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Abstract 
The paper is devoted to dynamic design of thick orthotropic cantilever plates by ap-
plying the bimoment theory of plates, which takes into account the forces, moments 
and bimoments; and the theory takes into account nonlinear law of displacements 
distribution in cross section of the plate. The methods for constructing bimoment 
theory are based on Hooke’s Law, three-dimensional equations of the theory of dy-
namic elasticity and the method of displacements expansion into Maclaurin series. 
The article gives the expressions to determine the forces, moments and bimoments. 
Bimoment theory of plates is described by two unrelated two-dimensional systems 
with nine equations in each. On each edge of the plate, depending on the type of fas-
tening, nine boundary conditions are given. As an example, the solution of the prob-
lem of dynamic bending of thick isotropic and orthotropic plate under the influence 
of transverse dynamic loads in the form of the Heaviside function is given. The equa-
tions of motion of the plate are solved by numerical method of finite differences. The 
numerical results are obtained for isotropic and orthotropic plate. The graphs of 
changes of displacements and stresses of faces surfaces of the plate are presented. 
Maximum values of these displacements are found and analyzed. It is shown that by 
Timoshenko theory numerical values of stresses are much smaller compared to the 
ones obtained by bimoment theory of plates. Maximum numerical values of genera-
lized displacements, forces, moments, and bimoments are obtained and presented in 
tabular form. The analysis of numerical results is done and the conclusions are drawn. 
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1. Introduction 

The theory and the methods of thick plate design are developed as an applied part of 
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the Mechanics of rigid body. Existing theories of thick plates considering transverse 
shear of plates are based on a number of simplifying hypotheses proposed by many re-
searchers. There are numerous papers and monographs of Russian and foreign authors 
in this direction. Literature review on the theory and design of plates within the speci-
fied theory is given in [1]-[4]. 

Static problems of bending of thick isotropic plates within the three-dimensional 
theory of elasticity are considered in [5] (B. F. Vlasov); it gives an exact analytical solu-
tion in trigonometric series. The monograph by E. N. Baida [6] throws light upon the 
question of bending of orthotropic plates in trigonometric series. Numerical results of 
displacements and stresses are obtained. 

In recent years, a number of studies have been published on static and dynamic 
analysis of structural elements in the field of the theory of plates. The authors [7] are 
involved in dynamic tasks of anisotropic plate vibrations. Foreign authors Karamooz 
Ravari M. R. and Forouzan M. R. [8] have considered the problem of free oscillations of 
a circular ring orthotropic plate. Frequency equations have been built in vibration plane 
for general boundary conditions. 

The work of the authors in [9] is devoted to solving the problem of transient oscilla-
tions of a rectangular viscoelastic orthotropic plate on the basis of Flügge and Timo-
shenko-Mindlin deformation models. The paper [10] solves the problem of steady 
forced oscillations of orthotropic plate by superposition method, which is reduced to a 
quasi-regular infinite system of linear equations; its analytical solution is built. In [11] 
on the basis of the method of separation of variables a three-dimensional problem of 
elasticity theory is solved. The method of design of rectangular orthotropic elastic plates 
subjected to external loads on the upper and lower faces is developed 

Papers [12] [13] are devoted to the construction of the theory of plate by displace-
ments expansion into a series on one of the spatial coordinates oriented along the nor-
mal of the plate. Displacements in the plate plane can be expanded in the form of a cu-
bic parabola, and normal displacements—in the form of a quadratic parabola. In [12], a 
problem of plate bending is solved and a comparative analysis with the results of other 
authors is carried out. In [13], dynamic bending of thick rectangular plate under the ac-
tion of lumped dynamic forces is considered. Numerical results are obtained. 

If to consider the law of nonlinearity of displacements distribution in the cross- 
sections of the plate, then in addition to tensile and shear forces, bending and torsional 
moments, there appear the additional force factors, called the bimoments. In [14]-[17] 
the development and solution of the problem of bending and vibrations of thick plates 
is based on bimoment theory of plates built within the three-dimensional theory of 
elasticity without simplifying hypotheses, using the method of displacements expansion 
into Maclaurin infinite series on one of the spatial coordinates. 

This paper is dedicated to dynamic analysis of thick plates on the basis of bimoment 
theory of plates. To take into account all force factors of the plate, including the bimo-
ments, one should consider all the components of stress and strain tensors:  

( ), , , 1,3ij ij i jσ ε = . The components of displacement vector are presented in the form of 
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a function of three spatial coordinates and time  
( ) ( ) ( )1 1 2 2 1 2 3 1 2, , , , , , , , , , ,u x x z t u x x z t u x x z t . 
The statements of dynamic problem for thick plates in three-dimensional formula-

tion and the methods of reducing it to a two-dimensional bimoment theory are briefly 
described. Determinant correlations of forces, moments, and bimoments, as well as the 
equations of motion of the plate, given in [14]-[16] are produced relative to these force 
factors. 

2. Statement of the Problem 

Consider an orthotropic thick plate of constant thickness 2H h=  and plan dimen-
sions ,a b . Introduce the denotations: 1 2 3, ,E E E -elasticity modulus; 12 13 23, ,G G G -shear 
modulus; 12 13 23, ,ν ν ν -Poisson ratio of material of the plate. 

To describe the motion of the plate a Cartesian system of coordinates with variables 

1 2,x x  and z  is introduced. The origin is taken in the mid-surface of the plate. OZ  
axe is directed down. 

Let the distributed surface, normal and tangent loads be applied to two face surfaces 
of the plate z h= −  and z h= . Normal loads ( ) ( )

3 3,q q+ −  are applied along OZ  axe. 
Tangent loads ( ) ( ) ( ), , 1, 2k kq q k+ − =  are applied in 1 2,OX OX  axes. 

The plate is considered as a three-dimensional body, its material obeying the Hooke’s 
generalized Law. Three-dimensional equations of dynamic theory of elasticity are used 
as an equation of motion of the plate. 

Boundary conditions of face surfaces of the plate z h=  and z h= −  have the form: 
( ) ( ) ( )

33 3 31 1 32 2, , at ,q q q z hσ σ σ+ + += = = =                (1.а)
 ( ) ( ) ( )

33 3 31 1 32 2, , at .q q q z hσ σ σ− − −= = = = −               (1.b) 

3. Method of Solution 

The methods of construction of bimoment theory of plates are based on Hooke’s gene-
ralized Law, three-dimensional theory of elasticity, boundary conditions of face surfac-
es (1) and displacements expansion into Maclaurin series in the form: 

( ) ( ) ( ) ( ) ( ) ( )
2 3

0 1 2 3 , 1, 2
i

k k k k k
k i

z z z zu B B B B B k
h h h h

     = + + + + + + =     
     

  ,  (2.а) 

2 3

3 0 1 2 3

i

i
z z z zu A A A A A
h h h h

     = + + + + + +     
     

             (2.b) 

where ( ) ,k
i iB A -are unknown functions of two spatial coordinates  

( ) ( ) ( ) ( )1 2 1 2, , , , ,k k
i i i iB B x x t A A x x t= = : 

( ) ( ) 3

0 0

1 1, 1, 2 ,
! !

i i
k i ik

i ii i
z z

u uB h k A h
i iz z

= =

   ∂ ∂
= = =   ∂ ∂   

. 

Displacements of the points of face surfaces z h= −  and z h= +  of the plate are 
denoted by ( ) ( ) ( ), , 1,3i iu u i− + = , and stresses on face surfaces z h= −  and z h= +  by 

( ) ( ) ( )
11 12 22, ,σ σ σ− − −  and ( ) ( ) ( )

11 12 22, ,σ σ σ+ + + . 
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Note that bimoment theory of plates is described by two unrelated problems, each of 
which is formulated on the basis of nine two-dimensional equations with appropriate 
boundary conditions. Determinant equations and equations of motion of bimoment 
theory of plates are briefly described. 

The first problem consists of two equations for longitudinal and tangential forces and 
four subsidiary built equations for bimoments for the nine unknown kinematic func-
tions: 

( ) ( )
( )2

3
1 1, d , d , 1, 2

2 2 2

h h
k k

k k k k k
h h

u uu u z u z z k
h h

ψ β
+ −

− −

+
= = = =∫ ∫          (3.а) 

( ) ( )
33 3

3 32 4
1 1, d , d

2 2 2

h h

h h

u uW r u z z u z z
h h

γ
+ −

− −

−
= = =∫ ∫ .            (3.b) 

Introduce load terms to the equation of motion for the first problem,  
( ) 3, 1, 2 ,kq k q= -are determined by formulae: 

( ) ( )
( )

( ) ( )
3 3

3, 1, 2 , .
2 2

k k
k

q q q qq k q
+ − + −− +

= = =                  (4)
 

The forces 11 12 22, ,N N N  and bimoments 11 22 12, ,T T T  are determined by the expres-
sions: 

1 2 1 2
11 11 12 13 22 12 22 23

1 2 1 2

2 , 2N E H E H E W N E H E H E W
x x x x
ψ ψ ψ ψ∂ ∂ ∂ ∂

= + + = + +
∂ ∂ ∂ ∂

  (5) 

1 2 1 2
11 11 12 13 22 12 22 23

1 2 1 2

2 4 2 4,W r W rT H E E E T H E E E
x x H x x H
β β β β   ∂ ∂ ∂ ∂− −

= + + = + +   ∂ ∂ ∂ ∂   
(6) 

1 2 2 1
12 21 12 12 21 12

2 1 1 2

,N N G H H T T HG
x x x x
ψ ψ β β   ∂ ∂ ∂ ∂

= = + = = +   ∂ ∂ ∂ ∂   
.       (7) 

The intensities of transverse bimoments 13 23,p p  and 13 23,τ τ  from tangential stresses 

13 23,σ σ  have the form: 

( ) ( ) ( )3 3 3 3

2 32
, , 1, 2k kk k

k k k k
k k

uurp G G k
x H x H

βψ γτ
 − −∂ ∂

= + = + =    ∂ ∂   
.    (8) 

And the intensities of normal bimoments 33p  and 33τ  from normal stress 33σ  
are determined by the formula: 

1 2 1 2
33 31 32 33 33 31 32 33

1 2 1 2

2 2 4,W W rp E E E E E E
x x H x x H
ψ ψ β βτ∂ ∂ ∂ ∂ −

= + + = + +
∂ ∂ ∂ ∂

.   (9) 

The equation of motion relative to longitudinal and tangential forces, acting in the 
plane of the plate, has the form: 

11 12
1 1

1 2

2N N q H
x x

ρ ψ∂ ∂
+ + =

∂ ∂
                     (10.а) 

21 22
2 2

1 2

2N N q H
x x

ρ ψ∂ ∂
+ + =

∂ ∂
 .                   (10.b) 
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As could be seen, the systems of two Equation (10) contains three unknown func-
tions 1 2, ,Wψ ψ . To complete this system two equations of motion relative to longitu-
dinal and tangential bimoments are written 

11 12
13 1 1

1 2

4 2T T p q H
x x

ρ β∂ ∂
+ − + =

∂ ∂
                  (11.а) 

12 22
23 2 2

1 2

4 2T T p q H
x x

ρ β∂ ∂
+ − + =

∂ ∂
                 (11.b) 

and two more equations of motion relative to the intensity of transverse bimoments in 
the following form: 

13 23 33 3

1 2

2 2p p p q r
x x H H

ρ∂ ∂
+ − + =

∂ ∂
                     (12) 

13 23 33 3

1 2

6 2q
x x H H
τ τ τ ργ∂ ∂

+ − + =
∂ ∂

 .                    (13) 

Using Maclaurin series (2) and the correlations (3), boundary conditions (1) are pre-
sented in the form of the system of three equations 

( ) ( )
3

1 1 121 3 , 1, 2
4 20 20

k
k k k

k k

HqWu H k
x G

β ψ ∂
= − − + =

∂
           (14) 

( ) 31 32 31 2

33 1 33 2 33

1 121 7
2 30 30

E E Hqu uW r H
E x E x E

γ
 ∂ ∂

= − − + + ∂ ∂ 
.           (15) 

Equations of motion (10) - (15) comprise a combined system of differential equa-
tions from nine equations on unknown functions: 1 2 1 1 1 2, , , , , , , ,u u r Wψ ψ β β γ . 

Note that all formulae of force factors (5) - (9) and equations of motion of the plate 
of the first problem (10) - (13) are strictly built. Approximation exists in derivation of 
the Equation (14) and Equation (15) only. Equation (14) is built with the fourth order 
of accuracy, and Equation (15) with the sixth order of accuracy relative to small para-  

meter of the plate 
10
H

a
δ = . Here a-is a small size in plate plan. 

The second problem consists in equations for bending moments, torsional moments, 
shear forces and bimoments relative to nine unknown kinematic functions: 

( ) ( )
23 3

3 33
1 1, d , d

2 2 2

h h

h h

u uW r u z u z z
h h

γ
+ −

− −

+
= = =∫ ∫

 ,            (16.а) 

( ) ( )
( )3

2 4
1 1, d , d , 1, 2

2 2 2

h h
k k

k k k k k
h h

u uu u z z u z z k
h h

ψ β
+ −

− −

−
= = = =∫ ∫

 .      (16.b) 

Load terms of the second problem equation ( ) 3, 1, 2 ,kq k q=   are determined in the 
following form: 

( ) 3 3
3, 1, 2 ,

2 2
k k

k
q q q qq k q
+ − + −+ −

= = =  .                  (17) 

Bending and torsional moments 11 22 12, ,M M M  and 11 22 12, ,P P P  are written as fol-
lows 
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( )

( )

2
1 2

11 11 12 13
1 2

2
1 2

22 12 22 23
1 2

2
,

2

2

2

r WHM E E E
x x H

r WHM E E E
x x H

ψ ψ

ψ ψ

 −∂ ∂ = + −
 ∂ ∂ 
 −∂ ∂ = + −
 ∂ ∂ 





 





 

             (18) 

( )

( )

2
1 2

11 11 12 13
1 2

2
1 2

22 12 22 23
1 2

2 3
,

2

2 3

2

WHP E E E
x x H

WHP E E E
x x H

γβ β

γβ β

 −∂ ∂ = + −
 ∂ ∂ 
 −∂ ∂ = + −
 ∂ ∂ 



 



 

              (19)
 

2
1 2

12 21 12
2 1

2
1 2

12 21 12
2 1

,
2

.
2

HM M G
x x

HP P G
x x

ψ ψ

β β

 ∂ ∂
= = + ∂ ∂ 

 ∂ ∂
= = + 

∂ ∂ 

 

 

                  (20) 

Expressions to define shear forces have the form: 

13 13 1 23 23 2
1 2

2 , 2r rQ G u H Q G u H
x x

   ∂ ∂
= + = +   ∂ ∂   

 

  .            (21) 

The intensity of transverse and normal bimoments 13 23,p p   and 33p  are determined 
by the expressions

 
( )

( )1 2
3 3 33 31 32 33

1 2

22 4
, 1,2 ,  .k k

k k
k

r Wu
p G k p E E E

H x x x H
ψ ψ ψγ − − ∂ ∂∂

= + = = + − ∂ ∂ ∂ 





   

   (22) 

Equations of motion of the second problem are also described by a system of six eq-
uations of motion of the plate. The first three equations of motion are written for 
bending and torsional moments and one equation-for shear forces: 

2
11 12

13 1 1
1 2 2

M M HQ Hq
x x

ρψ∂ ∂
+ − + =

∂ ∂


 ,                (23.а) 

2
21 22

23 2 2
1 2 2

M M HQ Hq
x x

ρψ∂ ∂
+ − + =

∂ ∂


 ,               (23.b) 

13 23
3

1 2

2Q Q q Hr
x x

ρ∂ ∂
+ + =

∂ ∂


  .                     (24) 

Three more equations of motion of the plate would be written for bimoments; two of 
them for bending and torsional bimoments have the form: 

2
11 12

13 1 1
1 2

3
2

P P HHp Hq
x x

ρβ∂ ∂
+ − + =

∂ ∂




  ,                (25.а) 

2
21 22

23 2 2
1 2

3
2

P P HHp Hq
x x

ρβ∂ ∂
+ − + =

∂ ∂




  .               (25.b) 

The sixth equation of plate motion for the intensity of transverse bimoments is writ-
ten as follows:  
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13 23
33 3

1 2

4 2p pH H p q H
x x

ργ∂ ∂
+ − + =

∂ ∂
 



  .                  (26) 

Using Maclaurin series (2) and relationships (16), boundary conditions (1) are pre-
sented in the form of the system of three equations, written as:  

( ) ( )
3

1 1 121 7 , 1, 2
2 30 30

k
k k k

k k

HqWu H k
x G

β ψ ∂
= − − + =

∂







 ,          (27) 

( ) 31 32 31 2

33 1 33 2 33

1 121 3
4 20 20

E E Hqu uW r H
E x E x E

γ
 ∂ ∂

= − − + + ∂ ∂ 

 



  .          (28) 

The system of differential equations of motion (23) - (28) comprises a combined 
system of nine equations relative to nine unknown functions  

1 2 1 2 1 1, , , , , , , ,u u r Wψ ψ β β γ  

     . 
It should be noted that all formulae of force factors (18) - (22) and equations of mo-

tion of the plate for the second problem (23) - (26) are strictly built. Approximation ex-
ists in derivation of Equation (27) and Equation (28) only. Equation (28) is built with 
the fourth order of accuracy, and Equation (27)—with the sixth order of accuracy rela-
tive to small parameter of the plate δ . 

The stresses on the upper and lower face surfaces z h= −  and z h= +  are denoted 
by ( ) ( ) ( )

11 12 22, ,σ σ σ− − −

 and ( ) ( ) ( )
11 12 22, ,σ σ σ+ + + . Using these expressions, one would introduce 

the force factors 11 22 12, ,σ σ σ  and 11 22 12, ,σ σ σ   , defined by formula: 
( ) ( ) ( ) ( )

( ), , 1, 2; 1, 2
2 2

ij ij ij ij
ij ij i j

σ σ σ σ
σ σ

+ − + −+ −
= = = = .            (29) 

The values 11 22 12, ,σ σ σ  and 11 22 12, ,σ σ σ    are referred as bimoment intensities un-
der tension-compression with consideration of transverse reduction and lateral bend-
ing with cross shear of the plate. 

The intensities of the bimoments * *
11 22,σ σ  and * *

11 22,σ σ   are introduced by the dif-
ferences and sums of derivatives in z-coordinate from normal stresses 11 22,σ σ : 

* *11 11 22 22
11 22,

2 2z h z h z h z h

H H
z z z z
σ σ σ σσ σ

=+ =− =+ =−

   ∂ ∂ ∂ ∂       = − = −          ∂ ∂ ∂ ∂          
,   (30) 

* *11 11 22 22
11 22,

2 2z h z h z h z h

H H
z z z z
σ σ σ σσ σ

=+ =− =+ =−

   ∂ ∂ ∂ ∂       = + = +          ∂ ∂ ∂ ∂          
  .   (31) 

On the basis of Hooke’s Law and boundary conditions (1.а) and (1.b) the expressions 
for half-difference and half-sum of the first derived functions 1 2,u u  and 3u  are found 
in z-coordinate on face surfaces of the plate z h= −  and z h= +  

( )
3

, 1, 2k k k

k kz h z h

u u q W k
z z G x=+ =−

∂ ∂ ∂   − = − =   ∂ ∂ ∂   
             (32.а) 

3 3 1 2
3 31 32

33 1 2

1

z h z h

u u u uq E E
z z E x x=+ =−

 ∂ ∂ ∂ ∂   + = − −    ∂ ∂ ∂ ∂     



,          (32.b) 

( )
3

, 1, 2k k k

k kz h z h

u u q W k
z z G x=+ =−

∂ ∂ ∂   + = − =   ∂ ∂ ∂   





,            (33.а) 
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3 3 1 2
3 31 32

33 1 2

1

z h z h

u u u uq E E
z z E x x=+ =−

 ∂ ∂ ∂ ∂   − = − −    ∂ ∂ ∂ ∂     

 

 .          (33.b) 

Using expressions (32), (33) from Hooke’s Law one may determine the expressions 
for bimoment intensities 11 22 12 11 12 22, , , , ,σ σ σ σ σ σ    and * * * *

11 22 11 22, , ,σ σ σ σ  . The intensi-
ties of bimoments 11 22 12, ,σ σ σ  are determined in the form: 

13 13 131 2
11 11 31 12 32 3

33 1 33 2 33

,E E Eu uE E E E q
E x E x E

σ
   ∂ ∂

= − + − +   ∂ ∂   
         (34.а) 

23 23 231 2
22 21 31 22 32 3

33 1 33 2 33

,E E Eu uE E E E q
E x E x E

σ
   ∂ ∂

= − + − +   ∂ ∂   
         (34.b) 

1 2
12 12

2 1

u uG
x x

σ
 ∂ ∂

= + ∂ ∂ 
.                     (34.c) 

The intensities of bimoments 11 12 22, ,σ σ σ    are determined by the following formula:  

13 13 131 2
11 11 31 12 32 3

33 1 33 2 33

E E Eu uE E E E q
E x E x E

σ
   ∂ ∂

= − + − +   ∂ ∂   

 

  ,         (35.а) 

23 23 231 2
22 21 31 22 32 3

33 1 33 2 33

E E Eu uE E E E q
E x E x E

σ
   ∂ ∂

= − + − +   ∂ ∂   

 

  ,         (35.b) 

1 2
12 12

2 1

u uG
x x

σ
 ∂ ∂

= + ∂ ∂ 

 

 .                      (35.c) 

The intensities of bimoments * * * *
11 22 11 22, , ,σ σ σ σ   have the expressions:  

2 2
* 1 2
11 11 12 11 12 132 2

1 13 2 231 2

,q qW W RE H E H E H E H E
x G x G Hx x

σ
   ∂ ∂ ∂ ∂

= − − + + +   ∂ ∂∂ ∂    
 (36.а) 

2 2
* 1 2
22 12 22 12 22 232 2

1 13 2 231 2

,q qW W RE H E H E H E H E
x G x G Hx x

σ
   ∂ ∂ ∂ ∂

= − − + + +   ∂ ∂∂ ∂    
(36.b) 

2 2
* 1 2
11 11 12 11 12 132 2

1 13 2 231 2

,q qW W RE H E H E H E H E
x G x G Hx x

σ
   ∂ ∂ ∂ ∂

= − − + + +   ∂ ∂∂ ∂    

  

 

  (37.а) 

2 2
* 1 2
22 12 22 12 22 232 2

1 13 2 231 2

.
q qW W RE H E H E H E H E

x G x G Hx x
σ

   ∂ ∂ ∂ ∂
= − − + + +   ∂ ∂∂ ∂    

  

 

  (37.b) 

Unknown functions R  and R  in expressions (36) and (37) are determined from 
the system of algebraic equations relative to coefficients of the series (2), obtained from 
denotations (3) and (16), and presented as 

( ) ( )3 54 2 3 4 5 420 6 15R A A W r γ= × × × + × × + = + − .         (38) 

( ) ( )2 44 1 2 3 4 60 3 4 21R A A R W r γ= × × × + × × + = = + −  


 .        (39) 

Here are the formulae to determine the displacements on face surfaces of the plate  
z h= −  and z h= + : 

( ) ( ) ( ) ( ) ( )
3 3, , 1, 2 , ,i i i i i iu u u u u u i u W W u W W− + − += − = + = = − = + 

  .     (40) 
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Formulae for the stresses on face surfaces of the plate z h= −  and z h= +  have the 
form: 

( ) ( ) ( ), , 1, 2; 1, 2ij ij ij ij ij ij i jσ σ σ σ σ σ− += − = + = =  .             (41) 

Note down the boundary conditions for a cantilever plate. Let the edge of the plate 

2 0x =  be rigidly fixed. Remaining edges of the plate are free from supports. 
The fixed edge of the plate has zero displacement and the boundary conditions on 

the edge 2 0x =  are: 

1 2 1 2 1 20, 0, 0, 0, 0, 0, 0, 0, 0.r u u Wψ ψ β β γ= = = = = = = = =  

        (42.а) 

1 2 1 2 1 20, 0, 0, 0, 0, 0, 0, 0, 0r u u Wψ ψ β β γ= = = = = = = = = .    (42.b) 

On the free edge of the plate 2x b=  boundary conditions are: 
*

12 22 12 12 23 23 12 22 220, 0, 0, 0, 0, 0, 0, 0, 0.M M P P Q p σ σ σ= = = = = = = = =    (43.а) 

*
11 12 11 12 11 12 13 13 110, 0, 0, 0, 0, 0, 0, 0, 0.N N T T pσ σ τ σ= = = = = = = = = (43.b) 

On two free opposite edges of the plate 1 10,x x a= =  the following conditions should 
be fulfilled: 

*
11 12 11 12 13 13 11 12 110, 0, 0, 0, 0, 0, 0, 0, 0.M M P P Q p σ σ σ= = = = = = = = =    (44.а) 

*
11 12 11 12 11 12 13 13 110, 0, 0, 0, 0, 0, 0, 0, 0.N N T T pσ σ τ σ= = = = = = = = = (44.b) 

On two angular points of the plate, free from supports and external forces,  

1 20,x x b= =  and 1 2,x a x b= =  the following boundary conditions should be ful-
filled: 

*
11 12 11 12 13 13 11 12 110, 0, 0, 0, 0, 0, 0, 0, 0.M M P P Q p σ σ σ= = = = = = = = =     (45.а) 

*
11 12 11 12 11 12 13 13 110, 0, 0, 0, 0, 0, 0, 0, 0.N N T T pσ σ τ σ= = = = = = = = =  (45.b) 

*
12 22 12 12 23 23 12 22 220, 0, 0, 0, 0, 0, 0, 0, 0.M M P P Q p σ σ σ= = = = = = = = =     (45.c) 

*
11 12 11 12 11 12 13 13 110, 0, 0, 0, 0, 0, 0, 0, 0.N N T T pσ σ τ σ= = = = = = = = =  (45.d) 

At initial moment of time 0t =  initial conditions are taken as zero ones. 
The advantage of bimoment theory, when compared to existing ones, is its high ac-

curacy and good applicability to solving practical problems of evaluation of stresses and 
displacements in orthotropic plates. 

4. Solution of Tests Problem 

Assume that a plate is under the action of external uniformly distributed surface nor-
mal load 3q  on oz-axis in the form of Heaviside function applied to face surface of the 
plate z h= − : 

3
0

0, at 0;
, at 0,

t
q

q t
≤

= − >
 

where 0q  is a parameter of external force. Remaining components of external forces 
are zero. 
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While obtaining numerical results on displacements, a dimensionless function is in-
troduced: 

1

0

E ff
Hq

= . 

Dimensionless stresses and intensities of bimoments are introduced according to the 
following formulae: 

( )
0

, 1, 2; 1,2 .ij
ij i j

q
σ

σ = = =  

The problem is solved by the method of finite differences. A finite-difference ap-
proximation of displacements derivatives in spatial coordinates is given here. To ap-
proximate the internal points of displacements derivatives, the expressions of central 
difference schemes are used. To approximate the first derivatives one would use the 
following expressions with respect to the central points 

, 1, 1, , , 1 , 1

1 1 2 2

, .
2 2

k k k k k k
i j i j i j i j i j i jf f f f f f
x x x x

+ − + −∂ − ∂ −
= =

∂ ∆ ∂ ∆
 

The second displacement derivatives are approximated by the following expressions:  
2 2

, 1, , 1, , , 1 , , 1
2 2 2 2
1 1 2 2

2 2
,

k k k k k k k k
i j i j i j i j i j i j i j i jf f f f f f f f

x x x x
+ − + −∂ − + ∂ − +

= =
∂ ∆ ∂ ∆

. 

The second derivative with respect to time, using finite-difference equation, is 
represented in the form: 

2 1 1
, , , ,

2 2

2k k k k
i j i j i j i jf f f f

τ τ

+ −∂ − +
=

∂ ∆
 

here ct
H

τ = -is a dimensionless time, where 1Ec
ρ

= . 

5. Numeric Results 

Calculations are carried out for square plates with dimensions in plan 3a b H= = . 
Material of the plate is taken as isotropic with elasticity modulus 1 2 3 0E E E E= = = , 
shear modulus ( )12 13 23 0 2 1G G G E ν= = = + , Poisson ratio 21 23 31 0.3ν ν ν ν= = = =  
and as orthotropic material 15:1 with elasticity modulus 1 0 2 04.6 , 1.6E E E E= = , shear 
modulus 12 0 13 0 23 00.56 , 0.43 , 0.33G E G E G E= = = , here 4

0 10 MPaE = , Poisson ratio 

21 23 310.27, 0.3, 0.07ν ν ν= = = . 
Figures 1-3 show the diagrams of changes of dimensionless values of displacements 
( ) ( ) ( ), , 1,3k ku u k+ − =  of the points on face surface ,z h z h= + = − , obtained from the so-

lution of the first and second problems of bimoment theory of plates by formulae (40). 
The studies have indicated that the form of the bend of generalized displacements 

( ) ( )
1 1,u u+ −  is antisymmetric, and the form of the bend of generalized displacements 
( ) ( ) ( ), , 2,3i iu u i+ − =  is symmetric. Maximum dimensionless values of generalized dis-

placements ( ) ( )
1 1,u u+ −  occur on the limiting points of a free edge of the plate 2x b=   
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Figure 1. Diagram of changes in displacements ( )
1u + -(a), ( )

1u − -(b) of the points on face surface of the plate ,z h z h= + = −  vs 
time. 
 

 

Figure 2. Diagram of changes in displacements ( )
2u + -(a), ( )

2u − -(b) of the points on face surface of the plate ,z h z h= + = −  vs 
time. 
 

 

Figure 3. Diagrams of changes in displacements ( )
3u + -(a), ( )

3u − -(b) of the points on face surface of the plate ,z h z h= + = −  vs 
time. 



М. K. Usarov 
 

352 

and have the following values: ( )
1max 2.673u + = −  (Figure 1(а)) and ( )

1max 2.177u − =  (Figure 
1(b)). 

Maximum dimensionless values of displacements ( ) ( )
2 2,u u+ −  of the points of face 

surface ,z h z h= + = −  occur in the middle of a free edge of the plate 2x b= , they 
have the following values: ( )

2max 54.914u + = −  (Figure 2(а)) and ( )
2max 56.004u − =  (Figure 

2(b)). 
Maximum dimensionless values of displacements ( ) ( )

3 3,u u+ −  of the points on face surface 
,z h z h= + = −  occur in the middle of a free edge of the plate 2x b=  and have the fol-

lowing values: ( )
3max 262.936u + =  (Figure 3(а)) and ( )

3max 263.422u + =  (Figure 3(b)). 
Figure 4 and Figure 5 indicate the diagrams of changes in dimensionless values of 

normal stresses of the points on face surface of the plate ,z h z h= + = − , obtained by 
formulae (41) from the solutions of the first and second problems of bimoment theory 
of plates. Maximum dimensionless values occur in the middle of a fixed edge of the 
plate 2x b=  and have the following values ( )

11 24.968σ + = −  (Figure 4(а)),  
( )
11 25.570σ − =  (Figure 4(b)). 

 

 

Figure 4. Diagrams of changes in stresses ( )
11σ + -(a), ( )

11σ − -(b) of the points on face surface of the plate ,z h z h= + = −  vs time. 

 

 

Figure 5. Diagram of changes in stresses ( )
22σ + -(a), ( )

22σ − -(b) of the points on face surface of the plate ,z h z h= + = −  vs time. 
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Maximum dimensionless values of stresses ( ) ( )
22 22,σ σ+ −  of the points on face surface of 

the plate ,z h z h= + = −  occur in the middle of the fixed edge of the plate 2x b= . 
Maximum dimensionless values have the following values: ( )

22 83.371σ + = −  (Figure 
5(а)) and ( )

22 86.412σ − =  (Figure 5(b)). As could be seen, numerical values of dis-
placements and stresses 2 22,u σ  are substantially greater than numerical values of dis-
placements and stresses 1 11,u σ  in the same observed points on face surface of the 
plate. 

Figure 6 and Figure 7 indicate the diagrams of changes in dimensionless values of 
normal stresses on face surface of orthotropic plate ,z h z h= + = − , obtained from the 
solutions of the first and second problems of bimoment theory of plates by formulae 
(41). Maximum dimensionless values occur in the middle of a fixed edge of orthotropic 
plate 2x b=  and have the following values ( )

11 23.599σ + = −  (Figure 6(а)) and  
( )
11 24.278σ − =  (Figure 6(b)). Maximum dimensionless stresses ( ) ( )

22 22,σ σ+ −  of the points 
on face surface ,z h z h= + = −  of orthotropic plate occur in the middle of a fixed edge 
 

 

Figure 6. Diagrams of changes in stresses ( )
11σ + -(a), ( )

11σ − -(b) of the points on face surface of orthotropic plate ,z h z h= + = −  vs 
time. 
 

 

Figure 7. Diagrams of changes in stresses ( )
22σ + -(a), ( )

22σ − -(b) of the points on face surface of orthotropic plate ,z h z h= + = −  vs 
time. 
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of the plate 2x b= . Maximum dimensionless values are ( )
22 86.681σ + = −  (Figure 7(а)) 

and ( )
22 90.919σ − =  (Figure 7(b)). 

If to solve this problem by Timoshenko theory, the maximum stresses for isotropic 
plates equal to 11 2216.531, 55.183σ σ= − = − , аnd for orthotropic plate equal to  

11 2214.125, 52.485σ σ= − = − . As seen, numerical values of stresses, obtained by Timo-
shenko theory are considerably less compared to bimoment theory of plates. 

The laws of changes of generalized displacements and force factors in time for the 
first and second problems are identical to the laws of displacement changes in time, 
presented in Figures 1-7. Further consider only maximum values of generalized displace- 
ments, forces, moments, and bimoments obtained from the solution of the first and 
second problems. Tables 1-4 show maximum values of kinematic and force factors of 
the problems. 

Table 1 and Table 2 show dimensionless numerical results of kinematic functions 
calculation for isotropic and orthotropic plate, obtained from the solution of the second 
problem. 

Table 3 gives numerical results of calculation of dimensionless longitudinal forces  

22 12
22 12,N Nn n

H H
= =  and bimoments 23 3311 22 11 22

11 22
0 0 0 0 0 0

, , , , ,p p T Tt t
q q q q Hq Hq
σ σ

= = . As could  

be seen, the values of forces and bimoments of the plate 22 22 33 23, , ,N Т p p  are com-
mensurable, and the values of bimoments 11 22,σ σ  are substantially greater than the  
 
Table 1. The values of kinematic functions of the first problem. 

Material 1 1 0E u Hq  1 2 0E u Hq  1 2 0E Hqψ  1 2 0E Hqβ  1 0E r Hq  1 0E W Hq  
isotropic ±0.562 1.089 1.029 0.350 −0.253 −0.694 

orthotropic ±0.155 0.983 0.817 0.289 −0.221 −0.573 

 
Table 2. The values of kinematic functions of the second problem. 

Material 1 1 0E u Hq

 1 2 0E u Hq

 1 2 0E Hqψ  1 2 0E Hqβ  1 0E r Hq

 1 0E W Hq

 
isotropic ±2.368 −55.457 18.432 −11.070 263.081 263.173 

orthotropic ±2.391 −36.789 12.229 −7.344 179.450 179.557 

 
Table 3. The values of longitudinal forces and bimoments of the first problem. 

Material 11 0qσ  22 0qσ  22 0t q  22 0n q  33 0p q  23 0p q  
isotropic 0.765 3.081 0.266 −0.654 −0.300 −0.199 

orthotropic 0.998 4.254 0.330 −0.776 −0.280 −0.173 

 
Table 4. The values of moments, bimoments and shear forces of the second problem. 

Material 11 0qσ  22 0qσ  22 0m q  22 0p q  33 0p Hq

 23 0Q Hq  
isotropic −5.174 −84.492 −9.193 −5.954 −4.852 5.733 

orthotropic −23.679 −87.882 −9.019 −5.818 −3.431 5.752 
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values of remaining bimoments. 
Table 4 presents dimensionless numerical results of calculation of bending moments,  

forces and bimoments 22
11 22 22 2

2, , Mm
H

σ σ =  , longitudinal bending bimoments  

22
33 22 2

2, Pp p
H

=  and shear force 23 0Q Hq . Similarly, numerical values of forces and  

bimoments are commensurable, and the values of bimoments 11 22,σ σ   are many times 
greater than the values of remaining forces and bimoments. 

A step in calculation on dimensionless coordinates is taken as 1 1,
60 60
a bх х∆ = ∆ = .  

The stability of iteration in dimensionless time is provided by explicit scheme with 
0.02τ∆ =  step. 

According to the analysis of results shown in Tables 1-4, the following conclusions 
can be drawn: numerical values of kinematic functions and force factors (Table 1 and 
Table 3), obtained by solving the first problem, characterize the tension-compression 
in longitudinal direction, taking into account the transverse reduction of the plate; nu-
merical values of kinematic functions and force factors (Table 2 and Table 4), obtained 
by solving the second problem, characterize the lateral bending with consideration of 
transverse shear of the plate. Comparing the numerical results of the first and second 
problems, it could be noted that the numerical values of displacements and force fac-
tors in the second problem is much greater than the corresponding displacement values 
and force factors of the first problem. 

6. Conclusions 

Technique of constructing a bimoment theory of the plate, which takes into account the 
forces, moments and bimoments, developed by nonlinear law of displacements distri-
bution in cross-sections of the plate is briefly presented here. Exact expressions of in-
ternal forces, moments and bimoments are given, as well as the equations of motion 
and boundary conditions for orthotropic thick plate. 

Bimoment theory of the plate is applied to solving the dynamic problem of forced 
oscillations of orthotropic thick plate. An example of forced oscillations of cantilever 
plate under the influence of transverse dynamic loads in the form of the Heaviside 
function is considered. Based on the method of finite differences, the methods for cal-
culating the dynamic cantilever plate are developed. Numerical results of displace-
ments, forces, moments, bimoments and stresses for cantilever plate are obtained and 
followed by analysis. Based on the analysis of numerical results, a conclusion is drawn 
that Timoshenko theory is not acceptable for the calculation of displacements and 
stresses of the plate under dynamic effects. 
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