the LDAP protocol. But there are other applications and
services taking advantage of the LDAP services.

These applications and services used to require differ-
ent directories (with separate authentication) to work.
For example, a directory was required for the domain, a
separate directory for mailboxes and distribution lists,
and more directories for remote access, databases or web
applications. New directories based on LDAP services
are multi-purpose, working as centralized information
repositories for user authentication and enabling single
sign-on environments.

This new scenario increases the productivity by re-
ducing the administration complexity and by improving
security and fault tolerance. In almost every environment,
the applications based on LDAP services use the direc-
tory for one of the following purposes:
·Access control (user/password pair verification, users

certificates management).
·Privileges management.
• Resources management.

Due to the importance of the LDAP services for the
corporate networks, the LDAP servers are usually placed
in the backend with the rest of the database servers. Fig-
ure 1 shows the typical scenario deployed for corporate
networks, and it is important to keep this scenario in
mind in order to understand the implications of the injec-
tion techniques exposed in following sections.

4. LDAP Injection in Web Applications

LDAP injection attacks are based on similar techniques
to SQL injection attacks. Therefore, the underlying con-
cept is to take advantage of the parameters introduced by
the user to generate the LDAP query. A secure Web ap-
plication should sanitize the parameters introduced by
the user before constructing and sending the query to the
server. In a vulnerable environment these parameters are
not properly filtered and the attacker can inject malicious
code.

Taking into consideration the structure of the LDAP
filters explained in section II and the implementations of
the most widely used LDAP implementations, ADAM
and OpenLDAP, the following conclusions can be drawn
about the code injection. (The following filters are
crafted using as value a non sanitized input from the
user):

• (attribute=value): If the filter used to construct the
query lacks a logic operator (OR or AND), an injection

Figure 2. OpenLDAP processes only the first complete
LDAP search filters. Data obtained with LDAP browser.

Figure 3. ADAM responses with a disconnection message in
case of more than one filter are received in only one query.
Data analyzed with wireshark.

like value) (injected filter will result in two filter: (at-
tribute=value) (injected filter). In the OpenLDAP (Fig-
ure 2) implementations the second filter will be ignored,
only the first one being executed.

In ADAM, a query with two filters isn’t allowed (Fig-
ure 3). Therefore, the injection is useless.

(|(attribute=value) second filter)) or (& attribute
value)(second filter)): If the filter used to construct
the query has a logic operator (OR or AND), an injec-
tion like ”value)(injected filter)” will result in the fol-
lowing filter: (&(attribute=value)(injected filter))
(second filter)). Though the filter is not even syntacti-
cally correct, OpenLDAP will start processing it left to
right ignoring any character after the first filter is
closed. Some LDAP Client web components will ig-
nore the second filter, sending to ADAM and
OpenLDAP only the first complete one, therefore al-
lowing the injection (Figure 4).

Some application frameworks will check the filter for
correctness before sending it to the LDAP server. Should
this be the case, the filter has to be syntactically correct,

hich can be achieved with an injection like: w

236 J. M. ALONSO ET AL.

Copyright © 2009 SciRes. WSN

Figure 4. This is just because it tries to match the second filter to a list of attributes required. If this can be done
then OpenLDAP only response with those attributes, else OpenLDAP will ignore the second filter responding with
data obtained after first filter is executed and a warning message. Data analyzed with WireShark.

value)(injected filter))(&(1=0. This will result in two
different filters, the second being ignored: (&(attribute =
value)(injected filter))(&(1=0)(second filter)).

As the second filter is going to be ignored by the
LDAP Server, some components won’t allow an LDAP
query with two filters. In these cases a special injection
must be crafted in order to obtain a single-filter LDAP
query. An injection like: value) (injected filter will result
in the following filter: (& (attribute=value) (injected fil-
ter)(second filter)).

The typical test to know if an application is vulnerable
to code injection consists of sending to the server a query
that generates an invalid input. Therefore, if the server
returns an error message, it is clear for the attacker that
the server has executed his query and that he can exploit
the code injection techniques. Taking into account the
previous discussion, two kinds of environments can be
distinguished: AND injection environments and OR in-
jection environments.

4.1. AND LDAP Injection

In this case the application constructs the normal query
to search in the LDAP directory with the “&” operator

Figure 5. Injection LDAP.

and one or more parameters introduced by the user. For
example:

(&(parameter 1= value1)(parameter 2= value 2))

Where value 1 and value 2 are the values used to per-
form the search in the LDAP directory. The attacker can
inject code, maintaining a correct filter construction but
using the query to achieve his own objectives.

1) Example 1: Access Control Bypass: A login page
has two text box fields for entering user name and

J. M. ALONSO ET AL. 237

Figure 6. Loginpage with LDAP Injection.

password (Figure 6). Uname and Pwd are the user in-
puts for USER and PASWORD. To verify the exis-
tence of the user/password pair supplied by a client, an
LDAP search filter is constructed and sent to the
LDAP server:

(&(USER = Uname) (PASSWORD = Pwd))

If an attacker enters a valid username, for example,
slisberger, and injects the appropriate sequence follow-
ing this name, the password check can be bypassed.
Making Uname=slisberger)(&)) and introducing any
string as the Pwd value, the following query is con-
structed and sent to the server:

(&(USER = slisberger)(&))(PASSWORD = Pwd))

Only the first filter is processed by the LDAP server, that
is, only the query (&(USER=slisberger)(&)) is processed.
This query is always true, so the attacker gains access to
the system without having a valid password (Figure 7).

In case of being working with ADAM Microsoft im-
plementation, this injection can be done just in order to
obtain only one filter at the end:

USER=admin)(!(&(|PASSWORD=any))(&(USER=
admin)(!(&(|)(PASSWORD = any))))

As can be seen, in this example, it is necessary to in-
ject code in the user and password fields but it will work
out not only with Microsoft implementations but with
any other LDAP engine.

2) Example 2: Elevation of Privileges: For example,
suppose that the following query lists all the documents
visible for the users with a low security level (Figure 8):

Figure 7. Home page shown to the attacker after avoiding
the access control.

(&(directory = documents)(security_level = low))

Where documents is the user entry for the first parameter
and low is the value for the second (Figure 9). If the attac-
ker wants to list all the documents visible for the high sec-
urity level, he can use an injection like
documents)(security level = *))(&(directory = documents

resulting in the following filter:
(& (directory = documents)(security level =
*))(&(directory = documents)(security level = low))

The LDAP server will only process the first filter ig-
noring the second one, therefore, only the following
query will be processed: (&(directory = documents) (se-
curity_level=*)), while (& (directory = documents) (se-
curity_level = low)) will be ignored. As a result, a list
with all the documents available for the users with all
security levels will be displayed for the attacker although
he doesn’t have privileges to see them.

4.2. OR LDAP Injection

In this case the application constructs the normal query
to search in the LDAP directory with the “|” operator and
one or more parameters introduced by the user. For ex-
ample:

(| (parameter 1= value1)(parameter2= value2))

Where value1 and value2 are the values used to perform
the search in the LDAP directory. The attacker can inject

Figure 8. Low security documents. Figure 9. All security levels documents.

Copyright © 2009 SciRes. WSN

238 J. M. ALONSO ET AL.

Copyright © 2009 SciRes. WSN

code, maintaining a correct filter construction but using
the query to achieve his own objectives.

1) Example 1: Information Disclosure: Suppose a re-
sources explorer allows users to know the resources
available in the system (printers, scanners, storage systems,
etc.). This is a typical OR LDAP Injection case, because
the query used to show the available resources is:

(| (type = Rsc1)(type = Rsc2))
Rsc 1 and Rsc 2 represent the different kinds of re-

sources in the system. In Figure 10, Rsc1=printer and
Rsc 2=scanner to show all the available printers and
scanners in the system.

If the attacker enters Rsc1= printer)(uid=*), the fol-
lowing query is sent to the server:

(|(type = printer)(uid = *))(type = scanner))
The LDAP server responds with all the printer and

user objects (Figure 11).

5. Blind Ldap Injection

Suppose that an attacker can infer from the server re-
sponses, although the application does not show error
messages, the code injected in the LDAP filter generates a
valid response (true result) or an error (false result). The
attacker could use this behavior to ask the server true or
false questions. These types of attacks are named “Blind
Attacks”. Blind LDAP Injection attacks are slower than
classic ones but they can be easily implemented, since
they are based on binary logic, and they let the attacker
extract information from the LDAP Directory.

5.1. AND Blind LDAP Injection

Suppose a web application wants to list all available Ep-
son printers from an LDP directory where error messages
are not returned. The application sends the following
LDAP search filter: (& (object-Class=printer) (type=
Epson*)) With this query, if there are any Epson printers
available, icons are shown to the client, otherwise no
icon is shown. If the attacker performs a Blind LDAP
injection attack injecting *) (objectClass = *)) (& (ob-
jectClass = void, the web application will construct the
following LDAP query:

Figure 10. Resources available to the user from the re-
sources consoles management.

Figure 11. Resources available to the user from the re-
sources consoles management.

(&(objectClass = *)(objectClass=*))
(&(objectClass=void)(type = Epson*))

Only the first complete LDAP filter will process:
(&(objectClass = *)(objectClass = *))

As a result, the printer icon must be shown to the cli-
ent, because this query always obtains results: the filter
objectClass=* always returns an object. When an icon is
shown the response is true, otherwise the response is
false. From this point, it is easy to use blind injection
techniques. For example, the following injections can be
constructed:

(&(objectClass=*)(objectClass=users))
(&(objectClass=foo)(type=Epson*))
(&(objectClass=*)(objectClass=resources))
(&(objectClass=foo)(type=Epson*))

This set of code injections allows the attacker to infer
the different objectClass values possible in the LDAP
directory service. When the response web page contains
at least one printer icon, the objectClass value exists
(TRUE), on the other hand the objectClass value does
not exist or there is no access to it, and so no icon, the
objectclass value does not exist(FALSE). Blind LDAP
injection techniques allow the attacker access to all in-
formation using TRUE/FALSE questions.

5.2. OR Blind LDAP Injection

In this case, the logic used to infer the desired informa-
tion is the opposite, due to the presence of the OR logical
operator. Following with the same example, the injection
in an OR environment should be:

(|(objectClass=void)(objectClass=void))
(&(objectClass=void)(type=Epson*))

This LDAP query obtains no objects from the LDAP
directory service, therefore the printer icon is not shown
to the client (FALSE). If any icon is shown in the re-
sponse web page then, it is a TRUE response. Thus, an
attacker could inject the following LDAP filters for
gathering information:

(|(objectClass=void)(objectClass=users))
(&(objectClass=void)(type=Epson*))

J. M. ALONSO ET AL. 239

(|(objectClass=void)(objectClass=resources))
(&(objectClass=void)(type=Epson*))

5.3. Exploitation Example

In this section, an LDAP environment has been imple-
mented to show the use of the injection techniques ex-
plained above and also to describe the possible effects of
the exploitation of these vulnerabilities and the important
impact of these attacks in current systems security. In
this example the page printerstatus.php receives a pa-
rameter idprinter to construct the following LDAP
search filter:

(&(idprinter=Value1)(objectclass=printer))
1) Discovering Attributes: Blind LDAP Injection

techniques can be used to obtain sensitive information
from the LDAP directory services by taking advantage of
the AND operator at the beginning of the LDAP search
filter built into the web application. For example, given
the attributes defined for the printer object shown in Fig-
ure 12 and the response web page of this LDAP query in
Figure 13 for Value 1=HPLaserJet 2100, an attribute
discovering attack can be performed by making these
following LDAP injections:

(&(idprinter=HPLaserJet2100)(ipaddress=*))
(objectclass=printer))

(&(idprinter=HPLaserJet2100)(department=*))
(objectclass=printer))

(&(idprinter=HPLaserJet2100)(department=*))
(objectclass=printer))

Obviously, the attacker can infer from these results
which attributes exist and which do not. In the first case,
the information about the printer is not given by the ap-
plication because the attribute ipaddress does not exist or
it is not accessible (FALSE), as is shown in Figure 14.

Figure 12. Attributes defined for the printer object.

Figure 13. Normal behavior of the application.

Figure 14. Response web page when the attribute does not exist.

Figure 15. Response web page when the attribute exists.

On the other hand, in the second case, the response web
page shows the printer status and therefore, the attribute
department exists in the LDAP directory and it is possi-
ble access to it (Figure 15). Furthermore, with blind
LDAP injection attacks the values of some of these at-
tributes can be obtained. For example, suppose that the
attacker wants to know the value of the department at-
tribute: he can use booleanization and charset reduction
techniques, explained in the next sections, to infer it.

2) Booleanization: An attacker can extract the value
from attributes using alphabetic or numeric search. The
crux of the idea is to transform a complex value (e.g. a
string or a date) into a list of TRUE/FALSE questions.
This mechanism, usually called booleanization, is sum-
marized in Fgure 16 and can be applied in many different
ways.

Suppose that the attacker wants to know the value of
the department attribute. The process would be the fol-
lowing:

(&(idprinter=HPLaserJet2100)(department=a*))
(objectclass=printer))

(&(idprinter=HPLaserJet2100)(department=f*))
(objectclass=printer))

Figure 16. Booleanization.

Copyright © 2009 SciRes. WSN

240 J. M. ALONSO ET AL.

Figure 17. FALSE. Value does not start with ‘a’.

Figure 18. TRUE. Value starts with 'f'.

Figure 19. FALSE. Value doesn’t start with 'fa'.

Figure 20. TRUE. Value starts with 'fi'.

(&(idprinter=HPLaserJet2100)(department=fa*))

(objectclass=printer))
(&(idprinter=HPLaserJet2100)(department=fi*))

(objectclass=printer))
As shown in Figure 12, the department value in this

example is financial. The first try with the character “a”
does not obtain any printer information (Figure 17) there-
fore, the first character is not an “a”. After testing with the
rest of the characters, the only one that obtains the normal
behavior from the application is “f” (Figure18).

Regarding the second character, the only one that re-
sults in the normal operation of the application is ’i’
(Figure 20) and so on. Following the process, the de-
partment value can be obtained. This algorithm can be
also used for numeric values. In order to perform this,
the booleanization process should use ’greater than or

equal to’ (≥) and ’less than or equal to’ (≤) operators.
3) Charset Reduction: An attacker can use charset re-

duction to decrease the number of requests needed for
obtain the information. In order to accomplish this, he
uses wildcards to test if the given character is present
anywhere in the value, e.g.:

(&(idprinter=HPLaserJet2100)(department=*n*))
(objectclass=printer))

The Figure 21 shows the response web page when the
character ’b’ is tested: no results are sent from the LDAP
directory service so no letter ’b’ is present, but in Figure
22 a normal response web page is shown, meaning that
the character ’n’ is in the department value. Through this
process, the set of characters comprising the department
value can be obtained. Once the charset reduction is done,
only the characters discovered will be used in the boo-
leanization process, thereby decreasing the number of
requests needed.

All these techniques can be easily performed with
automated tools in order to extract all the information.
Just as a proof of concept we developed LDAP Injector
showed in Figure 23.

6. A Practical Proposal to Discover LDAP

Vulnerabilities in Web Applications

In this section a practical proposal is described to recog-
nize bugs in web applications vulnerable to LDAP injec-
tion attacks. This proposal is as general as needed to
work with any LDAP directory the application might is
using. It is based in black box techniques meaning no
knowledge about the source code is needed. The core of
this practical approach consists in try out different LDAP
injections against every parameter and then to analyze
the web application responses in order to recognize the
vulnerability.

Figure 21. FALSE. Character 'b' is not in the department value.

Figure 22. TRUE. Character 'n' is in the department value.

Copyright © 2009 SciRes. WSN

J. M. ALONSO ET AL. 241

Figure 23. LDAP Injector performing a booleanization at-
tack.

6.1. Definitions

Before start to describe the method some definitions are
required to understand the basic principles in which relay
on. These are the following:

Expected values. Set of characters forming the sys-
tem’s expecting input. These values generate a correct
and normal result and behavior in the web application.
These results are not an empty set of records. This means
that after introduce an expected value web application
retrieve any data from the LDAP directory.

Empty LDAP query (LDAP(Void)). LDAP query
executed using expected values. This means no LDAP
injection has been done.

Injection string (ILDAP). Set of characters not in the
expected values. It is possible that the system is ready for
any input character but it is assumed that LDAP special
characters are those involved in LDAP Injection queries.
Injections can be classified in:
 Positive behavior change injection (ILDAP+). It is

an injection string to produce different number of
retrieved records from the LDAP directory. It
means the generated object list changes.

 Negative behavior change injection (ILDAP-). It is
an injection string to produce fewer objects than the
original one.

Zero behavior change injection (ILDAP0). It is an
injection string to produce no change in the response
object lists generated by the LDAP directory.

Injected LDAP query LDAP (ILDAP)). It is an
LDAP query in which an injection string has been intro-
duced. This injection should generate a syntax error or
not. It this injection should not result in a syntax error
then it is called Valid Injection (VI), otherwise it’s called
(Not Valid Injection). It is important to notice the use of
should verb. This is because the injection should be cor-
rect in an injectable environment but security mecha-
nisms in a web application could make it Not Valid. All
NVI are also ILDAP-because no one object will be re-
trieved.

Minimum Valid Injection (MVI). It is an injection
string which introduces no logic operators. It means the
injections are constructed using the minimum number of
parenthesis and operators without change the logic.

Complex Valid Injection (CVI). It is an injection
string which introduces changes in the logic. The query
should has a correct syntax and add new logic. Complex
injections are necessaries to evaluate if the parameter is
vulnerable to blind LDAP injections. In order to find out
the correct syntax, the simplest Complex Valid Injection
should be construct and this will only be possible if the
web application is using and AND or an OR query, just
as seen in the first part of this article. Table VI-A shows
some examples.

Not Complex Valid Injection (NCVI). It is a correct
injection with no syntax errors which injects new logic
but changing the object list to retrieve none objects. It is
a key to construct Boolean logic in Blind LDAP injection
attacks. Table VI-A shows some examples.

Res(void). Object list retrieved after sending
LDAP(void) to the web application. This is the result set
sent from the LDAP engine to the web applications after
the LDAP query is executed. Res(void) is constructed by
the objects retrieved when no injection has been done
and hence it is the normal result set.

Res(ILDAP). Object list retrieved after injecting and
ILDAP. This result set obtained might has more or less
objects than Resultset(void) depending on the ILAP. In
each case will be known as Res(ILDAP+) or Res (IL-
DAP-). The results set obtained depend on several envi-
ronmental aspects such as the normal query, the con-
tainer in which is sent through, if it is recursive query,
etc. If A is supposed to be injection string it will be an
ILDAP0 if RES(void)= RES(A), it will be an ILDAP+ if
RES(void) < RES(A) and a ILDAP− if RES(void) >
RES(A).

HTMLRES (ILDAP). It will represent the response
page obtained after sending the ILDAP to the web appli-
cation. It is the data which methodology has to work with
because is the info that web application sends back to the
client as response to the test tried out. As it is working in
a web environment this will be, normally, an HTML
page.

Copyright © 2009 SciRes. WSN

242 J. M. ALONSO ET AL.

Copyright © 2009 SciRes. WSN

6.2. Creating Valid LDAP Injections

Using as reference terminology defined in the previous
section two rules can be settled up as:

1) If it is possible to construct a MVI for a parameter
then it will be vulnerable against LDAP Injection attacks.

2) If it is possible to construct a CVI with AND/OR
logic operators for a parameter then it will be vulnerable
against Blind LDAP injection attacks.

As a general rule, in a black box pen testing audit,
MVI should be constructed to test the parameter strength
against LDAP Injection attacks. This is just because a
Blind LDAP injection attack only can be conducted in
parameters previously vulnerable against LDAP injection
attacks. Let’s suppose a web application retrieving a
GET parameter as following:

http://www.myweb.com/prog.php?id=1.
It will be used to query an LDAP directory to obtain

objects from a container matching filters as in this exam-
ple:

(login_operator(atributte1=value1)
(atributte2=value2)) or (atributte=value)

The query above will be known as LDAP(void) and
the goal is to find out an MVI which guarantee no more
records will be obtained.

As there is not a universal MVI which works in all the
cases will be necessary to try out different ILDAPs. One
ready for OR queries, another ready for AND ones and
the last prepared to work in simple filters, it means with
only one comparison and no one logic operator. In order
to do this will be necessary to use as reference RES(void)
supposing this is a normal behavior in the web applica-
tion and that RES(void) is not null. This is mandatory in
order to accomplish Res(void) > Res(ILDAP −).

Taking into consideration that:
·Res(void) >=0 [not null].
·Res(void)= RES(LDAP 0).
·MV I are LDAP 0.
·Res(void) > RES (LDAP −).
·NCV I are LDAP −.
Therefore is possible to conclude that if HTMLRES

(void) = HTMLRES(MVI) and HTMLRES(VOID) !=
HTMLRES(NCVI) then the parameter is vulnerable
against LDAP Injection attacks. The first condition
proves LDAP directory is responding to LDAP injected
queries correctly and second one proves which this is
true, and not a web application behavior, by generating
an empty object list and obtaining a different web appli-
cation behavior.

It important to keep in mind that in blind environments,
it means in web application in which data is never
printed in the response web page or in the error messages,
to extract all the data is necessary to find out not only a
MVI which complaints the Vulnerable Rule but a CVI.

Vulnerable Rule against Blind LDAP Injection attacks:
If HTMLRES (void) = HTMLRES(CVI) and HTMLRES
(void)!= HTMLRES(NCVI) then the parameter is vul-
nerable against LDAP Injection attacks.

So, at the end, to find out if a parameter is vulnerable
to LDAP Injection attacks or Blind LDAP Injection at-
tacks, it is mandatory to recognize a response
(HTMLRES) as a normal behavior or a response as a
behavior when an LDAP or an empty object list has been
retrieved. The first behavior will be referenced as a
TRUE behavior and the other will be referenced as a
FALSE behavior, allowing both to construct a binary
logic.

6.3. Web Responses Analysis

Once a valid injection is constructed, it is necessary to
analyze the response given by the web application in
order to define the logic that is behind the booleanization.
There are several behaviors that the system might has
when it receives an injection. In fact these behaviors
correspond to the treatment of errors implemented in the
web server. The methodology has to deal with all the
possibilities to be able to propose an effective criterion.
This criterion determines if the response given by de the
system for an CVI is a true response or a false one. The
most important kinds of system responses when it faces
an CVI are the following:

Table 1. Some examples of complex valid injections (Cvi).

Example Original LDAP Query injection String Results

1 2 3

(attribute=value)
(&(attribute1=value1)(attribute2=value2))
(|(attribute1=value1)(attribute2=value2))

Id=value)(Id=valu
e1)(Id=value1)(|

(attribute=value)()
(&(attribute1=value1)(&)(attribute2=value2))
(|(attribute1=value1)(|)(attribute2=value2))

Table 2. Some examples of not complex valid injections (Ncvi)).

 Original LDAP Query injection String Results

1 2 3
(attribute=value)
(&(attribute1=value1)(attribute2=value2))
(|(attribute1=value1)(attribute2=value2))

Id=value**
Id=value1)(|
Id=value1)(&

(attribute=value**)() (&(attribute1=
value1)(|)(attribute2=value2)) (|(attribute1=
value1)(&)(attribute2=value2))

J. M. ALONSO ET AL. 243

Copyright © 2009 SciRes. WSN

Web server error. These responses are predefined in

the server configurations (p. e. http code 500).
Generic error. These responses are programmed by

the application designer.
Correct results webpage. The response contains the

expected values.
Last webpage displayed. The web application has

implemented the errors treatment as a mechanism that
proceed to send the last webpage displayed when an er-
ror occur.

For the first three alternatives it is easy to design a
function to analyze the server response. Different tech-
niques can be developed. For this work the following
techniques have been evaluated:

HASH file signatures evaluation. Two different sets
have to be define in order to classify which responses are
false and which are true. This technique does not work
with websites with dynamic content in its pages.

HTML tree evaluation. To deal with the problem
exposed in the last point the focus of the evaluation is
fixed on the tree structure of the HTML document not on
the contents. This technique presents some limitations
with websites where the error treatment maintains the
same HTML structure that the normal documents.

Key words searching. This technique is oriented to
define two distinguishing patterns: one for the false re-
sponses and another one for the true ones.

However, when error treatment mechanism uses the
last webpage displayed to deal with a not expected input
there is not any technique to define an effective error
function at least for the time of being.

6.4. The Analysis of the Vulnerability of Web

Application Parameter

In response to the descriptions given in sections above, it
is possible to propose the steps that are necessary to de-
termine the weakness of a parameter defined for a web
application when it is faced an injection attack.

1) To find out the application’s input parameters.
2) To try to construct an IMV.
3) If one IMV exists then

a) To try to construct at least one ICV
b) If this valid ICV exists with the AND or OR

operators, then the parameter is vulnerable to Blind In-
jection attacks. At this point, it is necessary to determine
the error treatment mechanism implemented in order to
propose an efficient error function. If this mechanism is
based on the last response given, today, the parameter can
be considered as secure.

c) If is not possible construct a valid ICV the pa-
rameter can be consider as secure.

4) If no IMV exits then the parameter can be consider
as secure.

7. Securing Applications against Blind LDAP
Injection & LDAP Injection Attacks

The attacks presented in the previous sections are per-
formed on the application layer, therefore firewalls and
intrusion detection mechanisms on the network layer
have no effect on preventing any of these LDAP injec-
tions. However, general security recommendations for
LDAP directory services can mitigate these vulnerabili-
ties or minimize their impact by applying minimum ex-
posure point and minimum privileges principles.

Mechanisms used to prevent code injection techniques
include defensive programming, sophisticated input
validation, dynamic checks and static source code analy-
sis. The work on mitigating LDAP injections must in-
volve similar techniques.

It has been demonstrated in the previous sections that
LDAP injection attacks are performed by including spe-
cial characters in the parameters sent from the client to
the server. It is clear therefore that it is very important to
check and sanitize the variables used to construct the
LDAP filters before sending the queries to the server.

However, developer communities are not widely
aware of this kind of injections because there is no so
much information about LDAP Injection and Blind
LDAP Injection techniques, hence developers don’t sani-
tize correctly their queries against LDAP directories. A
quick search for “LDAP” in websites hosting open
source projects retrieves a lot of projects with LDAP
Injection vulnerabilities. On the other hand, static code
analysis tools are not ready yet to discover LDAP injec-
tion vulnerabilities in the code. So it is easy, for a devel-
oper not strongly formed in security best practices, to
create a vulnerable code just relaying in security
post-analysis. Microsoft Code Analysis, a tool forming
part of Microsoft Visual Studio Team System or Micro-
soft FXCop, two of the most used code analysis tools
don’t have any rule to detect LDAP injection vulnerabili-
ties.

In order to sanitize correctly web application inputs
which are going to be used in LDAP search filters, de-
velopers must only pay attention to ten special characters:
|, &, (,), *, <, >, =, ~, !. If the developer sanitizes in a
secure way the input to forbid those characters LDAP
Injection attacks won’t work.

8. Conclusions and Future Work

LDAP services facilitate access to networks information
organizing it in a hierarchical database that allows au-
thorized users and applications to find information re-
lated to people, resources and applications.

This protocol is simple to install, maintain, replicate
and use, and it can be highly distributed. And it allows an
easy implementation of the widely used single sign-on

244 J. M. ALONSO ET AL.

environments. Therefore, given the increasing need for
information in current systems, it is an essential service
in almost all networks.

LDAP injection techniques are an important threat for
these environments, specially, for the control access and
privileges and resources management.

These attacks modify the correct LDAP queries, alter-
ing their behavior for the attacker benefit. And the con-
sequences of these attacks can be very severe.

Our work is unique in providing a rigorous analysis of
LDAP injection techniques and in showing representa-
tive examples of the possible effects of these attacks.

Even more, recommendations to secure applications
against these techniques have been proposed. It has been
showed that filtering the error messages produced by the
server only fortifies the system but does not secure it
against blind injection techniques. A more in depth pro-
tection is needed to avoid this kind of injection vulner-
abilities too. It has been demonstrated with the presented
examples, that it is essential to filter the client inputs
used to construct the LDAP queries before sending them
to the server. And that the AND and OR filter construc-
tions should be avoided.

Finally, a very interesting line for future research is
working on analyzing injection techniques with other
protocols used to access databases and directories. And
to study the possible utilization of mechanisms boo-
leanization techniques such as character displaying or
charset reduction in other environments.

9. References

[1] S. Barnum and G. McGraw, “Knowledge for software

security,” IEEE Security and Privacy Magazine, Vol. 3,
No. 2, pp. 74–78, 2005.

[2] E. Bertino, A. Kamra, and J. Early, “Profiling database
application to detect SQL injection attacks,” in Proceed-
ings of the IEEE International Performance, Computing,
and Communications Conference, pp. 449–458. 2007.

[3] X. Fug, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L.
Tao, “A static analysis framework for detecting SQL in-
jection vulnerabilities,” in Proceedings of the 31st Annual
International Computer Software and Applications Con-
ference, pp. 87–96, 2007.

[4] E. Merlo, D. Letarte, and G. Antoniol, “SQL-injection
security evolution analysis in PHP,” in Proceedings of the
9th IEEE International Workshop on Web Site Evolution,
pp. 45–49, 2007.

[5] S. Thomas and L. Williams, “Using automated fix gen-
eration to secure SQL statements,” in Proceedings of the
3rd International Workshop on Software Engineering for
Secure Systems, pp. 9–19, 2007.

[6] “XPath 1.0 specification,” 1999, http://www.w3.org/TR/
xpath.

[7] “XPath 2.0 specification,” 2007, http://www.w3.org/TR/
xpath20/.

[8] “RFC 1777: Lightweight Directory Access Protocol v2,”
1995, http://www.faqs.org/rfcs/rfc1777.html.

[9] “RFC 2251: Lightweight Directory Access Protocol v3,”
1997, http://www.faqs.org/rfcs/rfc2251.html.

[10] T. Holz, S. Marechal, and F. Raynal, “New threats and
attacks on the world wide web,” IEEE Security and Pri-
vacy Magazine, Vol. 4, No. 2, 2006.

[11] G. Hermosillo, R. Gomez, L. Seinturier, and L. Duchien,
“AProSec: An aspect for programming secure web appli-
cations,” in Proceedings of the Second International
Conference on Availability, Reliability and Security, pp.
1026–1033, 2007.

[12] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static
analysis tool for detecting web application vulnerabili-
ties,” in Proceedings of the IEEE Symposium on Security
and Privacy, pp. 6–15, 2006.

[13] E. Jamhour, “Distributed security management using
LDAP directories,” in Proceedings of the XXI Internatinal
Conference of the Chilean Computer Science Society, pp.
144–153, 2001

[14] R. Sari and S. Hidayat, “Integrating web server applica-
tions with LDAP authentication: Case study on human
resources information system of ui,” in Proceedings of the
International Symposium on Communications and Infor-
mation Technologies, pp. 307–312, 2006.

[15] M. Wahl, T. Howes, and S. Kille, “Lightweight Directory
Access Protocol (v3),” 1997,
http://www.ietf.org/rfc/rfc2251.

[16] V. Koutsonikola and A. Vakali, “LDAP: Framework,
practices, and trends,” IEEE Internet Computing, Vol. 8,
No. 5, pp. 66–72, 2004.

[17] M. Russinovich and D. Solomon, Microsoft Windows
Internals, Microsoft Press, 2004.

[18] “OpenLDAP main page,”
http://www.openldap.org.

Copyright © 2009 SciRes. WSN

http://www.w3.org/
http://www.w3.org/TR/

