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Abstract 
A tapered rod mounted at one end (base) and subject to a normal force at the 
other end (tip) is a fundamental structure of continuum mechanics that oc-
curs widely at all size scales from radio towers to fishing rods to mi-
cro-electromechanical sensors. Although the bending of a uniform rod is well 
studied and gives rise to mathematical shapes described by elliptic integrals, 
no exact closed form solution to the nonlinear differential equations of static 
equilibrium is known for the deflection of a tapered rod. We report in this 
paper a comprehensive numerical analysis and experimental test of the exact 
theory of bending deformation of a tapered rod. Given the rod geometry and 
elastic modulus, the theory yields virtually all the geometric and physical fea-
tures that an analyst, experimenter, or instrument designer might want as a 
function of impressed load, such as the exact curve of deformation (termed 
the elastica), maximum tip displacement, maximum tip deflection angle, dis-
tribution of curvature, and distribution of bending moment. Applied experi-
mentally, the theory permits rapid estimation of the elastic modulus of a rod, 
which is not easily obtainable by other means. We have tested the theory by 
photographing the shapes of a set of flexible rods of different lengths and ta-
pers subject to a range of impressed loads and using digital image analysis to 
extract the coordinates of the elastica curves. The extent of flexure in these 
experiments far exceeded the range of applicability of approximations that li-
nearize the equations of equilibrium or neglect tapering of the rod. Agree-
ment between the measured deflection curves and the exact theoretical pre-
dictions was excellent in all but several cases. In these exceptional cases, the 
nature of the anomalies provided important information regarding the devia-
tion of the rods from an ideal Euler-Bernoulli cantilever, which thereby per-
mitted us to model the deformation of the rods more accurately. 
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Modulus, Flexure Formula 

 

1. Introduction 

Progress in physics is often made by creative application and testing of certain 
fundamental model systems relevant to new experimental methods and emerg-
ing technologies. One such model system, which is the focal point of this paper, 
is the tapered cantilever, a structure whose shape under applied forces is of criti-
cal interest to scientists and engineers in a wide range of fields of application. 
We report in this paper a comprehensive comparison of the theoretically pre-
dicted and experimentally measured shapes of a flexible tapered rod described 
by this model system. 

The theoretical shape of a flexible object bent by a load—historically referred 
to as the elastica—is an important part of the mechanics of continuous media. 
The basic equations relating the curvature of the shape and the bending moment 
of the object were first formulated by James Bernoulli in the late 17th Century 
and subsequently investigated in great detail by Euler in the mid 18th Century. 
In the years following Euler up to the present time, the theory of the elastica has 
been applied to numerous physical systems of great diversity ranging from large 
massive objects like bridges and architectural constructions, to medium size 
light-weight structures for aircraft and aerospace vehicles, to very small systems 
like the surface of a capillary or components of micro-electromechanical systems 
[MEMS]) [1] [2].  

Among the fundamental model systems to which elastica theory pertains is 
that of a cantilever, a flexible structural element such as a rod or plate anchored 
at one end to a support. Physical examples of cantilevers, such as free-standing 
radio towers, brick chimneys, diving boards, mobile mechanical cranes, 
fixed-wing aircraft and many other systems, can be seen almost anywhere one 
looks. Much less visible and less widely known is the ubiquitous occurrence of 
cantilever structures in modern MEMS, such as cantilever transducers in atomic 
force microscopy [3], cantilever arrays in chemical sensors and biosensors for 
medical diagnostic applications [4].  

A load applied to the free end of a cantilever is experienced at points 
throughout the length as a bending moment and shear stress. The proportional 
relationship between the curvature of the geometrical shape and the bending 
moment of the physical object defines the Euler-Bernoulli beam. Although there 
is an extensive pedagogical and research literature on the bending of structural 
elements modeled as cantilevers, most analyses, including those in advanced 
monographs such as [5] [6] [7], adopt the approximation, which in practice has 
come to characterize the Euler-Bernoulli beam, to neglect the square of the slope 
of the elastic curve in the equations of equilibrium. While this approximation 
may be valid in traditional engineering applications, the development of modern 
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composite materials, as well as the capacity to fabricate ultra-small, precisely 
shaped, compliant structures, have given rise to cantilever devices of great flex-
ibility [8]. In such cases, the small-slope approximation, which reduces the ma-
thematical analysis from a nonlinear to a linear equation, can lead to highly in-
correct physical predictions.  

Of the investigations of large deflections of cantilever beams known to the 
authors (see [9] [10] [11] and references therein), nearly all concerned beams of 
uniform cross section, since elastica theory in these cases can be solved in closed 
form in terms of incomplete elliptic integrals [12], as first done in [13]. Howev-
er, many modern physical applications utilize tapered cantilever beams. Reasons 
for this configuration vary. In general, the bending moment of a cantilever is 
greatest at the support and diminishes to zero at the end. Thus, for macro-scale 
applications, there is no need to use as much material to maintain structural in-
tegrity along the full length of the cantilever. Moreover, in certain specific mi-
cro-scale applications, such as in atomic force microscopy and other mi-
cro-electromechanical systems of importance in modern physics, the tapered de-
sign is ideally suited to the function of the device.  

To our knowledge, previous investigations of the deflection of tapered canti-
levers employed various approximations to Euler-Bernoulli beams (see [14] [15] 
[16] [17] and references therein) with objectives very different from those of this 
paper. Nearly all were purely theoretical except for [14], which was concerned 
with the fracture of cantilever-shaped projectiles designed for ordnance. The 
earliest (and only) reference we know of a theoretical and experimental study of 
the large deflection of a tapered cantilever is [18], published in 1968, whereby 
the author tested predictions of just the end-point displacement as a function of 
applied force. Given the primitive state of computers at the time and the physical 
limitations of the available samples (wood, Plexiglas), no comparisons of calcu-
lation and measurement comprising the full elastica shape of the test objects 
were given.  

Benefiting from progress over the past half century of fast computers, ad-
vanced symbolic mathematical software, sophisticated image analysis software, 
and strong, flexible synthetic materials, we report here what we believe to be the 
most comprehensive experimental and theoretical analysis of the elastica to date 
as it pertains to a tapered cantilever. In Section 2, the exact nonlinear differential 
equations for the equilibrium shape of an end-loaded tapered rod are derived, 
solved numerically, and compared with results for a uniform rod. In Section 3, the 
experimental procedure and analysis of a set of tapered rods of different lengths 
and taper ratios are described. Our conclusions are summarized in Section 4. 

2. Equilibrium Shape of a Tapered Rod under Load 

In this section we derive and solve the exact differential equations that deter-
mine the equilibrium shape of a vertical tapered flexible rod with circular cross 
section subject to a constant horizontal force applied at the tip. The standard 
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assumptions for analysis of an ideal Euler-Bernoulli beam are made [19]; these 
include:  

1) The length of the beam is much greater than the maximum cross-section 
radius; 

2) The longitudinal axis of the beam lies within the neutral surface and does 
not experience a change of length under load;  

3) The cross section of the beam at any location remains plane and perpendi-
cular to the longitudinal axis during deflection; 

4) Deformation of the cross section within its own plane is neglected; this is 
tantamount to neglect of bending-induced shear strain; 

5) The normal stress within a cross section varies linearly with perpendicular 
distance from the neutral axis. In other words, the beam behaves like a linear 
elastic medium subject to Hooke’s law. 

It is to be recalled that the neutral surface of a beam is the interface that sepa-
rates the fibers under compression from the fibers under tension when the beam 
is bent by a load. The neutral axis within any cross section is the line of intersec-
tion of the neutral surface with the cross section. 

Figure 1 illustrates the system geometry pertinent to the analysis. The un-
loaded, undeformed rod of length L is oriented vertically. Upon application of a 
horizontal force F applied at the tip, the rod, which is clamped at point O, bends 
as shown. Any point P along the curve of deformation (elastica curve) can be lo-
cated by its longitudinal and transverse coordinates ( ),x y  or by its arc length s 
and slope θ , i.e. the angle made by the tangent line at P to the vertical. The 
maximum longitudinal extension of the rod under load is of length a ; the angle 
of the tangent to the tip position where s L=  is designated Lθ .  
 

 
Figure 1. Deformation of a flexible rod of length 
L subject to a tip force F. The base is fixed at 
point O. An arbitrary point P on the curve of 
deformation (elastica) can be defined by coordi-
nates x (longitudinal) and y (transverse) or by s 
(arc length) and θ  (angle of tangent line). 
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The rod, itself, shown schematically in Figure 2, is a tapered circular cylinder 
with respective base and tip radii 0R , 1R , and apex angle given by  

( ) ( )0 1tan 2 R R Lα = − .                        (1) 

The radius of a circular cross section at an arbitrary arc length s follows from 
the geometry of similar triangles 

( ) 1
0

0

1 1 Rsr s R
L R

  
= + −  

   
.                       (2) 

Given the preceding assumptions, the theoretical relation that determines the 
shape of the bent rod is the Euler-Bernoulli flexure formula [20] 

( ) ( ) ( )z zs M s EI sκ =                          (3) 

relating the normal curvature ( )sκ  [21],  

( )

2 2

3 22

d d d
d 1 d d

y x
s y x

θ
κ = =

 + 

,                      (4) 

to the product of the internal bending moment (torque) ( )zM s ,  

( )dz
S

M v v Sσ= −∫ 

,                          (5) 

the bending moment of inertia ( )zI s  computed about the neutral axis, 
2dz

S

I v S= ∫∫ ,                             (6) 

and the modulus of elasticity (Young’s modulus) E. The integrals in Equation (5) 
and Equation (6) are over a cross-section ( )S s , v is the perpendicular distance 
from the neutral axis within a cross section, and ( )vσ



 is the axial stress within 
the cross section. From the geometry shown in Figure 1 and Figure 2, it follows 
that the bending moment of the cantilever takes the form of a simple product 

( ) ( )zM x F a x= − ,                          (7) 

and the bending moment of inertia is 

( )
4

1
0

0

1 1z
RsI s I

L R
  

= + −  
   

                      (8) 

where  
 

 
Figure 2. Geometry of the tapered rod: a truncated circular cylinder of length L with re-
spective base and tip radii 0R , 1R . The radius r of an arbitrary cross section at arc 
length s is given by Equation (2) and the apex angle α  is given by Equation (1). 
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4
0 0

π
4

I R=                                (9) 

is the bending moment of inertia of a uniform cylindrical rod of radius 0R .  

2.1. Numerical Solution of the Exact Euler-Bernoulli Equation 

The two equivalent expressions for curvature in Equation (4) suggest two possi-
ble approaches to the equation of equilibrium, i.e. to find θ  as a function of s, 
or y as a function of x. Although the function ( )y x  provides the traditional 
and most convenient representation of the shape of the rod, a direct calculation 
of ( )y x  would require solving the second-order nonlinear differential equa-
tion 

( )
( )( )2 2

0
3 22

1

0

4
d d 0

1 d d 1 1

F EI a xy x

Rsy x
L R

−
− =

    +  − −  
  

                (10) 

obtained by substituting Equations (7) and (8) into (3). Equation (10) poses at 
least two difficulties: 1) it contains both arc length s and longitudinal extension 
x, and the relation between s and x is not known in advance of the solution; 2) 
the maximum longitudinal extension a  is also not known at the outset.  

We seek instead a differential equation for θ  as a function of s. Making the 
same substitutions into Equation (3) that led to Equation (10) now yields the 
first-order nonlinear differential equation 

( )( )0

1

0

4
d 0
d

1 1

F EI a x
s Rs

L R

θ −
− =
  
− −  

  

                      (11) 

which again contains x and a . However, upon taking the derivative of both 
sides of Equation (11) with respect to s and recognizing that  

d d cos
d d sin
x s
y s

θ
θ

=
=

                            (12) 

one obtains after some algebra the second-order differential equation in norma-
lized variables 

( )
( ) ( )

2

2 4
4 1d d cos 0

dd 1 1 1 1

Aρθ θ θ
σσ ρ σ ρ σ

−
− + =

− −  − −    
              (13) 

where A is a dimensionless rigidity constant  
2

0A FL EI= ,                           (14) 

ρ  is the ratio of tip to base radii 

1 0R Rρ = ,                            (15) 

and 

s L
x L
y L

σ
ξ
η

=
=
=

                             (16) 
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are dimensionless variables that facilitate both the numerical computation and 
comparison of results for different rods and various values of tip load. The ad-
vantage of Equation (13) is that it expresses the variation in θ  with respect to 
only the variable σ ; the associated longitudinal variable ξ  no longer appears.  

As a second-order differential equation, Equation (13) requires two boundary 
conditions:  

( )
( )

1

0 0

d d 0.
σ

θ

θ σ
=

=

=
                         (17) 

The first condition applies because the rod is clamped at the base ( 0σ ξ= = ). 
The second condition applies because there is no bending moment at the tip 
( 1σ =  or a Lξ = ), as follows analytically from Equation (11).  

Given its nonlinear character and complicated dependence on arc length, we 
know of no closed form analytical solution to Equation (13). To solve the equa-
tion, therefore, we resorted to numerical methods implemented by Maple, which 
is one of the most powerful and widely used commercially available mathemati-
cal engines. The Maple command dsolve, applied to an ordinary differential eq-
uation (ODE) [in contrast to a partial differential equation (PDE)], utilizes one 
of several algorithms employing a trapezoidal method with Richardson en-
hancement (also known as Richardson’s extrapolation to zero mesh width) [22] 
[23]. As an illustration of the numerical procedure, which may be helpful to 
readers who use a symbolic mathematical application, the command in our pro-
gram took the form  

(
[ ]

( ) )

: dsolve ode,numeric, range 0 1,

output ' listprocedure ',method bvp midrich ,

approxsoln :θ σ σ

Θ = =

= =

= =  



          (18) 

which we interpret and explain as follows.  
The name ode is the expression symbolic of Equation (13). Use of normalized 

variables (16) enabled us to confine the range of integration between 0 and 1, 
rather than a much larger range corresponding to the actual length L of a rod in 
physical units, which could impair convergence and greatly increase computa-
tion time. The specific algorithm in statement (18) chosen for numerical solu-
tion of the boundary value problem (bvp), termed midrich by Maple, is a mid-
point method employing the Richardson extrapolation. The Maple default to-
lerance limit is 10 digit precision, which is the level we employed. (One can 
change that level to n-digit precision by the global statement Digits: = n.) If the 
first two lines alone of command (18) are insufficient to achieve convergence, 
one could initiate the numerical method with the option approxsoln that sug-
gests an approximate trial solution. In general, we found that a trial solution was 
needed only in cases of very large deformation, whereupon a simple linear ap-
proximation ( )θ σ σ=  worked satisfactorily. 

The solution Θ  returned by dsolve in (18) is a matrix function of the nor-
malized arc length σ  with components  
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( )1σ σΘ =                             (19) 

( ) ( )2σ θ σΘ =                           (20) 

( ) ( )3

d
d

σ θ σ
σ

Θ = .                        (21) 

To plot or compute with ( )θ σ , one must define a scalar function (designated 
in our program by the symbol ϑ ) by a statement such as 

( )( ): ,evalϑ θ σ= Θ                         (22) 

that creates a procedure, which in Maple is an object that can be invoked by a 
function, passed arguments, perform operations, and return results [24]. In Eq-
uation (22) the procedure designated by ϑ  evaluates the second component of 
Θ  as a function of σ . Likewise, a statement such as 

( )( )( ): , ,eval diffχ θ σ σ= Θ                     (23) 

defines a scalar function χ  that represents a procedure to evaluate the third 
component of Θ , which is the derivative ( )( ) ( ), d ddiff θ σ σ θ σ σ≡ , corres-
ponding to the normalized curvature, Equation (4).  

Examples of graphical solutions generated from command (18) are shown in 
Figure 3 and Figure 4. Figure 3 shows in Panel A the graphical output ( )θ σ  
vs σ  for a rod characterized by 2 mL = , 0 1cmR = , 1 0.125 cmR = ,  

6 GPaE = , and a sequence of loads ranging from 2 N to 10 N. As the load in-
creases—i.e. plots range from a to e—the slope at the tip increases from about 
70˚ to 90˚. Panel B shows the corresponding variation in curvature for the same 
sequence of increasing loads. With greater load, the flex point—point of greatest 
curvature—shifts to lower arc lengths, i.e. closer to the base of the rod.  

Figure 4 provides a complementary perspective. Panel A shows ( )θ σ  vs σ  
for a rod of the same length, base radius, and modulus as in the preceding figure, 
but for a fixed load of 10 N and a sequence of tip/base ratios ranging from 1:1 
(plot a; no taper = uniform rod) to 1:16 (plot e; steep taper). For a fixed load, the  
 

 
Figure 3. Tangent angle θ  (Panel (A)) and associated curvature (Panel (B)) as a func-
tion of normalized arc length σ  for a rod of length 2 mL = , 0 1.0 cmR = ,  

1 1 8 cmR = , modulus 6 GPaE = , and loads F (in N) of: (a) 2, (b) 4, (c) 6, (d) 8, (e) 10. 
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Figure 4. Tangent angle θ  (Panel (A)) and associated curvature (Panel (B)) as a func-
tion of normalized arc length σ  for a rod of length 2 mL = , base radius 0 1.0 cmR = , 
modulus 6 GPaE = , load F = 10 N, and taper ratios of: (a) 1:1, (b) 1:2, (c) 1:4, (d) 1:8, 
(e) 1:16. 
 

more tapered the rod, the greater is the deflection; at 10 N applied force, the tip 
angle of the rod with steepest taper was 90˚ compared with only 30˚ for the uni-
form rod. Panel B again shows the corresponding variations in curvature. For a 
uniform rod (plot a) subject to fixed load, the curvature decreases linearly to 0 
with arc length. With increasing taper, the curvature increases to higher maxi-
mum values before plunging to 0 at the tip of the rod. The location of the maxi-
mum curvature, however, is not very sensitive to the degree of taper. The total 
time taken by Maple to solve Equation (13) numerically and generate the five 
graphical solutions in each panel of the two figures did not exceed a few seconds.  

From the numerical solution ( )θ σ , the corresponding elastica curve ( )η ξ  
was generated parametrically by integration of Equation (12) using what is 
termed an update equation [25]. Upon dividing the range [ ]0,1  of σ  into N 
segments and defining the discrete tangent angle 

( )k k Nθ θ≡ ,                           (24) 

for 0,1,2, ,k N=  , the normalized Cartesian coordinates of the elastica can be 
calculated iteratively in steps of 1Nσ −∆ =  by 

( )
( )

1
1

1
1

cos

sin
k k k

k k k

N

N

ξ ξ θ

η η θ

−
−

−
−

= +

= +
                      (25) 

from the initial conditions 0 0 0ξ η= = . Figure 5 and Figure 6 show the solu-
tions ( )η ξ , corresponding respectively to the conditions of Figure 3 and Fig-
ure 4, calculated from Equation (25) with N = 500. The time taken by Maple to 
generate the five elastica curves of each figure was again less than a few seconds. 
Figure 6 illustrates in a visually striking way that a highly tapered rod (plot e) 
can be bent nearly flat while the corresponding uniform rod subject to the same 
load suffers only a moderate deformation (plot a). In other words, neglect of ta-
pering in the calculation of the deflection of a cantilever can lead to significant 
error.  
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Figure 5. Normalized horizontal deflection 
η  as a function of normalized vertical ex-
tension ξ  for a rod corresponding to 
conditions of Figure 3. 

 

 
Figure 6. Normalized horizontal deflection 
η  as a function of normalized vertical ex-
tension ξ  for a rod corresponding to 
conditions of Figure 4. 

2.2. Special Case I: Uniform Cross Section; Arbitrary Deflection 

For a uniform rod the taper ratio 1 0 1R Rρ ≡ = , and therefore Equation (10) 
reduces to 

( )( ) ( )
3 222 2

0d d 1 d d 0y x F EI a x y x + − + =              (26) 
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or, in terms of normalized variables, 

( ) ( )
3 222 2d d 1 d d 0LAη ξ α ξ η ξ + − + =  ,              (27) 

where  

L a Lα = .                            (28) 

Because the rod is rigidly fastened at the base, the boundary conditions of 
Equation (27) are 

( )
( )

0

0 0

d d 0
ξ

η

η ξ
=

=

=
                          (29) 

in contrast to the boundary conditions (17) of ( )θ σ , which constrain θ  at 
the base and d dθ σ  at the tip.  

Although at first thought it may seem inconsistent that the Cartesian deriva-
tive in (29) vanishes at the base whereas the angular derivative in (17) vanishes 
at the tip, there is no inconsistency. Recall that d dθ σ  is proportional to the 
curvature κ , which is related to the second derivative of y with respect to x (or 
η  with respect to ξ ), as given in Equation (4). Thus, setting ( )

0
d d 0

x
y x

=
=  

in Equation (4) does not conflict with setting ( )d d 0
x a

sθ
=
=  in Equation (11). 

It is readily demonstrable, in fact, that both Equation (11) (or (13)) and Equa-
tion (26) lead to the same value of curvature ( ) 00 Fa EIκ =  at the base 
( )0s x= =  of the uniform rod. Starting with Equation (26), however, there is 
no a priori information by which to specify the value of d dy x  at the tip 
( ) or s L x a= =  in advance of the solution. 

Using the Maple command dsolve on Equation (27) yields an integral solution 

( ) ( )
2 20

2
d

2 1 11 1
2 2

z z aA z
Aza Az Aza Az

ξ

η ξ
−

=
  − + + −  
  

∫            (30) 

that can, with further effort, be cast into a complicated expression containing 
incomplete elliptic integrals. There is little point, however, in either making such 
a transformation or working with expression (30) because one can obtain com-
putationally more useful relations by directly solving angular Equation (13), 
which reduces to 

2

2

d cos 0
d

Aθ
θ

σ
+ =                           (31) 

for 1ρ = .  
Equation (31) takes the form of Newton’s second law of motion for a particle 

of unit mass subject to a force cosA θ− . Note, this is just an analogy with θ  
the analogue of particle coordinate and σ  the analogue of time. Consider this 
problem from the perspective of Lagrangian and Hamiltonian mechanics [26]. 
The Lagrangian function ( ),L θ θ  then takes the form 

( ) 21, Kinetic Energy Potential Energy sin
2

L Aθ θ θ θ= − = −          (32) 

https://doi.org/10.4236/wjm.2018.87022


M. P. Silverman, J. Farrah 
 

 

DOI: 10.4236/wjm.2018.87022 283 World Journal of Mechanics 
 

where d dθ θ σ≡ . The canonical momentum p is defined by  

p L θ θ= ∂ ∂ =                             (33) 

from which the Hamiltonian follows by a Legendre transformation [27] 

( ) ( ) 21, , sin
2

H p p L p Aθ θ θ θ θ= − = +  .                (34) 

It is straightforward to verify that the Hamiltonian equations of motion lead 
directly to Equations (31) and (33) 

cos 0p H Aθ θ θ= −∂ ∂ ⇒ + =

                    (35) 

H p pθ θ= ∂ ∂ ⇒ =  .                       (36) 

Substitution of p given by Equation (36) into the Hamiltonian (34) yields 

21 sin
2

H Aθ θ= +                         (37) 

which must be a conserved quantity (i.e. a constant) since H is not an explicit 
function of σ .  

The constant is found by evaluating Equation (37) at the end point of the rod 
for which ( )1 Lθ θ=  (see Figure 1) and ( )1 0θ = . Thus one obtains the equiv-
alent of a first integral of motion  

21 sin sin
2 LA Aθ θ θ+ =                      (38) 

from which follows the derivative 

( )d d 2 sin sinLAθ σ θ θ= −                   (39) 

and by integration the coordinates of the elastica of a uniform rod in parametric 
form 

( )
0

1 d
2 sin sinL

z
A z

θ

σ θ
θ

=
−∫                  (40) 

( )
0

1 cos d
2 sin sinL

z z
A z

θ

ξ θ
θ

=
−∫                  (41) 

( )
0

1 sin d
2 sin sinL

z z
A z

θ

η θ
θ

=
−∫ ,                 (42) 

where use has been made of Equation (12).  
While it is often advantageous to have closed-form solutions to a problem, it 

should be noted that an alternative and computationally more efficient way to 
obtain the elastica coordinates ( ),ξ η  from the derivative (39) is to apply again 
the iterative algorithm (25). It takes much more computer time to evaluate the 
elliptic integrals (41) and (42) than to process the update algorithm even for N 
on the order of 1000. Computation time is relevant here because the boundary 
value Lθ  (i.e. tangent angle at the tip) is not known at the outset and must be 
determined by trial and error. One way to do this is by numerically finding the 
value of Lθ  for which the integral (40) is unity 
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( )
0

1 d1
2 sin sin

L

L
L

L z
L A z

θ

σ θ
θ

= = =
−∫ .               (43) 

2.3. Special Case II: Uniform Cross Section; Small-Angle  
Approximation 

For purposes of comparison we consider the familiar case of small-angle deflec-
tion of a rod of uniform cross section. This is the case described by the Eu-
ler-Bernoulli approximation which neglects ( )2d dy x  in Equation (10), which 
thereby reduces to 

( )2 2d d LAη ξ α ξ= −                        (44) 

in normalized coordinates for 1ρ = . Equation (44) can be integrated directly to 
yield the third-order polynomial 

( ) 21 1
2 3LAη ξ ξ α ξ = − 

 
.                     (45) 

The value of the maximum longitudinal extension, L a Lα = , is again not 
known at the outset and can be determined by requiring, as was done with Equ-
ation (43), the full normalized length of the rod to be unity:  

( ) ( )2

0
1 d d d 1L

L
α

σ α η ξ ξ= + =∫ .                 (46) 

However, this requirement can be implemented in two inequivalent ways. The 
first, consistent with the approximation leading to Equation (44), is to drop the 
term ( )2d dη ξ  in Equation (46). This results in 1Lα = , which technically 
corresponds to a straight (unbent) rod. The second is to retain ( )2d dη ξ  and 
solve Equation (46) for Lα  by trial and error. The three panels of Figure 7  
 

 
Figure 7. Comparison of elastica curves of a uniform rod of radius 1 cm (curves a) and tapered rod with tip radius 0.25 cm (curve 
b) subject to horizontal loads: (A) 20 N, (B) 40 N, (C) 60 N. Deflection curves a were calculated in three ways: Exact numerical 
solution (solid curve); Euler-Bernoulli approximation with 1Lα =  (dotted curve) or with Lα  chosen to satisfy ( ) 1Lσ α =  

(dashed curve). The elastic modulus is 6 GPaE = . 
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show comparative plots of the resulting elastica curves for a uniform rod (plots 
a) subject to what may be considered small, medium, and large loads. In all three 
cases one finds that  
• the first method ( 1Lα = ) leads to an approximate curve (dotted) that gener-

ally follows the exact curve (solid) but is in increasingly poor agreement over 
its entire length as the load and deformation increase;  

• the second method ( ( ) 1Lσ α = ) leads to an approximate curve (dashed) that 
agrees well with the exact curve, even for large deformations, up to the point 
where the exact curve begins to flatten, after which the two curves diverge 
markedly.  

Superposed on the plots in the three panels is the exact curve (plot b), calcu-
lated from Equation (13) for a corresponding tapered rod with taper ratio 1:4. 
One sees again that for a given load the deflection of a tapered rod is much 
greater than that of a uniform rod. 

3. Experimental Test and Determination of Elastic Modulus 

An experimental configuration corresponding closely to that of Figure 1 was set 
up to record photographically and measure accurately the deformations pro-
duced on a set of five fishing rods of different lengths and tapers. The geome-
trical features of the rods are summarized in Table 1. In the US, fishing rod sizes 
and load-bearing capabilities are generally given in English units (feet; pounds); 
these are shown in the tables and associated figures of this paper, but analyses 
were implemented in metric units. The symbol W represents load in pounds, in 
contrast to F, which represents force in newtons. 

A fishing rod is a cantilever of exceptional flexibility designed for casting an 
artificial lure made of lightweight materials. Modern fishing rods are a compo-
site of synthetic materials such as fiberglass, carbon/graphite, Kevlar, boron, or 
some combination of these in a matrix of polyester or epoxy resin [28]. The fi-
bers are laid down in a complex pattern designed to prevent the rod from flat-
tening under stress. Apart from the handle of the rod, which is generally a 
non-flexible material covered with a frictional surface like cork to prevent slip-
page, the cantilever portion usually has a fairly uniform taper. The degree of ta-
per determines the extent of flexure for a given stress, as illustrated in Figure 6. 
Rods that deflect over a greater portion of their length are easier to cast and  
 
Table 1. Geometric properties of the rods. 

Rod No. 
Total Length 

(ft) 
Length without 

Handle (m) 
Base Diameter 

(cm) 
Tip Diameter 

(cm) 

1 6 1.52 1.2 0.3 

2 6 1.52 1.0 0.3 

3 7 1.68 1.3 0.3 

4 7 1.52 1.6 0.3 

5 10 2.44 1.7 0.3 
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present a wide forward loop of a kind that is often pictured in sports magazines 
and tourist literature devoted to outdoor activities.  

Since fishing is a sport and hobby of immense popularity worldwide with a li-
terature (dating back centuries) believed to be more abundant than that of any 
other individual sport [28], it is important to note that the analysis and experi-
ment presented in this paper have practical ramifications beyond testing a fun-
damental part of the mechanics of continuous media. First, the experimental 
procedure and theoretical analysis together provide a means of deducing the 
elastic modulus E of an individual fishing rod, which, given the complexity of 
the composition and construction of a rod, is difficult to measure in other ways. 
To judge from the numerous inquiries for E that we have seen on the internet, 
this is a material property of interest to prospective purchasers and users of 
fishing rods. However, we have been unable to find any values of E reported by 
rod manufacturers or vendors for their rods. At best, one can find broad ranges 
for different materials [29].  

Second, rod manufacturers have tried various means of static deflection pro-
filing [28] to correlate the deflection shape, tip deflection distance, and im-
pressed weight for purposes of rod classification. In this regard an important 
practical outcome of this paper is to provide the means of predicting exactly the 
entire rod geometry under static deflection once the rod length, base and tip ra-
dii, modulus, and load are given. Thus, provided the rod behaves like a linear 
elastic medium in keeping with the assumptions of Section 2, this paper removes 
all guesswork from establishing the correlations among impressed force, shape, 
and maximum deflection. 

3.1. Procedure and Data 

The deflection curve of each of the five rods in Table 1 was measured for each of 
four impressed horizontal loads in the following way. A rod was positioned ver-
tically and fastened so that the handle of the rod was immobilized and only the 
tapered cantilever portion of the rod could deflect under stress. The stress was 
transmitted to the rod by means of a thin nylon fishing line attached at the tip of 
the rod and pulled horizontally at a force measured by an attached digital scale 
calibrated in pounds and accurate to 0.01 lb (0.0445 N). Positioned close to the 
rod was a vertical post with two points calibrated to be 1 0.002±  m apart. At 
static equilibrium, a digital photograph was taken of the deflected rod and cali-
bration post for processing by the image analysis software called Tracker [30]. 

Tracker is an open-source modeling tool created by Douglas Brown and 
available for Mac, Windows, and Linux platforms. Detailed operational informa-
tion is available at the referenced web site, but, in brief, we obtained the coordi-
nates of the rod deflection curves by  
• importing a digital photo of each rod subject to each load (5 rods × 4 loads) 

into the application;  
• setting the origin of the Cartesian coordinate system with respect to which 

the points on the deflection curve of a rod were to be measured; 
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• correlating the calibration length in the photo with a proxy calibration line in 
the computer display; 

• selecting a representative sample of equally spaced points along the full 
length of the deflection curve with the computer mouse. 

The Tracker output yielded the experimental coordinates ( ),x y  = (longitu-
dinal extension, transverse deflection) in units of our calibration length, which 
was taken to be 1 m. Each pair of coordinates was then divided by the length of 
the rod (not including the handle) to yield the normalized points ( ),ξ η . Tables 
2-6 summarize the normalized coordinates deduced from Tracker for Rods 1, 2,  
 
Table 2. Deformation of Rod 1 as a function of load (L = 1.524 m). 

Force (lbs) 2 4 6 8 

Force (N) 8.896 17.793 26.689 35.586 

Arc σ ξ η ξ η ξ η ξ η 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.100 0.006 0.084 0.013 0.084 0.019 0.084 0.019 0.084 

0.200 0.019 0.162 0.039 0.149 0.045 0.149 0.052 0.143 

0.300 0.058 0.253 0.084 0.227 0.104 0.221 0.117 0.208 

0.400 0.104 0.325 0.149 0.286 0.175 0.273 0.195 0.247 

0.500 0.169 0.383 0.234 0.338 0.253 0.318 0.286 0.279 

0.600 0.247 0.442 0.312 0.357 0.344 0.338 0.370 0.286 

0.700 0.331 0.481 0.422 0.370 0.442 0.344 0.474 0.292 

0.800 0.429 0.494 0.494 0.377 0.539 0.351 0.565 0.292 

0.900 0.519 0.500 0.597 0.377 0.623 0.351 0.656 0.292 

1.000 0.604 0.506 0.669 0.377 0.708 0.351 0.734 0.292 

 
Table 3. Deformation of Rod 2 as a function of load (L = 1.524 m). 

Force (lbs) 2 4 6 8 

Force (N) 8.896 17.793 26.689 35.586 

Arc σ ξ η ξ η ξ η ξ η 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.100 0.007 0.092 0.013 0.099 0.013 0.086 0.020 0.086 

0.200 0.020 0.178 0.033 0.171 0.039 0.164 0.046 0.164 

0.300 0.046 0.257 0.072 0.257 0.092 0.250 0.105 0.243 

0.400 0.086 0.349 0.132 0.336 0.151 0.309 0.171 0.303 

0.500 0.145 0.434 0.197 0.401 0.230 0.368 0.257 0.355 

0.600 0.197 0.507 0.270 0.461 0.316 0.408 0.336 0.388 

0.700 0.276 0.572 0.355 0.500 0.408 0.434 0.434 0.408 

0.800 0.362 0.618 0.447 0.520 0.500 0.441 0.526 0.414 

0.900 0.467 0.638 0.539 0.533 0.599 0.441 0.625 0.414 

1.000 0.546 0.651 0.638 0.533 0.691 0.441 0.717 0.414 
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Table 4. Deformation of Rod 3 as a function of load (L = 1.676 m). 

Force (lbs) 2 4 6 8 

Force (N) 8.896 17.793 26.689 35.586 

Arc σ ξ η ξ η ξ η ξ η 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.091 0.006 0.083 0.006 0.083 0.012 0.083 0.012 0.083 

0.182 0.012 0.173 0.024 0.167 0.024 0.167 0.030 0.167 

0.273 0.018 0.256 0.042 0.250 0.048 0.250 0.060 0.250 

0.364 0.036 0.333 0.065 0.333 0.083 0.333 0.095 0.327 

0.455 0.054 0.417 0.095 0.405 0.125 0.399 0.143 0.393 

0.546 0.083 0.506 0.143 0.488 0.179 0.470 0.202 0.458 

0.637 0.119 0.583 0.202 0.548 0.244 0.524 0.274 0.506 

0.727 0.167 0.661 0.274 0.607 0.321 0.560 0.351 0.542 

0.818 0.220 0.726 0.345 0.643 0.405 0.589 0.435 0.560 

0.909 0.292 0.780 0.435 0.667 0.488 0.589 0.518 0.565 

1.000 0.363 0.821 0.512 0.667 0.565 0.589 0.595 0.565 

 
Table 5. Deformation of Rod 4 as a function of load (L = 1.524 m). 

Force (lbs) 2 4 6 8 

Force (N) 8.896 17.793 26.689 35.586 

Arc σ ξ η ξ η ξ η ξ η 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.100 0.007 0.092 0.007 0.092 0.007 0.092 0.007 0.092 

0.200 0.013 0.184 0.013 0.184 0.020 0.191 0.020 0.191 

0.300 0.013 0.289 0.026 0.289 0.033 0.289 0.046 0.289 

0.400 0.026 0.382 0.046 0.382 0.059 0.382 0.079 0.375 

0.500 0.046 0.480 0.066 0.474 0.099 0.474 0.125 0.461 

0.600 0.072 0.572 0.112 0.559 0.151 0.546 0.184 0.526 

0.700 0.118 0.658 0.178 0.632 0.224 0.599 0.263 0.579 

0.800 0.191 0.717 0.257 0.671 0.316 0.625 0.349 0.592 

0.900 0.283 0.750 0.362 0.684 0.414 0.625 0.447 0.592 

1.000 0.382 0.763 0.454 0.684 0.513 0.625 0.546 0.592 

 
3, 4, 5, respectively. The coordinates reported in Tables 2-6 comprise the expe-
rimental points in the graphical comparisons of experiment and theory shown in 
Figures 8-12 and discussed in Section 3.2. It will be seen that the theory devel-
oped in Section 2 accounted very well for the deflection curves of Rods 1-3 and 
the large-angle deflection curves of Rod 5. Anomalies observed for Rod 4 and 
the small-angle deflection curves of Rod 5 point to deviations from ideality with  
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Table 6. Deformation of Rod 5 as a function of load (L = 2.438 m). 

Force (lbs) 2 4 6 8 

Force (N) 8.896 17.793 26.689 35.586 

Arc σ ξ η ξ η ξ η ξ η 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.063 0.004 0.061 0.004 0.061 0.008 0.061 0.008 0.061 

0.125 0.008 0.123 0.012 0.123 0.016 0.123 0.016 0.123 

0.188 0.012 0.184 0.020 0.184 0.029 0.180 0.033 0.180 

0.250 0.016 0.246 0.029 0.246 0.041 0.229 0.049 0.229 

0.313 0.029 0.303 0.045 0.299 0.061 0.287 0.070 0.287 

0.375 0.037 0.361 0.061 0.356 0.086 0.340 0.098 0.336 

0.438 0.049 0.422 0.082 0.410 0.115 0.397 0.131 0.389 

0.500 0.061 0.479 0.107 0.467 0.148 0.447 0.164 0.438 

0.563 0.078 0.541 0.135 0.525 0.188 0.500 0.209 0.484 

0.625 0.098 0.594 0.168 0.570 0.225 0.537 0.254 0.520 

0.688 0.127 0.656 0.209 0.623 0.279 0.582 0.307 0.557 

0.750 0.156 0.705 0.250 0.664 0.328 0.606 0.356 0.582 

0.813 0.193 0.754 0.303 0.705 0.385 0.635 0.418 0.598 

0.875 0.229 0.799 0.348 0.733 0.443 0.643 0.471 0.611 

0.938 0.262 0.828 0.397 0.750 0.492 0.652 0.520 0.615 

1.000 0.311 0.861 0.443 0.766 0.541 0.652 0.570 0.615 

 
respect to the Euler-Bernoulli beam. 

3.2. Experimental Deflection Curves 

A comparison of theoretical and experimental deflection curves for Rods 1 
through 5 is shown graphically in Figures 8-12 respectively. Each figure com-
prises four panels corresponding to each of the four impressed loads (W = 2, 4, 
6, 8 pounds). Within each panel, the solid wine-colored curve is the theoretically 
predicted elastica curve obtained by solving Equation (13), given the known 
geometry of the rod, the load, and the initially unknown elastic modulus E. Val-
ues for E were determined by trial and inspection of the resulting match with the 
experimental curve marked by blue solid-circle plotting symbols at points where 
the image-analysis software was instructed to determine coordinates. For pur-
poses of comparison, the exact deflection curve of the corresponding uniform 
rod (dashed black curve) and the Euler-Bernoulli approximate deflection curve 
of correct total arc length (solid pink curve) are also shown in each panel. 

In regard to our method of curve fitting and parameter estimation, it bears 
emphasizing for both conceptual and practical reasons that there was nothing to 
be gained by using a statistical fitting procedure, such as the method of maxi-
mum likelihood or method of least-squares [31]. Indeed, use of such a fitting  
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Figure 8. Comparison of (a) exact elastica theory (heavy solid maroon line) and experimental deformations 
(blue circles) of Rod 1 for specified loads W in pounds. System parameters are: length 1.52 m, taper ratio 0.25, 
and mean modulus 6.0 0.4 GPaE ≈ ± . Superposed on each plot are the deformation curve for a uniform rod 
calculated (b) exactly (dashed black line) and (c) by linear approximation (thin solid pink line). 

 
procedure would have been inappropriate for the problem at hand.  

As a practical matter, the method of trial and inspection was implementable 
by computer very quickly and led to highly satisfactory, if not nearly perfect, fits 
of theory and experiment shown in Figures 8-10. A numerical value of E ade-
quate to our purpose could be obtained by trial and inspection for each match of 
theory with experiment in just a few minutes. Use of a statistical fitting proce-
dure on a nonlinear differential equation whose output must subsequently be 
integrated over to get the elastica coordinates would have taken much more 
computation time, assuming the method even converged, and, as Figures 8-10 
show, could not have led to fits significantly better than what was already 
achieved.  
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Figure 9. Comparison exact theoretical and experimental deformation curves of Rod 2. Symbolic representa-
tion is the same as in Figure 8. System parameters are: length 1.52 m, taper ratio 0.30, and mean modulus 

27.5 1.5 GPaE ≈ ± . 

 
Conceptually, the primary purpose of a statistical fitting procedure is to yield 

the best match between experiment and theory, or the best estimate of a theoret-
ical parameter, under conditions where the experimental measurements contain 
random error (e.g. Gaussian noise). For example, as the name of the method 
suggests, the least-squares procedure will attempt to achieve such a match by 
minimizing the square of the residuals (i.e. deviations) between the totality of 
experimental measurements and the corresponding computed theoretical points. 
As a consequence, the resulting least-squares curve might pass through the scat-
ter of experimental points in such a way as to provide an approximate overall fit 
(provided the scatter is not too great), but without any actual agreement between 
individual measured and calculated points.  

In contrast to the conditions for which a statistical fitting procedure might be  

https://doi.org/10.4236/wjm.2018.87022


M. P. Silverman, J. Farrah 
 

 

DOI: 10.4236/wjm.2018.87022 292 World Journal of Mechanics 
 

 
Figure 10. Comparison exact theoretical and experimental deformation curves of Rod 3. Symbolic representa-
tion is the same as in Figure 8. System parameters are: length 1.68 m, taper ratio 0.23, and mean modulus 

32.0 2.4 GPaE ≈ ± . 

 
justified, the coordinates of our experimental deflection curves were obtained 
directly from high-resolution digital images by an image-analysis algorithm, and 
consequently contained very little random noise. Thus, the objective of our trial 
and inspection procedure was to match as many individual experimental points 
as possible to the section of the theoretical curve where the bending is low (i.e. 
near the base where the exact theory agrees with the linear approximation) and 
to see whether the rest of the experimental points also fell on the theoretical 
curve where the bending is high (and the exact theory deviates markedly from 
the linear approximation). If this was achievable at the different impressed loads 
for nearly the same values of elastic modulus, then one could have confidence 
that (1) the particular physical rod satisfied the assumptions of an ideal Eu-
ler-Bernoulli beam summarized in Section 2, (2) the collection of the data did  
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Figure 11. Comparison exact theoretical and experimental deformation curves of Rod 4. Symbolic representa-
tion is the same as in Figure 8. System parameters are: length 1.52 m, taper ratio 0.19, and mean modulus 

21.5 0.9 GPaE ≈ ± . 

 
not entail any significant systematic error1, and (3) the theory developed in this 
paper accurately accounted for the measured static deflection curve. This was 
clearly the case for the application of our theory to Rods 1, 2, and 3 shown in 
Figures 8-10.  

Comparable profiles of Rod 4 in Figure 11 show an excellent fit of theory to 
experiment for approximately the initial 70% of the rod length and then a con-
sistent flatness for all four impressed loads. The onset of the flatness appears al-
most like a phase change with discontinuous slope. This is not a matter of either  

 

 

1A potential systematic error might have been to photograph the deflected rod from a line of sight 
not perpendicular to the plane of the deflection curve. Had that occurred, the transverse coordinates 
of the rod would be foreshortened, the resulting experimental deflection curve would be distorted, 
and the fit between theory and experiment would be poor over the entire length of the curve. 
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Figure 12. Comparison exact theoretical and experimental deformation curves of Rod 5. Symbolic representa-
tion is the same as in Figure 8. System parameters are: length 2.44 m, taper ratio 0.18, and mean modulus 

31.5 1.7 GPaE ≈ ± . 

 
random or systematic error in the collection or processing of the data. A devia-
tion of this kind from exact theory indicates a failure of the rod to conform to 
one or more of the assumed conditions for the validity of Equation (13). The 
shape of the experimental profile strongly suggests that the flexural rigidity 

xB EI=  (called stiffness by rod manufacturers) has a different constant value in 
the two sections of the rod before and after the transition at the normalized arc 
length 0.7σ ≈ . Modern composite materials make it possible for manufactur-
ers to create rods with a variable stiffness [32]. Since the stiffness is the product 
of a material parameter (E) and a geometric parameter ( zI ), either or both can 
effect a change in flexural rigidity. Assuming, by virtue of the way the rod is 
manufactured, that the circular cross section of the rod retains its shape, we be-
lieve E to be the variable quantity, although this assumption will not affect the 
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model proposed below. 
We hypothesize that Rod 4 behaves like an Euler-Bernoulli cantilever with a 

constant stiffness within each of the two sections. We can therefore represent the 
variation in stiffness—and therefore the arc-dependence of the rigidity constant 
defined by Equation (14)—by a simple model 

( ) ( ) ( )
2

0

0 0,
AFLA

E I f
σ

σ σ ε σ
= =                (47) 

in which 

( ) 0
0

0

1
,f

σ σ
σ ε σ

ε σ σ
≤

=  >
               (48) 

and 

( )2
0 00A FL E I=                      (49) 

Within each section of the rod, the bending curve should follow Equation (13) 
with the appropriate stiffness given by Equation (47). Fitting the model to the 
measured deflection curve by trial and inspection permitted us to rapidly deter-
mine the model parameters 0.3ε ≈  (stiffness reduction factor) and 0 0.70σ ≈  
(location of modulus transition).  

The results of the model are shown in Figure 13. Panel A of the figure shows 
theoretical plots of the deflection curve for a tapered rod of uniform modulus 

0 20 GPaE =  for forces ranging from 2 to 10 lbs. Panel B shows the corres-
ponding deflection curves for a rod of variable modulus described by Equations 
(47)-(49) with the parameters given above. Agreement of theory and experiment 
in Panel C for measurements made at 2, 4, 6, 8 lbs, is quite good given the  

 

 
Figure 13. Comparison of exact theoretical deformation curves of Rod 4 for (A) uniform modulus 0 20 GPaE =  and (B) variable 

modulus ( ) ( )0E s E f s=  given by Equation (47) with (C) experimental points. Individual plots pertain to forces (in lbs) of (a) 2, 

(b) 4, (c) 6, (d) 8, (e) 10 (No measurement was made at 10 lbs to avoid damaging the rod). 

https://doi.org/10.4236/wjm.2018.87022


M. P. Silverman, J. Farrah 
 

 

DOI: 10.4236/wjm.2018.87022 296 World Journal of Mechanics 
 

simplicity of the model. No measurements were made at 10 lbs to avoid possibly 
damaging the rods. Moreover, as shown by plots e and d in both Panels A and B, 
the theoretical deflection curve expected for a force of 10 lbs (plot e) does not 
differ significantly from the curve produced by a force of 8 lbs (plot d).  

The deflection profiles of Rod 5 in Figure 12, show weakly anomalous beha-
vior in a small section of the rod near the tip for the smaller applied forces of 2 
and 4 lbs and excellent agreement again over the full length of the rod at the 
larger applied forces of 6 and 8 lbs. In contrast to the response of Rod 4, the de-
formation curve of Rod 5 revealed the rod to be stiffer than expected theoreti-
cally at the lower loads. Assuming, as before, that the cross section of the rod at 
any arc length remains circular, the features exhibited by Rod 5 suggest that the 
modulus E is greater in the end section. In other words, above some threshold 
force the modulus is uniform throughout the rod as indicated by the panels for 
W = 6, 8 lbs, but below threshold the rod behaves like an Euler-Bernoulli beam 
with different constant modulus in the front and rear sections. 

We can account quantitatively for the observed features of Rod 5 by the same 
model as for Rod 4, but with different parameters. Fitting the exact theoretical 
calculations to the data by trial and inspection yielded a stiffness enhancement 
factor 2.9ε ≈ , and partition location 0 0.75σ ≈ , which gave very satisfactory 
results, as seen in Figure 14. Panel A of the figure shows the deflection curves 
(solid) as calculated exactly by Equation (13) with model (47) for the partitioned 
modulus, and the corresponding deflection curves (dotted) for the rod with uni-
form modulus. Panel B shows the agreement (plots a and b) between the parti-
tioned-modulus model and the deflection curves of Figure 12 measured for  
 

 
Figure 14. Comparison of exact theoretical deformation curves of Rod 5 for (A) uniform 
modulus (dotted curve) 0 30 GPaE =  and variable modulus (solid curve) ( ) ( )0E s E f s=  

given by Equations (47) and (48) with (B) experimental points. Individual plots pertain to 
applied forces (in lbs) of (a) 2, (b) 4, (c) 6, (d) 8, (e) 10. 
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applied loads W of 2 and 4 pounds.  
Although the exact theory based on a uniform modulus in Rod 5 agreed very 

well with the experimental deflection curves for W = 6 and 8 lbs, as shown in 
Figure 12, it is of interest to see how that agreement would be affected if the 
deflection curve were generated by the preceding two-section model. This com-
parison is shown for W = 8 lbs by plot d in Panel B of Figure 14. The agreement 
with experiment is only marginally poorer than the excellent match shown in 
Figure 12 for a uniform load. This suggests the possibility that the modulus of 
Rod 5 may have a weak force dependence (without a threshold) that falls off ra-
pidly with increasing W, thereby leading to no appreciable distortion of the def-
lection curves for large W. Further investigation of the stress dependence of Rod 
5, however, is outside the scope of this paper. 

4. Conclusions 

This paper reports a comprehensive theoretical analysis and experimental test of 
the static deflection of a tapered rod subject to an end load that can generate an 
arbitrarily large bending deformation, assuming the rod retains its circular cross 
section and linear elastic response. Large-scale and small-scale systems of this 
kind occur widely in modern physics. The calculation of the bending curve for 
this system leads to a non-linear second order differential equation for which a 
closed-form solution is unknown and which, therefore, must be solved numeri-
cally. In this regard the choice of coordinate system is very important. 

If the exact differential equation is expressed directly in terms of the desired 
Cartesian coordinates of the deflection curve (x = longitudinal extension; y = 
transverse displacement), the resulting equation contains a geometric parameter 
and dynamical relation that are unknown at the outset. Attempts to solve this 
equation iteratively by means of a powerful mathematical tool like Maple took 
long computation times and did not reliably converge to a solution. However, if 
the equation is expressed in terms of arc length s and tangent angle θ , then the 
resulting differential equation for ( )sθ  contains only the single variable s 
without any unknown parameters. From the solution ( )sθ , the function ( )y x  
of the elastica was calculated rapidly by iterative numerical integration of equa-
tions relating the derivatives d dx s  and d dy s  to ( )sθ . Using Maple, we 
were able to solve the deflection equation to 10-digit precision and calculate the 
exact elastica shape for each desired configuration of rod geometry, elastic mod-
ulus, and applied force within a few seconds.  

Comparison of the exact deflection curves of tapered and uniform rods of 
identical properties apart from taper showed, for a variety of rod geometries, 
elastic moduli, and loads, that neglect of tapering could result in greatly unde-
restimating the extent of bending.  

To test the elastica theory of a tapered rod, we recorded and analyzed the def-
lection curves of a series of highly flexible rods with total lengths ranging from 6 
feet (1.83 m) to 10 feet (3.05 m) and taper ratios ranging from 3:10 to 3:17. The 
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rods were made of various composites of fiberglass and resins designed to main-
tain their circular cross sections under stress within elastic limits. Given their 
properties, we expected these rods to undergo moderate to large deflections 
when subjected to loads ranging from 2 lbs (8.90 N) to 8 lbs (35.59 N). 

Our experimental results showed the following:  
• Excellent agreement was obtained between theory and experiment for all four 

loads applied to the three shortest rods with three highest taper ratios (see 
Rods 1, 2, 3 in Table 1). Maximum deflection angles in all 12 cases (3 rods × 
4 forces) ranged from about 70˚ to 90˚ which constituted very large deflec-
tions for which neither the exact nonlinear theory for uniform rods (taper ra-
tio = 1; theory solvable in terms of elliptic integrals) nor the widely used Eu-
ler-Bernoulli approximate theory (which generates a 3rd order polynomial) is 
applicable. The difference in calculated tip deflection angles between the ta-
pered rods and corresponding uniform rods ranged from about 5˚ to 65˚.  

• Weakly discordant results were initially obtained between some of the theo-
retically predicted shapes and the measured deflection curves of the longest 
two rods with lowest taper ratios (see Rods 4, 5 in Table 1). The anomalies 
could be understood as arising from a difference in flexural rigidity at the 
narrow end compared with that throughout the rest of the rod. A simple 
theoretical model was devised to yield the reduction or enhancement of rod 
stiffness and the transition location. Theoretical prediction of the elastica 
curves, taking account of the stiffness model, was in excellent accord with the 
measured deflection curves.  

Although the stiffness model does not explain the physical mechanism for the 
bipartite modulus of Rods 4 and 5, the practical utility of our procedure is that it 
permits numerical prediction of virtually all the geometrical and physical prop-
erties of the equilibrium cantilever configuration that an analyst, experimenter, 
or instrument designer might want to correlate with load, such as the overall 
shape (the elastica curve), maximum deflection angle, maximum linear deflec-
tion, point of maximum curvature, bending moment, distribution of bending 
stress, and other quantities.  

As a final point, we mention that in many applications on length scales rang-
ing from fishing rods to micro-electromechanical devices there may be interest 
not only in the equilibrium configuration but also in the dynamical response of a 
tapered rod to a time-dependent perturbation. Although this subject is outside 
the scope of our paper, it is to be noted that the equations of static equilibrium 
analyzed here provide the starting point for an exact dynamical analysis, since, 
in the absence of a perturbation, the system relaxes to the equilibrium state. Al-
though dynamical analyses have been performed on uniform cantilevers in the 
approximation of small-angle deflections [33], we are unaware of any exact dy-
namical analysis of a tapered cantilever. 
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