The antinociceptive role of central arginine vasopressin is involved in the endogenous opiate peptide, serotonin and acetylcholine systems

Xiang-Yong Li¹², Jun Yang¹*, Xi-Qing Yan¹, Yan-Juan Pan¹, Ying Zhao¹, Pei-Yong Qiu¹, Xi-Jian Zhou², Da-Xin Wang³

¹College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China; ²101 Hospital of PLA, Wuxi, Jiangsu, China; ³Jiangsu Su Bei People’s Hospital, Yangzhou University, Yangzhou, Jiangsu, China.

Email: *bcd2009@126.com

Received 19 August 2011; revised 5 October 2011; accepted 24 October 2011.

ABSTRACT

Our previous work has demonstrated that arginine vasopressin (AVP) plays a role in pain modulation. The present study investigated which kinds of neuropeptides and neurotransmitters in central nervous system might be involved in AVP antinociceptive role in the rat. The results showed that (1) intraventricular injection (icv) of V₁ receptor antagonist [d(CH₂)₅-Tyr(Me)AVP] and V₂ receptor antagonist [d(CH₂)₅[D-Ile², Ile⁴, Ala⁹-NH₂]AVP] blocked the antinociceptive effect induced by AVP (icv), (2) the opiate receptor antagonist (naloxone) reversed the antinociceptive effect induced by AVP (icv), and (3) both the serotonin receptor antagonist (cypohedatidine) and M receptor antagonist (atropine) could attenuate the antinociceptive effect induced by AVP (icv), and (4) both the serotonin receptor antagonist (cypohedatidine) and M receptor antagonist (atropine) could attenuate the antinociceptive effect induced by AVP (icv), and (4) oxytocin, dopamine, N-methyl-D-aspartate (NMDA), γ-amino- butyric acid (GABA), N, α or β receptor antagonist did not influence the antinociceptive effect induced by AVP (icv). The data suggested that AVP antinociceptive role was involved in the endogenous opiate peptide, serotonin and acetylcholine systems in central nervous system.

Keywords: Arginine Vasopressin; Antinociception; Endogenous Opiate Peptide; Serotonin; Acetylcholine

1. INTRODUCTION

Arginine vasopressin (AVP), a nonapeptide posterior pituitary hormone, is synthesized in the paraventricular and supraoptic nuclei of hypothalamus [1]. This hormone, combined with an apparent carrier protein (neurophysin), is transported along the hypothalamo-hypophyseal pathway to the neurohypophysis, where it is stored for subsequent release [2]. The remarkable functions of AVP include body fluid homeostasis, hormone probation, cardiovascular control, learning and memory [3]. Many studies have showed that AVP influences antinociception in both human and nonhuman species [1,4-7]. Intraventricular injection (icv) of AVP increases the pain threshold, while anti-AVP serum (icv) decreases the pain threshold, but intrathecal injection (ith) or intravenous injection (iv) of either AVP or anti-AVP serum does not influence the pain threshold [8,9]. Pain stimulation could change AVP concentration in some brain nuclei, but did not change AVP concentration in the spinal cord and serum [8,9]. The antinociceptive effect of AVP is limited to the brain nuclei, not the spinal cord and peripheral organs.

Many studies have proven that most of neuropeptides (such as endogenous opiate peptides) and neurotransmitters (such as serotonin, acetylcholine, norepinephrine and epinephrine) are involved in pain modulation [10]. For example, oxytocin (icv) could increase the pain threshold and enhance acupuncture analgesia, while anti-oxytocin serum (icv) decreases the pain threshold and weakens acupuncture analgesia [11-13]. However, it is not clear the interaction between AVP and other neuropeptides or neurotransmitters in pain modulation. The present study investigated which neuropeptides and neurotransmitters in central nerve system might be involved in AVP antinociceptive effect in the rat.

2. MATERIALS AND METHODS

2.1. Animals

Adult male Sprague-Dawley rats weighing 180-220 g, which were obtained from Animal Center of Yangzhou University, Yangzhou, Jiangsu, China, were housed with food and water available ad libitum in a colony room under controlled temperature, humidity and a 12 hours
light/dark cycle (light at 6:00 AM and dark at 6:00 PM). All the procedures were approved by Animal Care Committee of Yangzhou University and conducted according to the guidelines of the International Association for the Study of Pain [14].

2.2. Materials
AVP, d(CH2)3[Tyr(Me)AVP, d(CH2)3[D-Ile2, Ile4, Ala9-NH2]AVP and [1-D(CH2)5, Tyr(ME)2, Thr4, Tyr-NH2(9)]ornithine vasotocin were obtained from Peninsula Lab, San Carlos, CA, USA. Naloxone, cyclophosphonic acid, atropine, 6-OH gallamine, fluperidol, phentolamine, propranolol, MK801, bicuculline, 5-amino valeric acid (5AVA), 3-aminoproyl phosphonic acid (3APPA), and the other chemicals were bought from Sigma Co., St. Louis, MO, USA.

2.3. Surgery
With Pellegrino L.J. rat brain atlas as reference, we used the stereotaxic apparatus (Jiangwan I-C, Shanghai, China) to implant a stainless steel guide cannula of 0.5 mm outer diameter into the right lateral ventricle (AP 0.3 mm, LR 0.5 mm, H 3.0 mm) for icv under the pentobarbital sodium (35 mg/kg, intraperitoneal injection) anaesthesia. The guide cannula was fixed to the skull by dental acrylic. All operations were carried out in the aseptic condition and the animals were allowed to recover for at least 14 days after the surgery.

2.4. Intraventricular Injection (Icv)
On the day of experiment, a stainless steel needle with 0.3 mm diameter for icv was directly inserted into the guide cannula, with 1 mm beyond the tip of the latter. The 10 μl of antiserum or solution was injected into the lateral ventricle gently over 10 min.

2.5. Nociceptive Tests
All animals were tested under the condition of free activity in the small cages (30 cm in diameter, 25 cm in height) from 8:00 to 10:00 am. Depending on the 30-year experience of studying pain in our laboratory, we used the potassium iontophoresis inducing tail-flick served as pain stimulus. The small wet cotton with the potassium iontophoresis was set on the skin of the tail. The cotton was exposed to direct electrical current, and the anode led the potassium iontophoresis to permeate the skin of the tail. If the current was strong enough, the permeated potassium iontophoresis resulted in the animal feeling the pain stimulation. The intensity of current at the moment of the response was recorded as the pain threshold, which was expressed as mA (WQ-9E Pain Threshold Measurer, Shanghai, China). The duration between consecutive stimuli was 10 min, and the pain stimulus was terminated at once when the rat showed response to this stimulus.

2.6. Histological Verification
At the end of the experiments, the rat was sacrificed under the high dose of pentobarbital sodium (80 mg/kg, intraperitoneal injection), and the histological location of icv was ascertained. The data were excluded from analysis if the positions were not accurate.

2.7. Statistical Analysis
All values were expressed as mean ± standard error of the mean (SEM) and were analyzed between groups by analysis of variance (ANOVA) and χ2 test. P < 0.05 was considered statistically significant.

3. RESULTS
3.1. Effect of the Neuropeptide Receptor Antagonist on Pain Threshold Increase Induced by AVP (icv)
Table 1 showed that 100 ng AVP (icv) could increase the pain threshold from 0.52 ± 0.03 mA to 0.77 ± 0.04 mA (P < 0.001).

Although icv of 2 μg d(CH2)3[Tyr(Me)AVP (V1 receptor antagonist), 2 μg d(CH2)3[D-Ile2, Ile4, Ala9-NH2]AVP (V2 receptor antagonist), 2 μg [1-D(CH2)5, Tyr(ME)2, Thr4, Tyr-NH2(9)]ornithine vasotocin (oxytocin receptor antagonist) or 2 μg naloxone (opioid receptor antagonist) decreased the pain threshold (all p < 0.01 ~ 0.001), ventricular pretreatment with V1 receptor antagonist, V2 receptor antagonist, opiate receptor antagonist could reverse the antinociceptive effect induced by 100 ng AVP administration (icv), and ventricular pretreatment with oxytocin receptor antagonist did not influence the antinociceptive effect induced by 100 ng AVP administration (icv) (Table 1).

3.2. Effect of the Neurotransmitter Receptor Antagonist on Pain Threshold Increase Induced by AVP (icv)
Table 2 showed that icv of 2 μg 5-HT receptor antagonist (cyropheptadine), 2 μg M receptor antagonist (atropine), 2 μg N receptor antagonist (6-OH gallamine), 2 μg α receptor antagonist (phentolamine) or 2 μg β receptor antagonist (propranolol) decreased the pain threshold (all p < 0.01 ~ 0.001), but icv of 2 μg dopamine receptor antagonist (flupero), 2 μg N-methyl-D-aspartate (NMDA) receptor antagonist (MK801), 2 μg γ-aminobutyric acid (GABA), receptor antagonist (bicuculline), 2 μg GABAβ receptor antagonist (5-amino valeric acid) or 2 μg GABA receptor antagonist (3-aminoproyl phosphonic acid) did not influence the pain threshold.

Pretreatment with either 5-HT receptor antagonist or M receptor antagonist (icv) could attenuate the antinociceptive
Table 1. Effect of neuropeptide receptor antagonist (icv) on the pain threshold increase induced by the central AVP.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>Before injection</th>
<th>After 1st injection</th>
<th>After 2nd injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSF + ACSF</td>
<td>10</td>
<td>0.50 ± 0.03</td>
<td>0.51 ± 0.02</td>
<td>0.52 ± 0.03</td>
</tr>
<tr>
<td>ACSF + AVP</td>
<td>10</td>
<td>0.51 ± 0.03</td>
<td>0.52 ± 0.04</td>
<td>0.77 ± 0.0414</td>
</tr>
<tr>
<td>V1 receptor antagonist + ACSF</td>
<td>10</td>
<td>0.51 ± 0.03</td>
<td>0.41 ± 0.04</td>
<td>0.46 ± 0.04</td>
</tr>
<tr>
<td>V1 receptor antagonist + AVP</td>
<td>10</td>
<td>0.51 ± 0.04</td>
<td>0.40 ± 0.031</td>
<td>0.49 ± 0.03</td>
</tr>
<tr>
<td>V2 receptor antagonist + ACSF</td>
<td>10</td>
<td>0.51 ± 0.03</td>
<td>0.41 ± 0.021</td>
<td>0.43 ± 0.031</td>
</tr>
<tr>
<td>V2 receptor antagonist + AVP</td>
<td>10</td>
<td>0.50 ± 0.02</td>
<td>0.40 ± 0.021</td>
<td>0.45 ± 0.021</td>
</tr>
<tr>
<td>OXT receptor antagonist + ACSF</td>
<td>9</td>
<td>0.50 ± 0.03</td>
<td>0.39 ± 0.0311</td>
<td>0.41 ± 0.041</td>
</tr>
<tr>
<td>OXT receptor antagonist + AVP</td>
<td>9</td>
<td>0.51 ± 0.03</td>
<td>0.40 ± 0.0311</td>
<td>0.74 ± 0.04122</td>
</tr>
<tr>
<td>Opiate receptor antagonist + ACSF</td>
<td>10</td>
<td>0.54 ± 0.04</td>
<td>0.37 ± 0.0111</td>
<td>0.35 ± 0.031***</td>
</tr>
<tr>
<td>Opiate receptor antagonist + AVP</td>
<td>10</td>
<td>0.50 ± 0.02</td>
<td>0.34 ± 0.0311</td>
<td>0.62 ± 0.03122</td>
</tr>
</tbody>
</table>

ACSF, 10 μl artificial cerebrospinal fluid; AVP, 100 ng arginine vasopressin; V1 receptor antagonist, 2 μg d(CH3)2[Tyr(Me)2, Ile4, Ala7]-AVP; V2 receptor antagonist, 2 μg d(CH3)2[Tyr(Me)2, Ile4, Ala7]-AVP; OXT (oxytocin) receptor antagonist, 2 μg [1-(D-Cha)-Tyr(Me)3, Thr2, Tyr(NH2)9]ornithine vasotocin; Opiate receptor antagonist, 2 μg naloxone. All values are expressed as mean ± standard error of the mean (SEM). N indicates the animal number of the group. Before injection denotes the animal before the treatment; First injection denotes the animal given first intraventricular injection (icv) of ACSF or receptor antagonist; Second injection denotes the animal given second icv of ACSF or AVP in 10 min after first injection. *P < 0.05, **P < 0.1 and ***P < 0.001 are for the comparison of the pain threshold from marked group and ACSF + ACSF group; °P < 0.05, **P < 0.1 and ***P < 0.001 are for the comparison of the pain threshold from marked group and ACSF + AVP group; 1P < 0.05, 11P < 0.01 and 111P < 0.001 are for the comparison of the pain threshold from marked value and the value before injection; 2P < 0.05, 22P < 0.01 and 222P < 0.001 are for the comparison of the pain threshold from marked value after 1st injection and the value after 2nd injection; 3P < 0.001 is for the comparison of the pain threshold from receptor antagonist + AVP group and receptor antagonist + ACSF group (corresponding control group).

Table 2. Effect of classical neurotransmitter receptor antagonists (icv) on the pain threshold increase induced by the central AVP.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>Before injection</th>
<th>After 1st injection</th>
<th>After 2nd injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSF + ACSF</td>
<td>10</td>
<td>0.50 ± 0.03</td>
<td>0.51 ± 0.02</td>
<td>0.52 ± 0.03</td>
</tr>
<tr>
<td>ACSF + AVP</td>
<td>10</td>
<td>0.51 ± 0.03</td>
<td>0.52 ± 0.04</td>
<td>0.77 ± 0.0414</td>
</tr>
<tr>
<td>5-HT receptor antagonist + ACSF</td>
<td>10</td>
<td>0.52 ± 0.03</td>
<td>0.27 ± 0.02111</td>
<td>0.23 ± 0.01111</td>
</tr>
<tr>
<td>5-HT receptor antagonist + AVP</td>
<td>10</td>
<td>0.47 ± 0.03</td>
<td>0.30 ± 0.03111</td>
<td>0.31 ± 0.05111</td>
</tr>
<tr>
<td>M receptor antagonist + ACSF</td>
<td>9</td>
<td>0.50 ± 0.03</td>
<td>0.30 ± 0.02111</td>
<td>0.29 ± 0.02111</td>
</tr>
<tr>
<td>M receptor antagonist + AVP</td>
<td>9</td>
<td>0.51 ± 0.03</td>
<td>0.33 ± 0.02111</td>
<td>0.60 ± 0.04122</td>
</tr>
<tr>
<td>N receptor antagonist + ACSF</td>
<td>9</td>
<td>0.48 ± 0.03</td>
<td>0.47 ± 0.03</td>
<td>0.49 ± 0.03</td>
</tr>
<tr>
<td>N receptor antagonist + AVP</td>
<td>9</td>
<td>0.49 ± 0.03</td>
<td>0.50 ± 0.04</td>
<td>0.84 ± 0.06122</td>
</tr>
<tr>
<td>DA receptor antagonist + ACSF</td>
<td>9</td>
<td>0.52 ± 0.03</td>
<td>0.52 ± 0.04</td>
<td>0.51 ± 0.03</td>
</tr>
<tr>
<td>DA receptor antagonist + AVP</td>
<td>9</td>
<td>0.52 ± 0.03</td>
<td>0.51 ± 0.03</td>
<td>0.82 ± 0.05122</td>
</tr>
<tr>
<td>α receptor antagonist + ACSF</td>
<td>9</td>
<td>0.48 ± 0.03</td>
<td>0.38 ± 0.03111</td>
<td>0.33 ± 0.04111</td>
</tr>
<tr>
<td>α receptor antagonist + AVP</td>
<td>9</td>
<td>0.49 ± 0.03</td>
<td>0.37 ± 0.03111</td>
<td>0.81 ± 0.06122</td>
</tr>
<tr>
<td>β receptor antagonist + ACSF</td>
<td>9</td>
<td>0.47 ± 0.04</td>
<td>0.38 ± 0.03111</td>
<td>0.36 ± 0.04111</td>
</tr>
<tr>
<td>β receptor antagonist + AVP</td>
<td>9</td>
<td>0.48 ± 0.03</td>
<td>0.39 ± 0.03111</td>
<td>0.78 ± 0.05122</td>
</tr>
<tr>
<td>NMDA receptor antagonist + ACSF</td>
<td>8</td>
<td>0.51 ± 0.03</td>
<td>0.49 ± 0.04</td>
<td>0.50 ± 0.03</td>
</tr>
<tr>
<td>NMDA receptor antagonist + AVP</td>
<td>8</td>
<td>0.50 ± 0.03</td>
<td>0.48 ± 0.03</td>
<td>0.76 ± 0.05122</td>
</tr>
<tr>
<td>GABA, receptor antagonist + ACSF</td>
<td>9</td>
<td>0.52 ± 0.03</td>
<td>0.49 ± 0.03</td>
<td>0.48 ± 0.04</td>
</tr>
<tr>
<td>GABA, receptor antagonist + AVP</td>
<td>9</td>
<td>0.50 ± 0.04</td>
<td>0.52 ± 0.03</td>
<td>0.82 ± 0.05122</td>
</tr>
<tr>
<td>GABA, receptor antagonist + ACSF</td>
<td>9</td>
<td>0.48 ± 0.03</td>
<td>0.50 ± 0.04</td>
<td>0.47 ± 0.04</td>
</tr>
<tr>
<td>GABA, receptor antagonist + AVP</td>
<td>9</td>
<td>0.50 ± 0.04</td>
<td>0.49 ± 0.03</td>
<td>0.79 ± 0.05122</td>
</tr>
<tr>
<td>GABA, receptor antagonist + ACSF</td>
<td>9</td>
<td>0.51 ± 0.03</td>
<td>0.50 ± 0.03</td>
<td>0.47 ± 0.04</td>
</tr>
<tr>
<td>GABA, receptor antagonist + AVP</td>
<td>9</td>
<td>0.50 ± 0.04</td>
<td>0.52 ± 0.03</td>
<td>0.83 ± 0.05122</td>
</tr>
</tbody>
</table>

ACSF, 10 μl artificial cerebrospinal fluid; AVP, 100 ng arginine vasopressin; 5-HT (serotonin) receptor antagonist, 2 μg cyproheptadine; M receptor antagonist, 2 μg atropine; N receptor antagonist, 2 μg 6-OH gallamine; DA (dopamine) receptor antagonist, 2 μg fluperoxidol; α receptor antagonist, 2 μg phenotolamine; β receptor antagonist, 2 μg propranolol; NMDA (N-methyl-D-aspartate) receptor antagonist, 2 μg MK801; GABA (γ-aminobutyric acid) receptor antagonist, 2 μg bicuculline; GABAb receptor antagonist, 2 μg 5-aminovaleric acid (5AVA); GABAc receptor antagonist, 2 μg 3-amino propyl phosphonic acid (3APPA). All values are expressed as mean ± standard error of the mean (SEM). The unit was mA. N indicates the animal number of the group. Before injection denotes the animal before the treatment; First injection denotes the animal given first intraventricular injection (icv) of ACSF or receptor antagonist; Second injection denotes the animal given second icv of ACSF or AVP in 10 min after first injection. *P < 0.05, **P < 0.1 and ***P < 0.001 are for the comparison of the pain threshold from marked group and ACSF + ACSF group; °P < 0.05, **P < 0.1 and ***P < 0.001 are for the comparison of the pain threshold from marked group and ACSF + AVP group; 1P < 0.05, 11P < 0.01 and 111P < 0.001 are for the comparison of the pain threshold from marked value and the value before injection; 2P < 0.05, 22P < 0.01 and 222P < 0.001 are for the comparison of the pain threshold from marked value after 1st injection and the value after 2nd injection; 3P < 0.001 is for the comparison of the pain threshold from receptor antagonist + AVP group and receptor antagonist + ACSF group (corresponding control group).
effect induced by 100 ng AVP administration (icv) (all P < 0.001), but the other studied neurotransmitter receptor antagonists did not influence the antinociceptive effect induced by the administration of 100 ng AVP (icv) (Table 2).

4. DISCUSSION

AVP is synthesized within cells located in the brain and in certain peripheral organs of the body. In the brain, AVP is synthesized in cell groups within the hypothalamus; several of these cell groups release hormones into the systemic circulation or into the portal circulation of the anterior pituitary gland and others release neurotransmitters at synaptic targets within the brain. AVP is also synthesized in certain extrahypothalamic brain sites, such as limbic system structures in the forebrain. In peripheral tissues, there is evidence that AVP is synthesized in the anterior pituitary, adrenal, and thymus glands and in male and female reproductive structures (ovaries, uterus, and testes) [3]. However, most of AVP is synthesized in hypothalamic paraventricular nucleus (PVN) and hypothalamic supraoptic nucleus (SON) [2,15]. It has been proven that PVN and SON play an important role in analgesia [16-20], and AVP, which may be from PVN and SON, is involved in pain modulation [21,22].

Our present study showed that (1) not only V1 receptor antagonist [d(CH2)5Tyr(Me)AVP] and V2 receptor antagonist [d(CH2)5[D-Ile2, Ile4, Ala9-NH2]AVP] blocked the antinociceptive effect induced by AVP (icv), but also the opiate receptor antagonist (naloxone), 5-HT receptor antagonist (cyproheptadine) and M receptor antagonist (atropine) could reserve the antinociceptive effect induced by AVP (icv); (2) oxytocin, dopamine, NMDA, GABA, N, α and β receptor antagonist did not influence the antinociceptive effect induced by AVP (icv). The data suggested that AVP antinociceptive effect was related with the endogenous opiate peptide, serotonin and acetycholine systems.

Histological study has shown that there are many AVP containing fibers in the periaqueducal gray (PAG), which come from PVN neurons [23,24]. AVP enhances the synthesis and secretion of endogenous opiate peptides in the PAG [25,26].

The nucleus raphe magnus (NRM) is a serotonergic nucleus located in the rostral ventromedial medulla of the brainstem. Axons of the NRM project to the spinal cord [27], terminating primarily in the dorsal horn [28]. Brainstem nuclei that project to the dorsal horn of the spinal cord can function to inhibit afferent nociceptive transmission [29-31]. Activation of these descending antinociceptive pathways may be triggered by physiological stimuli [32] as well as by pharmacological agents [33]. Antinociception involving the NRM has been studied after either electrical stimulation or direct administration of pharmacological agents [34-36]. The NRM is a key neural structure for pain modulation, in which serotonin (5-HT) is a major site for pain regulation [10]. AVP and 5-HT interaction in the brain controls many animal behaviors [37,38].

There are many bioactive substances in the caudate nucleus (CdN) including dopamine (DA) and acetylcholine (Ach), which show interaction with AVP [35,39-41]. DA and Ach in CdN are important bioactive substances in pain modulation and the CdN is showing an important neural structure in pain modulation [38].

Our previous study has shown that AVP in the PAG, NRM and CdN could regulate the pain process [18,42,43], and pain stimulation changes the AVP concentration in the PAG, NRM and CdN [15,40]. So we could imagine that AVP regulating the pain process might be involved in the endogenous opiate system in the PAG, serotonin system in the NRM and acetylcholine system in the CdN. However, it needs to be confirmed.

5. ACKNOWLEDGEMENTS

This work was supported by Xinxiang Medical University, 101 Hospital of PLA, Jiangsu Su Bei People’s Hospital and grants from National Basic Research Program of China (2007CB936104).

REFERENCES

