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ABSTRACT 
Hypothalamic receptors for neuropeptide Y, melanin- 
concentrating hormone, melanocortins and orexins/ 
hypocretins as well as for the downstream signaling 
corticotrophic factor have been discussed broadly for 
their influence on food intake and reward but also on 
several psychiatric disorders. For the development of 
non-peptide ligands for the in vivo detection of altera- 
tions in density and affinity of such G-protein coupled 
(GPCRs) peptide receptors the requirements to affin- 
ity and pharmacokinetics have been shifted to thres- 
holds markedly distict from classical GPCRs to disso- 
ciation constants < 0.5 nM, partition coefficients log 
P < 3.5 and transcellular transport ratios, e.g. for the 
permeability glycoprotein transporter, below 3. Nev-
ertheless, a multitude of compounds has been re-
ported originally as potential therapeutics in the treat- 
ment of obesity among which some are suitable can- 
didates for labeling as PET or SPECT-tracers pro- 
viding receptor affinities even below 0.1 nM. These 
could be unique tools not only for better understand- 
ing of the mechanism of obesity but also for investiga- 
tions of extrahypothalamic role of “feeding recep- 
tors” at the interface between neuroendocrine and 
mental diseases. 
 
Keywords: Feeding Receptor; Hypothalamus;  
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1. INTRODUCTION 

1.1. Hypothalamus as a Potential Target for  
Drug Development in the Treatment of  
Obesity and Related Mental Diseases 

Among the huge number of central neuropeptide recep-
tors the hypothalamic G-protein coupled receptors  

(GPCR) attracted early efforts of ligand development. 
Many regulatory peptides found in hypothalamic nuclei 
fulfill a dual function in the brain at the intercept be- 
tween neuroendocrine metabolic and behavioral regula- 
tion [1-5]. One of the central motives for development of 
ligands of hypothalamic peptide receptors and hypo- 
thalamic-pituitary-axis (HPA) is the search for effective 
treatment strategies for endocrinological disorders and 
hormone-dependent tumor diseases [6]. Furthermore, ef- 
fort is directed to potential therapeutics, prevention and 
diagnostics of obesity-related disorders. Many of feed- 
ing-related receptor agonists act not only in the hypo- 
thalamus but also in extrahypothalamic, telencephalic, 
mesencephalic and metencephalic areas thereby contri- 
buting to the regulation of behavior, as has been con- 
firmed by numerous studies [5,7-17]. Consequently, ris- 
ing attention is paid to ligands of feeding-related GPCRs 
as potential tools for the investigation of their role in 
behavioral disturbances. 

The hypothalamic structural triad of the arcuate nu- 
cleus (Arc), paraventricular nucleus (PVH), and the ven- 
tromedial hypothalamus (VMH; referred to as “satiety” 
centre) as well as the neuronal relay formed by lateral 
hypothalamic area (LHA; in contrast referred to as 
“hunger” centre) all together with the perifornicular area 
(PFA) represent a regulatory core unit of food intake [18] 
(see Figure 1). 

The Arc, surrounding the third ventricle and adjacent 
to the eminentia mediana as the blood to brain gate to the 
hypothalamus for circulating hormones contains two 
discrete neuronal populations which act as first order 
neurons for insulin, leptin, ghrelin and other circulating 
metabolic signals. One population contains pro-opiome- 
lanocortin (POMC) as precursor of melanocyte stimulat- 
ing hormones (α-MSH, ß-MSH, γ-MSH), β-endorphin as 
well as the cocaine-amphetamine-regulated transcript  
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Figure 1. Scheme of expression of hypothalamic neuropeptide receptors involved in the regulation of food intake. Abbreviations: 
DMH dorsomedial hypothalamus. LHA lateral hypothalamic area, PFA perifornicular area, VMH ventromedial hypothalamus, 
PVH paraventricular nucleus, Ob-R leptin receptor, NPY1/5 neuropeptide Y1 and Y5 receptors, MCR melanocortin receptor, 
MCHR melanin-concentrating hormone receptor, CART cocaine- amphetamine regulated transcript receptor, AgRP Agouti regu- 
lated peptide, MSH melanocyte stimulating hormone, CRF1 corticotrophin releasing factor receptor 1. Scheme modified accord- 
ing to [18,101,251-254]. 

 
(CART) and is stimulated by leptin which inhibits in turn 
the other cell population containing neuropeptide Y 
(NPY) and agouti-related peptide (AgRP) [19]. MSH, β- 
endorphin and CART (endogenous ligands at melano- 
cortin receptors, µ-opioid receptor and still non-identified 
CART receptors, respectively) [20] inhibit food intake 
per se similarly to other melanocortins e.g. via cortico- 
trophin releasing factor (CRF1). NPY (via NPY1- and 
NPY5 receptors) and AgRP acting as endogenous mela- 
nocortin antagonist at MC4-R may enhance food intake 
[9,21]. The balance of neuronal activity in both cell 
populations is therefore a major regulating factor in 
feeding behavior.  

Both neuronal populations project to the second order 
regions PVH (where oxytocin, CRF and, thyrotropin 
releasing hormone (TRH) are released) as well as to the 
LHA/PFA (releasing orexin and melanin concentrating 
hormone; (MCH) increasing food intake) [18]. This sys- 
tem serves as the long-term regulator of food intake. Ac- 

tivation of the neurons in PVH results in a catabolic 
state. 

Short-term regulation of food intake is realized by sec- 
ondary neurons in the nucleus tractus solitarii (NTS) and 
nucleus dorsalis nervi vagi. The secondary neurons of the 
NTS project via Nc. parabrachilis and the thalamic Nc. 
ventroposterior parvocellulares to the insular cortex. 

For some of the GPCRs involved in this system re- 
ceptor densities have been reported as shown in Table 1. 
The data suggest that especially in non-diencephalic re- 
gions of the brain the requirements to affinity, specificity 
and pharmacokinetics are high if in vivo molecular im- 
aging of those receptors shall be made possible. 

1.2. Peptidic Versus Non-Peptidic Receptor  
Ligand 

For the characterization of neuropeptide receptors in vivo 
two profound observations have to consider. First, almost 
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all of these receptors exhibit relatively low receptor den- 
sities at their cerebral expression sites and second the 
uptake of peptidic tracers suitable for receptor labeling is 
possible per se but frequently limited due to inappropri- 
ate pharmacokinetic properties. Even small regulatory 
peptides with a molecular weight < 500 Da often show 
large differences in their potency to influence brain func- 
tions depending on the mode of application [22-27] and 
metabolic vulnerability [28,29]. 

Plasma half-life of peptide transmitters varies in a 
broad time range between several seconds and hours 
[23,24,30,31]. In general, the stability of endogenous 
peptides is difficult to predict and depends also from the 
presence and activity of cleavage enzymes in the blood 
or target regions. 

Fifteen years ago it was postulated that neuropeptides 
released in the periphery either cannot cross the blood 
brain barrier (BBB) or can enter the brain only by very 
limited extent [32,33]. Although this hypothesis had been 
revised [27,34-36]), even today weak responses to exo- 
genously applied peptidic receptor ligands are attri- 
buted to aggregation, poor enzymatic stability and vari-
ous other limiting factors of BBB passage [23-25,27]. 
Further drawbacks to the suitability of peptidic com-
pounds for therapeutic use are poor oral bioavailibility 
and high costs of production [37]. Alternative routes of 
drug delivery for instance transnasal administration can 
improve the accumulation of such drugs in the brain as 
has been shown for the somatostatin analogue octreotide 
[38]. However, this application route appears not suitable 
for nuclear medical purposes because of dosimetric limi-
tations. 

Although the affinity of peptidic tracers is frequently 
higher than that of non-peptidic ligands only few pep- 
tidic ligands developed to label brain receptors specifi- 
cally could be introduced successfully into in vivo trials 
[15] due to limitations by the BBB. In consequence such 
tracers or drugs have been recommended and applied 
predominantly for therapy and diagnostics of peripheral 
tumors [6,15]. 

However, also a multitude of non-peptidic drugs and 
pharmacological probes [39] has been developed in par- 
allel [39-41]. Some of those have been radio-labeled for 
in vivo imaging. Clinical trials have been performed for 
ligands at CRF1 receptors [39,42-47], at orexin receptors 
[48,49], at the NPY receptors [50,51], the opioid recep- 
tors [52], melanocortin -4-receptors (MC4-R) [53-55], 
melanin concentrating hormone receptors (MCH1-R) 
[56] and growth hormone secretagogue receptor 1 (ghre- 
lin; GHS1-R) [57,58]. 

2. CRF-RECEPTORS 

2.1. Endogenous Peptidic CRF Receptor Ligands 

CRF (41 a.a.r.) is an early discovered prime coordinator 

of the synthesis of corticotrophin (ACTH; 39 a.a.r.) in 
the pituitary gland [59,60]. It is released from the neu- 
rons of the paraventricular region of the hypothalamus 
into the median eminence region which is one of the 
seven known circumventricular regions of the brain with 
interruption of the blood brain barrier [8,19,44,61,62]. 
Here, the paraventricular region is in close contact to the 
capillary plexus drained by long portal veins into the 
anterior pituitary a main target region of CRF [22]. 

Further endogenous peptides interacting with cortico- 
trophin releasing factor receptors (CRF-R) are the uro- 
cortins 1 (Ucn1), (acting at CRF1-R and CRF2-R) Ucn2 
and 3 (at CRF2-R) [63]. Two G-protein coupled receptor 
subtypes CRF1 and CRF2, which are members of the 
B-receptor family [64-69], as well as the CRF-binding 
protein [60] mediate the action of the transmitter pep- 
tides. CRF1-R as well as CRF2-R mainly couple to 
stimulatory Gs proteins [70,71] but trigger Gi and Gq 
dependent signal transduction mechanisms additionally 
[39,71]. 

CRFs-R are found wide spread throughout the brain 
but especially in stress responsive regions. They are ex- 
pressed in relatively high densities in pituitary anterior 
(605 fmol/mg; human [72]) and intermediate lobe (200 
fmol/mg; marmosets) [73]), but in rather moderate densi- 
ties within prefrontal and cingulate cortex as well as in 
the subcortical part of the amygdala (centromedial nu- 
cleus) (60 - 150 fmol/mg; cynomolgus monkey) [62, 
63,74] corresponding to the expression levels of the 
CRF1-R (see also Table 1). Hypersecretion of CRF has 
been postulated to be involved in the pathogenesis of 
several mood and anxiety disorders [5,15,75,76]. The 
CRF2-R has been found predominantly in the periphery 
[76] and is involved in the stress response, cardiovascu- 
lar function and gastric motility [77]. In the rat the 
CRF2α variant of the CRF-R is expressed predomi- 
nantly in the hypothalamus, while CRF2ß-R has been 
observed in the heart and skeletal muscle [78,79].The 
splice variant in the human brain is the CRF2γ-R [79, 
80].  

An urotensin-like immunreactivity has been found in 
the region of the Edinger Westphal nucleus and colocal- 
ized with CRF2-R [81,82]. 

2.2. Non-Peptide CRF Receptor Ligands 

A comprehensive overview on endogenous and synthetic 
peptides and on non-peptide ligands at CRF-Rs as well 
as pharmacophore development has been provided by 
Zorilla and Koob [15] together with a review of phase 
II/III clinical trials for CRF1-R antagonists in depression, 
anxiety and irritable bowel syndrome.CRF2-R antago- 
nism has been described for some peptide analogues of 
antisauvagine-30 suitable for detection of gastrointestinal 
CRF2-R in mice but obviously not able to cross the BBB 
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Table 1. Densities of feeding receptors in brain tissues of different species obtained by autoradiographic and membrane binding 
studies (rodent, monkey, human) available in the literature (in fmol/mg protein and in one exception * in nM). 

Receptor Density (fmol/mg protein) Region Species Method References

CRF 
 
 
 

CRF 
 
 
 
 

CRF 
 
 
 

CRF1 
 

605 
200 

 
~150 
~140 
~60 

 
 

490 
~200 
~300 

 
 

147-63 
103-60 

Pituitary 
Pituitary 

 
Amygdala 

Cingulate cortex 
Hippocampus 

 
 

Anterior lobe, pituitary 
Intermediate lobe 

Olfactory bulb 
 
 

Occip. Cortex 
Cerebellar Cortex 

Human 
Marmoset 

 
 

Cynomolgus monkey
 
 
 
 

Rat 
 
 
 
 

Human 
 

Autoradiography 
Autoradiography 

 
 

Membrane binding 
 
 
 
 

Membrane binding 
 
 
 
 

Membrane binding 
 

[72] 
[72] 

 
 

[74] 
 
 
 
 

[73] 
 
 
 
 

[62] 
 

NPY1 
 
 

NPY2 
 

NPY1/Y4 

313 
5* 
 

458 
 

549 

Frontal Cortex 
Cortex 

 
Frontal cortex 

 
Forebrain 

Human 
Rhesus Monkey 

 
Human 

 
Rat 

Membrane binding 
Membrane binding 

 
Membrane binding 

 
Membrane binding 

[238] 
[124] 

 
[238] 

 
[116] 

MC4 1 - 4 Hypothalamus Rat Autoradiography [239] 

Orexin 40 - 135 Nucl. Accumbens, raphe nucl., CA3 Rat Autoradiography [187] 

CART 61 - 102 49 Nc accumbens Rat Primary cell culture [161] 

MCH1 11 Brain Rat Membrane binding [240] 

MCH 7-fold increase Brain Mouse (fasted) 
Brain slices, 

Antisense riboprobes, 
autoradiography 

[199] 

 
[83]. 

Whereas Zorilla and Koob [15] summarize CRF-R 
antagonists discovered since the late 1990s, Kehne & 
Cain [84] review experiences from animal models of 
mental disorders. 

The first non-peptide CRF1-R antagonist was de- 
scribed in 1996 by Schulz et al. [85]. However, together 
with later reported ligands including antalarmin (1), NBI 
27914, [86] DMP 904, CRA 1000 (2), CRA 1001 (3) 
SRA 12 5543A it shared the problem of high lipophilicity 
(Table 2) [87]. Chen et al. [88] reports for instance that 
CP 154, 526 (4) shows a volume distribution of 105 l/kg 
as well as a clog P of 8.43 and a half-life of 51 h [89] 
(Figure 2(a)). The lead compound NGD-98-2 presented 
in 2011 by Hodgetts et al. showed a log P of 6.3 [90]. 

Four non-peptide PET CRF1-ligands with affinities in 
the subnanomolar range have been described [47]. 

The radiosynthesis of a first CRF1-R PET ligand (5) 
was published for [18F]FBPPA [91,92]. Together with 
FBPPA also the SPECT tracer [123I]IBPPA (6) it was 
tested in vivo in Fischer rats (Figure 2(a)). Pharmacoki-
netic studies showed that the PET tracer was accumu-
lated by 5.59% ID/g in the anterior pituitary. Fast wash 
out and poor specific binding in hypothalamus, amygdala 

and cerebellum were mainly accounted to its high log P > 
6 [93]. The ratios pituitary/blood were for FBPPA 16.9:1 
(5 min p.i.), 6.1:1 (60 min p.i.) and 5.6:1 (120 min p.i.). 

Five minutes p.i. 4.28% ID/g of the SPECT tracer is 
presented in the pituitary declining to 1.98% ID/g until 
120 min p.i. For [123I]IBPPA the respective ratios pitui-
tary/blood were 7.4:1 (5 min), 13:1(60 min) and 9.4:1 
(120 min) [93] reflecting a much slower wash out than 
for FBPPA. 

The group of Zuev et al. [93] reported that in ana- 
logues of FBPPA the introduction of polar groups into 
the 8-(6-methoxy-2-methylpyridin-3yl) ring resulted in 
a dramatic loss of potency. The observation that too 
strong hydrophilicity impaires ligand binding to CRF1- 
Rs brought up the N-fluoroalkyl-8-(6-methoxy-2-methyl- 
pyridin-3-yl) 2,7-dimethyl-N-alkylpyrazolo [1,5-α]1,3,5- 
triazin-4-amine analogue (7).The compound was found 
to combine useful binding characteristics with appropri- 
ate lipophilicity (IC50 6.5 nM, log D = 3.5 (clog P 2.3). 
and was announced as a candidate for testing as a poten- 
tial PET tracer [93].  

Further efforts to get compounds of lower lipophilicity 
resulted in 3-phenylpyrazolo [1,5-a]pyrimidines like NBI 
30545, with a log P of 3.18 and an appropriate Ki value,  
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Figure 2. CRF1 receptor antagonists: (a) (1) Butyl-ethyl-[2,5,6- 
trimethyl-7-(2,4,6-trimethyl-phenyl)-7H-pyrrolo[2,3-d]pyrimidi
n-4-yl]-amine; (2) Ethyl-{4-[4-(3-fluoro-phenyl)-3,6-dihydro-2H- 
pyridin-1-yl]-6-methyl-pyrimidin-2-yl}-(4-isopropyl-2-methyl- 
sulfanyl-phenyl)amine; (3) (2-Bromo-4-isopropyl-phenyl)-ethyl- 
{4-[4-(3-fluoro-phenyl)-3,6-dihydro-2H-pyridin-1-yl]-6-methyl
-pyrimidin 2-yl}amine; (4) Butyl-[2,5-dimethyl-7-(2,4,6-trimethyl- 
phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]-ethyl-amine; (5) [2,5- 
Di-methyl-7-(2,4,6-trimethyl-phenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-yl] 
ethyl-(4-fluoro-butyl)-amine; (6) Butyl-ethyl-[7-(4-iodo2,6-di- 
methyl-phenyl)-2,5-dimethyl-7H-pyrrolo[2,3-d] pyrimidin-4-yl]- 
amine; (b) CRF1 receptor antagonists: (7) 3-{(3-Fluoro-propyl)- 
[8-(6-methoxy-2-methylpyridin-3-yl)-2,7-di-methyl-pyrazolo 
[1,5-a][1,3,5] triazin-4-yl]-amino}-propionitrile. (8) [3-(6-Dime- 
thylamino-4-methyl-pyridin-3-yl)-2,5-dimethyl-pyra- 
zolo[1,5-a]pyrimidin-7-yl]-dipropyl-amine; (9) 3-(4-Chloro-2- 
morpholin-4-yl-thiazol-5-yl)-2,6-dimethyl-8-(1-propyl-butyl)-  
8aH-imidazo-[1,2-b]pyridazin-4-ylium; (10) Bis-(2-methoxy-ethyl)- 
[3-(4-methoxy-2-methyl-phenyl)-2,5-dimethyl-pyrazolo[1,5-a]  
pyrimidin-7-yl]-amine; (11) [8-(4-Bromo-2,6-dimethoxy-phenyl)-2, 
7-dimethyl-pyrazolo [1,5-a][1,3,5] triazin-4-yl]-bis-(2-methoxy- 
ethyl)-amine; (12) [8-(4-Bromo-2-chloro-phenyl)-2,7-dimethyl- 
pyrazolo [1,5-a][1,3,5] triazin-4-yl]-bis-2-methoxy ethyl)-amine. 
ChemDraw (Cambridgesoft.com) was used for verification of 
the IUPAC names. 
 
as well similar compounds obtained by incorporation of 

polar alkoxy groups [88]. Modifications of this lead 
structures allowed the identification of NBI 307775 
(R121919) (8) (Figure 2(b)) and of a fluorinated ana- 
logue (3-(4 methyl-6-dimethylaminopyridin-3-yl)2,5-di- 
methyl-6-fluoro-7-dipropylaminopyrazolo [1,5-a] pyrimi- 
dine) as a potential PET tracer. However, first in vivo 
investigations in the baboon brain with the high affinity 
[11C]R121919 were not successful, probably due to low 
receptor density of CRF1 subtype in these animals [62]. 

Promising drugs with appropriate physicochemical 
properties are also the imidazol pyridazines presented by 
Gehlert et al. [87] ( MTIP (9) as well as by Richardson et 
al. (MPZP (10) (Figure 2(b)) [94]. MTIP has been 
described with a Kd of 0.22 nM, a log P of 3.55 as well 
as a bioavailability of 90% [15] (Table 2) and a 
distribution volume of 1.7 l/kg markedly improved in 
comparison to former candidates of in vivo imaging 
probes (e.g. the well known R121919 with 75.7 l/kg). 
Moreover, the intermediate plasma-half life of 3.3 h after 
p. o. administration is regarded as an advantage for po- 
tential therapeutic use. 

MPZP showed a lower affinity (4.7 nM) but further 
improved lipophilic properties with log P of 2.95 [94]. 

More recently a Br-76 labelled non-peptidic CRF an- 
tagonist, (4-[76Br]BMK-152) (11) (Figure 2(b)), has 
been described [95] which exhibited high affinity to rat 
and monkey frontal cortex (0.23 nM and 0.31 nM). 
Moreover, 4-[76Br]BMK-152 showed an acceptable log P 
of 2.6 and is not a substrate of the P-glycoprotein (P-gp). 
During in vivo tests in monkey and rat it revealed bind- 
ing of the tracer in brain regions consistent with the dis- 
tribution of CRF -R.   

3. NPY RECEPTORS 

3.1. Endogenous Ligands of NPY Receptors 

The 36 a.a.r. compound NPY is one of the most abundant 
neuropeptides in the brain. NPY-receptors (NPY1-R, 
NPY2-R, NPY4-R and NPY5-R) belong to the Class A 
(rhodopsin-like) GPCRs [96-100]. 

Insight into the network of NPY-Rs is given by many 
reviews e.g. by Kamiji & Inui in 2007 [101]. NPY has a 
dual effect on food intake. On one hand it is regarded as 
the most potent endogenous orexigenic agent [102] act- 
ing via NPY1-R and NPY5-R [103]. On the other hand it 
was found to mediate anorexia at the NPY2-R and 
NPY4-R [101]. In the Arc leptin depolarizes POMC 
neurons but hyperpolarizes NPY/GABA/AgRP neurons 
reducing the transmitter release from these terminals. 
The decrease of GABA is responsible additionally for 
the disinhibition of POMC neurons. Projections from 
NPY/AgRP and POMC/CART (rodents) neurons inner- 
vate neuron populations in the VMH, DMH, which also 
synthetize NPY, and to PVH which expresses NPY1- 
and NPY5-Rs [104]. The lateral hypothalamic area  
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Table 2. Partition coefficients log P and log D as well as molecular weights for selected neuropeptide receptor ligands. Bold and 
parenthesized numbers correspond to the number of the respective formula in the figures (ACD/ChemSketch and Scifinder software 
was the source of some of the data). 

Compound Peptide receptor CAS registry MW g/mol Log P Log D References 

CRA 1000 (2) CRF1 226948-11-4 476.65 6.2 5.58 [241,242,250] 

CRA 1001 (3) CRF1 229346-94-5 509.45 7.2 6.6 [250] 

MJL-1-109-2 (12) CRF1  468.7 3.0  [243] 

BMK-152 (11) CRF1  494.38 2.6  [95] 

SSR 125543A CRF1 321839-75-2 483.04 7.10 7.11 [44,90] 

NBI 27914 CRF1 184241-44-9 434.14 7.85 7.85 [244,245] 

R 121919 (8) CRF1 195055-03-9 380.53 4.79 4.75 [39,42,43] 

CP 154526 (4) CRF1 157286-86-7 364.53 6.63 6.15 [246] 

MTIP (9) CRF1 910551-43-8 420.0 3.55 3.55 [46,47,87] 

MPZP (10) CRF1 202579-76-8 398.5 2.95 2.93 [94] 

[18F]Y1-973 (18) NPY1  472.63 3.2  [124] 

UR MK 114 (15) NPY1 1093677-54-3 529.6 3.619 2.45 [122] 

JNJ 31020028 (21) NPY2 1094873-14-9 565.68 2.98 2.83 [50,51] 

JNJ 5207787 (20) NPY2 683746-68-1 510.67 5.93 4.04 [108] 

L 152,804 (24) NPY5 6508-43-6 366.45 4.61 2.63 [129] 

MK 0557 (25) NPY5 328232-95-7 406.41 2.93 2.93 [103,131,247] 

Almorexant (31) 
Orexin A&B 
OX1R, OX2R 

871224-64-5 512.56 5.89 5.89 [49] 

SB649868 (32) 
Orexin A&B 
OX1R, OX2R 

380899-24-1 477.55 3.23 3.23 [48] 

MCL 0129 (30) MC4R 574001-66-4 546.76   [248] 

T226296 (46) MCHR1 331758-35-1 402.5 2.97 3.5 [56,249] 

 
(LHA) releases melanin-concentrating hormone, orexin 
and NPY [105]. Its neurons communicate with the cere- 
bral cortex where also afferent signals from the vagus 
nerve and the sympathetic nerve system arrive particu- 
larly via nucleus of tractus solitarii (expressing NPY2-R 
and NPY4-R) what allows the cortical coordination of 
feeding behavior [104].    

Because of their potential role in obesity, NPY1-R and 
NPY5-R are the main targets for ligands in anti-obesity 
drug development. A multitude of antagonists for their 
identification has been reported [106]. With view to 
anxiety disturbances most attention has been paid to 
NPY1-R and NPY2-Rs [36]. mRNA of the four func- 
tional receptors has been found also in the amygdala 
supporting a role of NPY-Rs as prime candidates for the 
regulation of emotion, learning and fear memory [107]. 
This forces the interest in NPY-R ligands suitable for 
treatment of anxiety disorders. The NPY1-R receptor is 
also localized in cerebral cortex, caudate-putamen and  

thalamus [108], while NPY2-R is found primarily in hy-
pothalamus, hippocampus, substantia nigra and cerebel-
lum. Moreover, the NPY2-R has been found as pre- and 
postsynaptic receptor [109-111]. The distribution of NPY5- 
R has been verified by Weinberg et al. [112] by means of 
hybridization studies in mouse brain to be discretely li- 
mited to regions within the hypothalamus including nu- 
cleus suprachiasmaticus, anterior hypothalamus, bed nu- 
cleus striae terminalis and ventromedial nucleus. NPY-R 
signaling is mediated by G-proteins especially via per- 
tussis toxin dependent Gi/o proteins and decrease of 
cAMP formation. Hitherto among the six known NPY- 
Rs four (NPY1-R, NPY2-R, NPY4-R and NPY5-R) have 
been confirmed to couple to Gi-protein [113], whereas 
the existence of NPY3-R has been postulated but not 
demonstrated and the NPY6-R gene is not found func- 
tional in primates. 

Moreover, several downstream signaling pathways 
mediate biological actions of NPY-Rs in the brain via 
Ca2+ channels or G-protein coupled inwardly rectifying 
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potassium channels (GIRK) [36,113,114] as well as mi- 
togen activated protein kinase (MAPK). Different phos- 
pholipase C subtypes and IP3 have been shown to be 
involved in signal transduction by NPY in different tis- 
sues and many questions on special regulatory chains 
also in brain cells remained unanswered even today. 

3.2. Non-Peptide Ligands of NPY Receptors 

The NPY1-R subtype was the major target of efforts in 
research groups of several companies which developed 
antagonists with relatively high affinity and selectivity as 
J-104870, J-115814, BMS-193885 (13), BMS205749 (14) 
(Figure 3(a)), SAR-135966 ,1229U91 (GW 1229 or GR 
231118) [115-120].  
 

 

13 14 

15 16 17 
 

(a) 
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Figure 3. NPY1 receptor antagonists: (a) (13) 4-[3-(3-{3-[4-(3- 
Methoxy-cyclohexyl)-piperidin-1-yl]-propyl}-ureido)-phenyl]- 
2,6-dimethyl-1,4-dihydro-pyridine-3,5-dicarboxylic acid dimethyl 
ester; (14) 4-{3-[(Cyanoamino-{3-[4-(3-methoxy-cyclohexyl)- 
piperidin-1-yl]-propyl-amino}-methyl)-amino]-phenyl}-2,6-di-  
methyl-1,4-dihydro-pyridine-3,5-dicarboxylic acid dimethyl ester; 
(15) 5-(Diaminomethyl-amino)-2-diphenylacetylamino-pentanoic 
acid 4-hydroxy-benzylamide; (16) 5-[(Amino-propionylamino- 
methyl) amino]-2-diphenylacety-lamino pentanoic acid-4-hy- 
droxy-benzyl-amide; (17) 5-({Amino-[3-(4-propionylamino-butyl)- 
ureido]-methyl}-amino)-2-diphenylacetyl-amino-pentanoic 
acid 4-hydroxy-benzyl-amide. (b) NPY1 receptor antagonists: 
(18) [6-(5-Ethyl-4-fluoromethyl-thiazol-2-ylsulfanylmethyl)-4- 
mopholin-4-yl-pyridin-2-yl]-(6-methyl-pyridin-2-yl-methyl)- 
amine; (19) 6’-(81,5-Dimethyl-1H[1,2,4]triazol-3-ylsulfanyl- 
methyl)-4,4-difluoro-3,4,5,6-tetrahydro-2H-[1,4’] bipyridinyl- 
2’-yl]-(2,2,2-trifluoro-ethyl)-amine.   

The first orally active Y1 antagonist was the pyr- 
rolidine derivative SR 120819A [121]. Up to date, how- 
ever, no ligands for the in vivo imaging of NPY1 recep- 
tors in clinical use for humans have been presented 
[51,103].  

Keller et al. [122,123] and Weiss et al. [124] recom- 
mended the synthesis of ligands using substitution of 
argininamide type compounds with an acylguanidine 
entity at the guanidine as in BIBP 3226 (15) or the acyla- 
tion of the guanidine group with propionic acid as in 
UR-MK114 (16) (Figure 3(a)) leading to high affinity 
(Kd 1.2 nM) and selectivity for NPY1-Rs. Additionally, 
these antagonists exhibit an excellent long-term stability 
and only slow radiolysis if storage is performed as TFA 
salt in ethanol. However, during longer periods of incu- 
bation at physiological pH the release of argininamide 
interferes with the efficiency of UR-MK114. 

NG-carbamoylation instead of alkanoylation can avoid 
this disadvantage [123]. Therefore, BIBP-3226 (15) was 
substituted with a N-propionylated aminobutylcarbamoyl 
moiety.The newly synthetized NPY1 ligand, UR-MK136 
(17) (Figure 3(a)) showed a Ki value similar to that of 
UR-MK114 [123]. 

Recently, the presentation of the 18F-labeled NPY1 
antagonist Y1-973 (18) (Figure 3(b)) [124] was a break- 
through in NPY1 PET imaging. The tracer showed a IC50 
of 0.13 nM for human Y1-R, a log P of 3.2 (Table 2) and 
a P-gp ratio of 1.3.These properties meet the require- 
ments to peptide receptor ligands with Ki < 0.5 nM, log P 
< 3.5; and P-gp ratio < 3, which have been declared to be 
a generally necessary feature [120,124]. The authors 
emphasize the favourable kinetics in the brain, an accu- 
mulation in the striatum at 30 min with a binding poten- 
tial of 1.7 and a high uptake also in cortical regions, 
whereas the uptake was moderate in thalamus and lowest 
in cerebellum as can be expected for a NPY1-R ligand 
Y1-718 (IC50 17 nM) (19) was used for investigation of 
reversibility and specifity of Y1-973 binding [124]. 

A first small-molecule Y2-R antagonist, JNJ-5207787 
(20) (Figure 4), had been reported by Bonaventure et al. 
[108]. The compound showed a modest affinity and a 
receptor occupancy of 50%. 

A further NPY2-R antagonist described by Seierstad et 
al. [125] and further characterized by Shoblock et al. 
[51], JNJ-31020028 (21) (Figure 4), possessed a high 
selectivity, an affinity close to that of BIIE-0246 [126] 
between 6 and 9 nM and a Hill coefficient of 1. Investi- 
gations with this ligand provided evidence that NPY2-Rs 
play rather a modulating role, but not a pivotal one in the 
occurrence of preponderance and obesity. 

Also the role of NPY5-R has been discussed contro- 
versially. This was the case predominantly for its role in 
the occurrence of obesity in competition to NPY1. 
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CGP 71683 (22) (Figure 5) was the first NPY5-R an- 
tagonist reported in the literature [127,128] with a Ki of 
1.4 and extremely high selectivity for NPY5-Rs. 

Sato et al. [103] (23) (Figure 5) introduced the aryl 
pyrazole N-[5-(4-chlorophenyl)-1Hpyrazol-3-yl]-2-indane 
carboxamide (Ki 59 nM) as a lead structure to inhibit the 
NPY5-R. The scaffold was substituted with a chiral 3,3- 
dihydropental[α]naphthalene moiety resulting in a novel 
high affinity compound (Ki 3.5 nM). However, originally 
developed as a therapeutic drug it was not included in 
clinical studies because it was not effective enough fol- 
lowing oral application in rats. 

Kanatani et al. [129] concluded from experiments with 
the orally active, selective NPY5 receptor antagonist (L- 
152,804) (24) (Figure 5) (Ki for displacement of PYY: 
26 and 31 nM at human and rat NPY-Rs) that the 
NPY5-R contributes in part to the feeding response to 
NPY in their model. This contribution, however, was 
regarded as negligible. Recently, Nguyen et al. [130] 
using mice with individual NPY1- or NPY5-R knockout 
 
  

21 20 20 21  

Figure 4. NPY2 receptor antagonists: (20) N-(1-Acetyl-2,3- 
dihydro-1H-indol-6-yl)-3-(3-cyano-phenyl)-N-[1-(2-cyclopentyl- 
ethyl)-piperidin-4-yl]-acrylamide; (21) N-{4-[4-(Diethyl-car- 
bamoyl-phenyl-methyl)-piperazin-1-yl]-3-fluoro-phenyl}-2- 
pyridin-3-yl-benzamide.  
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Figure 5. NPY5 receptor antagonists: (22) N-[[4-[[(4-amino- 
quinazolin-2-yl)amino]methyl]cyclohexyl]methyl]naphthalene- 
1-sulfonamide; (23) 2,3 Dihydro-1H-cyclopental[a] naphtha- 
lene-2-carboxylic acid [5-(2-ethyl-pyridin-4-yl)-1H-pyrazol-3yl] 
amide; (24) 9-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-enyl)- 
3,3-dimethyl-2,3,4,9-tetrahydro-xanthen-1-one; (25) trans-N-(1-(2- 
fluorophenyl)-3-pyrazolyl)-3-oxospiro(6-azaisobenzofuran-(3H), 
1'-cyclohexane)-4'-carboxamide.  

or combined one demonstrated that food intake requires 
the concerted actions of both receptors, though compen- 
satory mechanisms induced by a general knockout have 
to take into account. 

A series of NPY5-R antagonists developed five years 
after the study by Kanatani et al. starting with the report 
on MK0557 (25) (Figure 5) [131] based on spiroindol 
scaffolds and achieved Ki values of 0.57 nM [132]. A 
combination of high receptor affinity and suitable brain/ 
plasma ratio showed a spiroindol linked with a biphenyl. 
But with a log D > 4 and a poor bioavailability [132] it 
did not meet the criteria as a probe for in vivo receptor 
imaging. A further compound provided lower NPY5-R 
affinity (Ki 1.5 nM) but a log D7.4 of 2.79 and was there-
fore used as 11C-labeled radioligand. This tracer was not 
a substrate for the human P-gp transporter [132]. 

4. MELANOCORTIN RECEPTORS 

4.1. Melanocortins, Agouti-Related Peptide and  
Their Receptors 

Melanocortins, including ACTH and MSH, are charac- 
terized by the amino acid sequence His-Phe-Arg-Trp 
(HFRW) in their active core. The tetrapeptide motif has 
been recognized to be essential for their binding and 
agonistic activity at the melanocortin receptors (MCR) 
[9]. Such endogenous compounds are products of the 
cleavage of the 241 amino acid precursor pro-opiome- 
lanocortin (POMC) by prohormone convertases (PC) 
acting in different parts of the pituitary gland as well as 
in the hypothalamus. Both subtypes of PC have been 
identified in anterior and intermediate pituitary. The ex- 
pression of the distinct peptides has been suggested to be 
determined by the ratio between PC1 and PC2 (also re- 
ferred to as PCSK1 or PC3 and PCSK2, respectively). 
PC1 in corticotroph cells supplies ACTH-related pep- 
tides (ACTH, ß-lipoprotein (LPH) and a K-peptide) in 
pars anterior distalis of the pituitary gland. In melano- 
trophs of the pars intermedia PC1 and PC2 reveal pre- 
dominantly α-MSH-related peptides (α-MSH, cortico- 
trophin like intermediate peptide; CLIP) as well as LPH- 
processed to β-endorphin [55]. PC2 has been recognized 
to be responsible for the formation of the α-, ß- and y 
MSH [133]. A former review [134] refers also to the less 
studied peptids γ3-MSH and desacetyl- α-MSH. 

Five receptors, MC1-R to MC5-R, are known as bind-
ing sites of the melanocortins. Two of them-the MC3-R 
and MC4-R -are localized also in the central nervous 
system. MC3-R is found mainly in the hypothalamus, 
cortex, thalamus and hippocampus [135,136] but also in 
kidney and gut. MC4-R has been observed in the hypo- 
thalamus, thalamus, hippocampus and other parts of the 
limbic system as well as in brainstem, with the highest 
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affinity in the dorsal motor nucleus of the vagus nerve 
and spinal cord [137]. 

Important functions of the MC3-R are associated with 
the cardiovascular control as well as sodium and energy 
homeostasis. MC4-R is discussed predominantly for its 
direct role in the regulation of food intake and energy 
expenditure [138]. Mutations of the MC4-R have been 
shown to result in binge eating and obesity [11, 139-141]. 
MC3-R is presumed to be involved in regulation of food 
intake rather indirectly. Mutations induce a mild obesity 
related to an insulin-resistant phenotype [142]. ACTH 
and MSH act as agonists at the MC-Rs and mediate ano- 
rexic actions in normal individuals [20]. In obese indi- 
viduals, however, the anti-obesity effect of agonists seems 
to be very limited, possibly because of downregulation of 
the melanocortin effects by the arrestin pathway [20].  

MC-Rs have been found in contrast to many other 
seven-transmembrane-domain-receptor types to recog- 
nize not only endogenous agonists but also inverse ago- 
nists or endogenous antagonists [143,144].  

One of these is agouti signaling protein (ASIP) which 
under normal physiological conditions antagonizes MC1- 
R effects [20,145] and controls skin pigmentation. It is a 
peptide triggering a switch in pigmentation from eume- 
lanin to phaeomelanin [146]. The second antagonistic 
endogenous ligand, AgRP, acts at the hypothalamic 
MC4-Rs and MC3-Rs as has been shown in transgenic 
mice overexpressing AgRP. AgRP can be processed by 
PC1 resulting in a smaller peptide 6fold more potent at 
MC4-R than AgRP (131 a.a.r. (mice) and 132 a.a.r. (hu- 
mans) [147]. ASIP (110 a.a.r.) and AgRP show similar 
CYS rich C-terminal domains which belong to the motif 
responsible for the interaction with MC-receptors. The 
cystine rich domains are presumed also to be responsible 
for a stereotypic tertiary structure defining a new struc- 
tural class for vertebrate proteins [146] the cystine-knot 
peptides [148]. 

Only a small population of Arc neurons (3000 in mice) 
has been shown to be POMC positive but develops 
widespread extra-hypothalamic projections to brainstem, 
medulla and spinal cord [9,149] as second order neurons 
containing MC4-R and MC3-R. 

In general the MC-Rs are regarded to be coupled to Gs 
protein signaling [20,21,150]. The MC4-R, however, is 
known also to couple to Gi/o and Gq proteins influencing 
cAMP or Ca2+ release. Moreover, MC4-R activation has 
been shown to interact with insulin signaling via MAPK 
including the c-Jun N-terminal kinase (JNK) and ex-
tracellular signal-regulated kinase (ERK1/2) [133,151, 
152]. 

4.2. MC-R Antagonists 

Most of the MCR ligands have been developed as ago- 
nists for the treatment of obesity and erectile dysfunction  

[37,153] although the success in the diminution of over- 
weight remained markedly behind the expectations. Pep- 
tide MC4-R antagonists as HS-014, HS-024, HS-131 and 
MBP-10 have been known for longer time as helpful 
research tools. Among these MBP-10 [153,154] has been 
described as the most interesting due to its high affinity 
(Ki 0.5 nM) and a selectivity to MC4-R 125 fold higher 
than to the MC3-R [37]. However, only few MC4-R an- 
tagonists are available as potential drugs or as probes for 
in vivo investigations. Whereas for peptide compounds 
vulnerability to peptidases, low brain permeability and 
high costs of synthesis are obstacles, in non-peptidic an- 
tagonists the affinity in relation to the density of the re- 
ceptors is in general too low for the use in PET or 
SPECT imaging approaches. Bednarek and Fong pro- 
vided 2004 [37] an overview on ligands available in the 
years 2002-2003 and Blankeney et al. [39] included in 
2007 MC receptor antagonists in their reviews on neu- 
roreceptor ligands. Potential candidates for in vivo imag- 
ing could be based on piperazine templates or on a 
3-iodo-4-chloro-aminoguanidine wich achieved in bind- 
ing studies Ki of 10 nM at MC4-R (compared to 0.5 µM 
at MC1-R, 5.8 µM at MC3-R, 4.9 µM MC5-R) [37]. 
Several of the tetrahydroisoquinoline (THIQ) derivatives 
with MC4-R antagonizing properties and relatively high 
affinity could also penetrate the blood brain barrier e.g. 
compound (26) with a log D of 1.1 and a Ki of 1.8 nM, 
or compounds (27) and (28) (Figure 6) with log D of 1.8  
 
 

26 27 
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Figure 6. MC4-R antagonists: (26) 3-Amino-N-[1-(2,3-di- 
chloro-benzyl)-2-oxo-2-(4-{2-[(2-thiophen2-yl-ethylamino)-me
thyl]-phenyl}-piperazin-1-yl-)-ethyl]-propionamide; (27) 2-{4- 
[2-(3-Amino-propionylamino)-3-(2,3-dichloro-phenyl)-propion
yl]-piperazin-1-yl}-cyclohexanecarboxylic acid ethyl ester; (28) 
N-[1-(2,3-Dichloro-benzyl)-2-(4-{2-[(2-methoxy-1-methyl- 
ethylamino)-methyl]-phenyl}-piperazin-1-yl)-2-oxo ethyl] 
propionamide; (29) (2S)-N-[(1R)-2-[4-cyclohexyl-4-[[(1,1-dime- 
thylethyl)amino]carbonyl]-1-piperidinyl]-1-[(4-fluorophenyl) 
methyl]-2-oxoethyl]-4-methyl-2-piperazine-carboxamide; (30) 1- 
[(1S)-1-(4-fluorophenyl)-2-[4-[4-(2-meth-oxynaphthalen-1-yl) 
butyl]piperazin-1-yl]ethyl]-4-propan-2- ylpiperazine.  
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and Ki of 6.3 and 6.9 nM [155,156]. 
Wikberg & Mutulis [20] as well as Blankeney et al. 

[39] summarized derivatives (e.g. (29) (Figure 6) of the 
MC4-R agonist THIQ and the antagonist SHU9119 at the 
MC3-R and MC4R and emphasized further templates as 
potential scaffolds for MC4-R antagonists. Furthermore, 
a non-THIQ related low affinity piperazine had been 
reported in 2003 [157] as the first MC4-R antagonist. 
Modifications of this compound resulted in the synthesis 
of MCL-0129 (30) (Figure 6) which has been shown to 
improve stress induced depression and anxiety in rats [39, 
54]. 

5. CART AND ITS POTENTIAL  
RECEPTOR 

A receptor has been postulated also for CART peptides 
[158]. Rogge et al. proposed in 2008 [159] a signaling 
mechanism for such potential receptors. Due to the ob- 
servation that signaling induced by CART can be inhib- 
ited by pertussis toxin a Gi/o protein coupled mechanism 
has been suggested but also activation of MEK and ERK 
½ has been demonstrated in mouse pituitary cell lines 
[160]. CART itself is presumed to be involved in reward 
and reinforcement, feeding, stress and neuroendocrine 
control [161]. Active CART peptides occur by processing 
of a 89 and a 102 a.a.r. proCART peptide. The CART 
fragments 55 - 102, 62 - 102 and 42 - 89 [159] (with dif- 
ference in the amino acid sequence of the active region 
in rats and humans) revealed biological activity also in 
vivo [162]. In humans has been observed only CART 42 
- 89. The peptide can cross the BBB but is not subjected 
to mechanisms regulating saturation of its brain level 
[163]. The pro-peptides are predominantly expressed in 
hypothalamus, pituitary, adrenal gland and pancreas. A 
mutation has been found for the CART gene (Leu34Phe) 
in obese families [164,165] and the PACAP sequences 1 
- 38 and 6 - 38 have been identified as low-affinity in- 
hibitor of CART binding [166]. Moreover, the CART 
level has been observed to be markedly decreased in 
cerebrospinal fluid of patients suffering from dementia 
with Lewy bodies. 

Rogge described for CART peptides a role in several 
parts of the stress axis including hypothalamus (retrochi- 
asmatic nucleus, Arc, PVH), pituitary anterior and poste- 
rior, caudal raphe, rostral ventrolateral medulla, spinal 
cord as well as adrenal chromaffin cells [159]. 

6. OREXIN RECEPTORS 

6.1. Endogenous Peptidic Ligands 

Orexin A and B (33 and 28 a.a.r.) [167] also called hy- 
pocretin 1 and 2 according to the tissue where it has been 
identified [168] are both generated from pre-prohor- 

mone-orexin (pp-orexin; 130 - 131 a.a.r.). This is ex- 
pressed in the lateral hypothalamic area particularly close 
to the median eminence, DMH and PFA [169,170]. Sta- 
bility and lipophilicity of orexin A exceeds that of orexin 
B. That is the reason for a higher plasma concentration of 
orexin A and its ability to cross the blood brain barrier in 
difference to orexin B [163]. 

Additionally to their intrahypothalamic actions on 
feeding behavior orexin releasing neurons project to ex- 
trahypothalamic structures like the histaminergic tu- 
beromamillary nucleus and the basal forebrain, as well in 
the posterior and pontal locus coeruleus and the median 
raphe nucleus, substantia nigra and ventral tegmental 
area. Moreover, there are strong interactions with sig- 
naling by neurons of the ventrolateral preoptic nucleus 
(VLPO) involved in the regulation of the ascending 
arousal system [171]. VLPO has been characterized to be 
in close relation to nucleus suprachiasmaticus which is 
one of the most powerful pacemakers of the circadian 
sleep/wake cycle and known as the internal clock of the 
mammalian body. Orexin (hypocretin) has been recog-
nized as a wake-promoting agent [172,173]. 

Enormous boost for the presumption of a role of 
orexin in the sleep/wake cycle came from the discovery 
of natural animal models of narcolepsy in dogs [174] 
starting with investigations in a dog model with excita- 
tion-stimulated loss of muscle tone caused by a defi- 
ciency of the OX2-R [175-177]. Humans suffering from 
severe disturbances of sleep/wake cycle as narcolepsy 
show low or absent orexin in the cerebrospinal fluid 
[178,179].  

The number of orexin-containing neurons has been 
reported to achieve 3000 - 4000 in rats and 50,000 - 
80,000 in humans [173,180]. Orexin receptors have been 
found in the highest density in locus coeruleus. 

OX2-R shows a nearly equal affinity to orexin A 
and B (34 nM and 60 nM), whereas OX1-R has a 
higher affinity to orexin A (30 nM vs 2500 nM for 
Orexin B) [167,168]. For OX1-R signal transduction 
via Gq/11 proteins is suggested, whereas OX2-R can 
act via Gq as well as via Gi and Gs proteins [167, 
181,182]. However, it is not finally clear if this de- 
scription is true also in different kinds of target cells 
[180]. Nevertheless, OX-R actions are mediated also 
by Na/Ca exchanger and GIRK.  

6.2. Non-Peptide OX-R Ligands 

OX-R antagonists have been developed predominantly as 
therapeutics for insomnia and dual orexin antagonists 
(DORA) attracted the highest attention because they 
could effectively promote sleep. Meanwhile, however, 
DORAs as well as selective orexin receptor antagonists 
(SORA) have been investigated in clinical trials [183]. 
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Almorexant (31) (ACT-078573), SB-649868 (32) and 
MK-4305 (33) (Figure 7) as well as Merck-DORA 1 and 
Merck-DORA-5 belong to the first group. Almorexant 
and SB-649868 improved the natural sleep architecture 
by increasing the time spent in REM and non-REM sleep 
phase in contrast to the GABA modulator zolpidem 
which reduces the time in these sleep stages [48,49]. 
Both were subjected to clinical trials (Almorexant to 
phase III and SB-649868 to phase I) but the latter was 
delayed in further testing by preclinical toxicological 
findings. 

The diazepane compound MK 4305 (33) with Ki val- 
ues of 0.55 and 0.35 nM at OX1-R and OX2-R [49,180, 
184] as well as a molecular weight of 450.19 g/mol has a 
log P of 4.24 and is included in a clinical phase III study. 
A volume distribution of 2.6 (rat) and 0.8 l/kg b. wt (dog) 
lets expect rather modest lipophilic properties. MK 4305 
has been developed using 7-methyldiazepane and tria- 
zolyl-benzamide as core unit and is only one in a series 
of diazepanes highly potent as DORAs (see (34), (35) 
(Figure 7) [49,184]. 

The replacement of the benzoisoxazole moiety by ben- 
zopyrimidine and substitution in the 6-position by a fluo- 
rine atom resulted in a compound which was similarily to 
MK4305 not a substrate for the permeability glycopro- 
tein (P-gp) and showed an excellent passive permeability. 
But the brain/plasma ratio between 0.4 and 0.6 excluded 
it from the list of candidates for in vivo imaging [49]. 

Although characterized by some favorable attributes 
the compound was shown to form electrophilic interme- 
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Figure 7. Dual orexin receptor antagonists: (31) 2-  
{6,7-Dimethoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]-3,4-dih
ydro-1H-isoquinolin-2-yl}-N-methyl-2-phenylacetamide; (32) 
Benzofuran-4-carboxylic acid {1-[5-(4-fluoro-phenyl)-2- 
methyl-thiazole-4-carbonyl]-piperidin-2-ylmethyl}-amide; (33) 
(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan- 
1-yl]-[5-methyl-2-(2H-1,2,3-triazol-2-phenyl] methanone; (34) 
[4-(6-Chloro-benzothiazol-2-yl)-[1,4]diazepan-1-yl]-(2,6-dimet
hoxy-phenyl)- methanone; (35) (5-Methyl-2-[1,2,3]triazol-2-yl- 
phenyl)-(4-quinazolin-2-yl-[1,4]diazepan-1-yl)-methanone. 

diates which can be trapped by GSH if incubated in hu- 
man or rat liver microsomes. Further investigations sug- 
gest a role of the fluor atom in the bioactivation. There 
was no marked alteration of the reactivity to GSH in 
double fluorinated molecules [49]. 

In general the DORAs available have higher affinities 
than the selective blockers. This is true also for the 
Merck-DORA-1 (0.2 nM and 3 nM for OX1-R and OX2- 
R, respectively) and Merck-DORA-5 (0.6 nM and 1.2 
nM).  

Nevertheless, selective OX1-R blockers have been 
found with SB 334867 (36) [185,186] and SB 674042 
(37) and also OX2-R blockers have been characterized 
like JNJ-10394049 (38; 5 nM) and EMPA (39) (8 nM) 
[180,187] (Figure 8). Faedo et al. [182] subjected the 
newer orexin receptor antagonists not only to different 
in vitro activity tests but also to a sophisticated analysis 
of association and dissociation binding kinetics. The 
DORAs SB 649868 and MK6096 as well as the selec- 
tive OX2-R antagonists ACT-078573, Roche-CP and 
JNJ10397049 were included. Short half-life of 0.19 min 
at OX1-R and 0.60 min binding to OX2-R where shown 
for JNJ10397049 associated with a surmountable an- 
tagonism with displacement of [3H] ACT-078573. 

7. MELANIN-CONCENRATING  
HORMONE RECEPTOR 

7.1. Endogenous Peptidic Ligands 

The mammalian melanin-concentrating hormone (MCH)  
 

36 

39 38

37 

 

Figure 8. Selective orexin receptor antagonists (SORA)  
OX1-R: (36) 1-(2-Methyl-2,3-dihydro-benzooxazol-6-yl)-3- 
[1,5]naphthyridin-4-yl-urea; (37) [5-(2-Fluoro-phenyl)-2- 
methyl-thiazol-4-yl]-[2-(5-phenyl-[1,3,4]oxadiazol-2-ylmethyl)- 
pyrrolidin-1-yl]-methanone; OX2-R: (38) 1-(2,4-Dibromo- 
phenyl)-3-(2,2-dimethyl-4-phenyl-[1,3]dioxan-5-yl)-urea; (39) N- 
Ethyl-2-[(6-methoxy-pyridin-3-yl)-o-tolylsulfanyl-amino]-N-py
ridin-3-yl-methyl-acetamide. 
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is a 19 a.a.r.cyclic peptide [188] which was discovered 
similar to the fish melanin-concentrating hormone (17 
a.a.r.) earlier in extracts isolated from salmon pituitaries 
[189]. MCH supports the aggregation of melanin gra- 
nules in melanophores resulting in a pale color of the 
skin. Its counterpart the melanocortin α-MSH disperses 
melanin pigments. MCH is formed by cleavage of a pre- 
prohormone which includes also amino-acid sequences 
of the neuropeptides E-I and G-E. Further splicing vari- 
ants of the MCH gene can supply MCH gene overprinted 
polypeptide (MGOP)-14 and -17. MCH has been ob- 
served predominantly in lateral hypothalamus and zona 
incerta. Moreover, MCH has been detected in the 
periphery in testis and enteric neural system. In the 
peripheral tissue it is known to induce insulin hyperse- 
cretion and enhanced levels of the hepatocyte nuclear 
factor [190]. The absence of the peptide results in 
hypophagia and leaness [191]. MCH-Rs have been 
discovered in 1999 [192-197] and identified all over the 
brain but there are only few data available on the density 
of the receptors. These suggest a rather small cerebral 
receptor population compared with classical receptors 
well detectable by in vivo imaging methods. However, 
there are identified some regions with high expression of 
MCH-R mRNA [196-198] and it is known that fasting 
and obesity induce not only an upregulation of MCH but 
also of MCH1-R. The mechanism of this surprising 
response of the receptor is not completely understood 
[199,200]. The two receptor subtypes known in humans, 
MCH1-R and MCH2-R [201,202], are GPCRs. MCH1-R 
is acting via Gi/Go and Gq proteins [197,203]. Actions of 
MCH2-R are mediated via Gq proteins [204]. MCH1-R 
mRNA levels have been described to be high in the 
olfactoric system, VMH, Arc and zona incerta [205,206]. 
but it has been found also in hippocampus, PVH, 
subiculum, basolateral amygdala and in the shell of the 
nucleus accumbens which are involved in learning, 
addiction, emotion and motivated behavior [196]. The 
presence of MCH2-R has been confirm in human hippo- 
campus as well as in the amygdala and is discussed 
controversially for hypothalamic regions.[201,202,207]. 
Nevertheless, it has been not confirmed that MCH2-R is 
essentially involved in feeding behavior or neuroendo- 
crine function [205]. 

7.2. Non-Peptide Ligands of MCH-Receptors 

The observations that mice with overexpression of 
MCH1-R are obese, MCH1-R knockout animals become 
lean and can develop a hypophagia [208,209] and leaness 
may occur also in consequence to ablation of mela- 
nin-concentrating hormone neurons [210] accelerated 
the efforts in search for suitable antagonistic agents up to 
date. Among these GW 856464 [211], AMG076 [212]  

and NGD-4715 [213] achieved phase 1 clinical investi- 
gations. Trials to optimize quinazolines [214-219], as (40) 
(Figure 9(a)), revealed GW 803430 (GW3430; [214]), 
ATC0175 and ATC0065 [215] which were shown effica- 
cious in rodent depression models [197]. However, 
ATC0175 and ATC0065 are binding with high affinity 
not only to MCH1-R but also to subtypes of the 5 HT 
receptor [197] suggesting that the antidepressiv effect of 
the MCH1-R antagonist is not due to MCH1-R alone. 
 

40 41 

42 43  
(a) 

44 45 

46 47  
(b) 

Figure 9. (a) MCH1 receptor antagonists: (40) N-[3-(1-{4-[1- 
(4-Fluoro-phenyl)-1H-benzoimidazol-2-yl]-butyl}-piperidin-4-
yl)-phenyl]-acetamide; (41) 2-(3,4-difluorophenyl)-N-(3- (6- 
fluoro-1H-spiro[furo[3,4-c]pyridine-3,4'-piperidine]-1’-yl)propyl)-
N-(2-fluoroethyl)-2-(1H-pyrazol-1-yl) acetamide; (42) 1-[3-(11- 
Methyl-9-trifluoromethyl-1,3,4,4a,5,6,11,11a-octahydro-pyrido
[4,3-b] carbazol-2-yl)-propyl]-cyclohexane-carboxylic acid; (43) 
11-Methyl-2-[3-(tetrahydro-pyran-4-yl)-propyl]-9-trifluoromethyl-
2,3,4,4a,5,6,11,11a-octahydro-1H-pyrido [4,3-b]carbazole. (b) MCH1 
receptor antagonists: (44) 3-{3-[4-(3-Acetylamino-phenyl)- 
piperidin-1-yl]-propylcarbamoyl}-4-(3,4-difluoro-phenyl)-6- 
methoxymethyl-2-oxo,2,3,4-tetrahydro-pyrimidine-5-carboxy- 
lic acid methyl ester; (45) N-[3-[1-[[4-(3,4-difluorophenoxy) 
phenyl]methyl] piperidin-4-yl]-4-methylphenyl]-2- methylpro- 
panamide; (46) 2-Amino-2-(6-dimethylaminomethyl-5,6,7,8- 
tetrahydro-naphthalen-2-yl)-1-(4'-fluoro-biphenyl-4-yl)-ethanone; 
(47) {(4S)-1-[(1S)-2-(benzylamino)-methylethyl]-3-[2-(3-fluo-  
rophenyl) ethyl]-2-thioxoimidazolidin-4-yl} propyl) guanidine). 
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Furthermore, also aminopiperidine chromones [220], bi- 
cycle heptane derivatives [221], phenylpyridones [222] 
and benzazepine derivatives [223] recently have been re- 
viewed by Johansson and Luthin [224,225]. However, no 
MCH1-R ligand is in use up to now for clinical imaging 
of cerebral receptors. The central reason for that should 
be the requirements arising to affinity and physicoche- 
mical properties by the low density of MCH-Rs in the 
brain. Moreover, the action of MCH1-R ligands as drugs 
for the treatment of obesity is frequently biased by inter- 
actions of the compounds with the hERG potassium chan- 
nel (human ether-a-go-go-related gene channel) [226, 
227], a channel associated with the long QT syndrome. 
Therefore, research for new therapeutically relevant se- 
lective MCH1-R ligands is steered in part by the neces- 
sity to find templates with warranty of low or no interac- 
tion with such channels.  

Several compounds notable as candidates for in vivo 
MCH1-R imaging have been reported by Suzuki et al. 
[228] including spiro-fluorofuropyridine derivatives with 
Ki values of 0.49, 0.15 nM and 0.09 nM. Beside the re- 
duction of the unspecific actions on hERG recent re- 
ports provide extended pharmakokinetic data including 
not only lipophilicity, solubility and further distribution 
parameters but also data on microsomal stability to P-gp, 
as well as SAR influencing the potency of binding to the 
MCH1-R receptor. Suzuki et al. [229] tested the suscep- 
tibility of their compounds to P-gp in human MDR1- and 
mouse mdr1α transfected porcine renal epithelial cells. 
Agents revealing transcellular transport ratio above 3 in 
these experiments are regarded to be P-gp substrates. 
This is true for the most of the compounds investigated 
by Suzuki et al. [229]. That property provides an addi- 
tional important feature of exclusion and allowed to de- 
cide for a spirofuoropyridine substituted with an ethyl 
group and a further fluorine (41) (Figure 9(a)). This 
antagonist showed a MCH1-R affinity of 0.09 nM and a 
log D7.4 = 2.3. Two similar substances showed IC50 of 
0.15 and 0.45 nM, respectively, but only one of it is not 
regarded as a P-gp substrate. Mihalcic et al. [205, 230] 
established the synthesis of isochonolin indols derived 
from alkaloid structures which were selected by means 
of an aequorin MCH1-R cellular assay using blockade 
of intracellular Ca2+ release by MCH. Derivatives with 
receptor affinities of 0.3 nM (42) and 0.6 nM (43) 
(Figure 9(b)) which can compete also with the affinity 
of the endogenous ligand of the MCH receptor (IC50 1 
nM and 5 nM, respectively) were reported. Souers et al. 
and Vasudevan et al. proposed [231-234] some high af- 
finity compounds with quinazoline, piperidine scaffolds. 
These include SNAP-7941 (44) [235] with Kd of 0.18 
nM, SNAP-94847(45) [236] and T226296 (46) (Figure 
9(b)) [56,197] (Table 2). Especially SNAP-94847 has 
been described to show a more rapid onset of anti-de- 

pressive action than a traditional antidepressant [236]. 
The thioxoimideazolimine TPI-1361-17 (47) (Figure 

9(b)) has been selected among 800,000 compounds by 
data screening [188]. It could inhibit Ca2+ mobilization 
induced by 1 nM MCH with an IC50 of 6.1 nM and 
suppressed the food intake in vivo by 75% in rodents 
[188]. 

Particularly difficult is the identification of effective 
MCH2-R antagonists because the receptor had not been 
found in rodents. Nevertheless, Chen et al. [237] pre- 
sented in 2012 a series of high affinity carbazol–deriva- 
tives with high selectivity for MCH2-R in comparison to 
MCH1-R.Two of the most effective compounds are (48) 
and (49) (Figure 10) with IC50 of 0.1 and 1 nM, respec-
tively, in the CHO cells using Ca2+ FLIPR assay. (48) 
was obtained by replacement of hydroxy groups bound 
to the spiro- piperidine region by a N-acetyl group which 
can mimic the hydrogen donating character of the hy-
droxyl moiety [237]. Substitution of the carbazole with an 
urea group improved further the pharmacokinetic proper-
ties. (49) showed in MCH2-R binding assays a Ki rather 
moderate for a ligand which should be a suitable tool for 
neuroimaging. But the compound has a good selectivity 
versus MCH1-R and no interactions with cardiac potas-
sium channels providing sufficient reasons, that the au-
thors selected this substance for further pharmacological 
evaluation. 

8. CONCLUSIONS 

The general handicap for brain neuropeptide receptor in 
vivo imaging is primarily due to the relative low density 
of many subtypes of peptide receptors. Additionally, 
some of them, e.g. MCH2-R, are not inherently expressed 
in species typically used as animal models for the 
evaluation of receptor ligands, especially for develop- 
ment of radioligands for SPECT and PET of cerebral 
“feeding receptors”. However, many reports on brain 
areas rich of neuropeptide receptor mRNA suggest the 
possibility to identify occasion-related changes of recep- 
tor expression if high affinity ligands are available. Fur- 
thermore, the pool of receptor ligands developed origi- 
nally for therapeutic purposes and for labeling or block- 
ing peripheral receptors revealed repeatedly compounds  
 

49 48  

Figure 10. MCH2 receptor antagonists: (48) (R)-N-(1'-((9H- 
carbazol-3-yl)methyl)-2,3-dihydrospiro[indene-1,4'-piperi- 
dine]-3-yl)acetamide; (49) (R)-3-((3-acetamido-2,3-dihy-drospi- 
ro[indene-1,4'-piperidine]-1'-yl)methyl)-9H-carbazole-9-car- 
boxamide. 
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or templates appearing suitable for labeling with short- 
lived PET and SPECT isotopes and providing appropri- 
ate pharmacokinetic properties. 

For the feeding receptors discussed here, at present, 
NPY-R ligands of the receptor subtypes Y1 and Y2 as 
well as CRF1-R ligands have the best perspective to be- 
come a diagnostic probe and to enter clinical applications 
due to relatively high receptor densities. MCH-R and 
MC-R as well as the hypothetic CART receptor should 
be the most challenging targets. 
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