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Abstract 
This paper considers the scheduling problem observed in chip sorting operation of LED manufac-
turing, where each lot (job) with release time have four operations to be processed on a set of 
processing stages without pre-determined necessary route. Each stage has one and more identical 
sorting machines. The sorting machines scheduling problem can be treated as a four-stage multi-
processor open shop problem with dynamic job release, and the objective is minimizing the ma-
kespan in the paper. This problem is formulated into a mixed integer programming (MIP) model 
and empirically shows its computational intractability. Due to the computational intractability, a 
particle swarm optimization (PSO) algorithm is proposed. A series of computational experiments 
are conducted to evaluate the performance of the proposed PSO in comparison with exact solution 
on various small-size problem instances. The results show that the PSO algorithm could finds most 
optimal or better solutions in one second. 
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1. Introduction 
LED manufacturing consists of hundreds of process steps, generally, these processes can be divided into two 
main phases: front-end and back-end. In Front-end phase is to produce LED wafer where the process is similar 
to semiconductor wafer fabrication, and back-end includes wafer polishing, epiwafer scribing, chip probing, 
chip sorting and finally each chip then go to assemble into different products such as lamp, SMD or other dis-
play equipment according to its application. This paper focuses on chip sorting operation which is performed in 
sorting machines. The purpose of the sorting machine is to separate diodes form the epiwafer and transport those 
to the corresponding bin frames according to identified grades for the next process of package [1] [2]. The sort-
ing machine can classify at most 32 grades for each epiwafer, and a total of 128 grades is used to classify each 
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chip. Therefore, each epiwafer have four operations to be processed on sorting machines without pre-specified 
obligatory route. Additionally, in real world, there is at least one sorting machine in each operation (or stage) 
and all lot (job) do not arrive for be processing in a time. The investigated sorting machine scheduling problem 
in LED manufacturing can be treated as a type of multiprocessor open shop scheduling problem with job release 
time and the objective to improve production efficiency, that is, to minimize the maximum of the completion 
times of all jobs, i.e., the minimization of the makespan, which, to the best of our knowledge, has not been stu-
died by many researchers. The unique objective and constraints even increase complexity of the problem, which 
makes a complete mathematical model and an efficient solution necessary. 

The multiprocessor open shop scheduling problem (MOSP) consists of n jobs with s operations to be 
processed on s processing stages in any sequence. Each stage has a number of parallel identical machines. Each 
operation of job j requires jkp  for being processed on any of the parallel machines in one and only one stage k 
( 1, 2,..., )k s=  without preemption. The MOSP problem is extended version of open shop problem. Some spe-
cial cases of MOSP problem have been investigated by other researchers. For example, a special case of the 
MOSP is proportionate multiprocessor open shop scheduling problem (PMOSP) in which the processing time is 
not job-dependent, that is, each operation in k stage requires the same processing kp  time. The PMOSP is en-
countered in auto-repair and washing, maintenance workshops, final inspection operations and diagnostic test of 
hospital health care [3]. Matta [3] [4] is the first to address the PMOSP in the literature and she proposed two 
mixed integer programming models to solve the problem with the objective of minimizing the makespan. With 
the complexity of the problem, a genetic algorithm (GA) was also proposed to obtain efficient solutions in a 
reasonable time. Tamer [5] applied tabu search (TS) for the PMOSP with minimizing the makespan.  

Another special case of MOSP is the open shop scheduling problem (OSSP) which has been attracted by 
many researchers and most of the published work considers the OSSP with the objective of minimizing the ma-
kespan. Brucker et al. [6] developed a branch-and-bound algorithm using disjunctive graph model for the OSSP 
problem with makespan objective, and then Gueret et al. [7] addressed improving technique for the branch-and- 
bound algorithm proposed by Brucker et al and examined it on benchmark problems of Taillard [8]. Liaw [9] 
developed a hybrid genetic algorithm (HGA) where TS algorithm is used for local improvement to solve OSSP 
with the objective of minimizing the makespan.  

Unlike the open shop problem under certain objectives that has attracted considerable attention; MPOS prob-
lem has been very limited with only a few studies to date. Shiang et al. [1] is the first to model the LED sorting 
system as MPOS problem and applied Arena simulation model with five dispatching plans individually to solve 
it. Naderi et al. [10] constructed a mixed integer programming (MIP) model to solve MPOS problem with mi-
nimizing total completion time. They also proposed a memetic algorithm with simulated algorithm (SA) to ob-
tain efficient algorithm in a reasonable time. According to the survey work of Ellur and Ramasamy [11], a va-
riety of the open shop problem with different objective function has been considered in the literature, however, 
less interest to develop a particle swarm optimization (PSO) algorithm to solve MOSP problem is apparent in 
the literature when compared to other scheduling problems. Therefore, in this paper we formulate the LED sort-
ing machine scheduling problem as a mixed integer programming model to specify the problem and to obtain 
optimal solutions as benchmarks, furthermore, we propose a PSO algorithm. To examine the performance of the 
proposed PSO, the solutions obtained by the PSO is compared with ones obtained by MIP model. 

2. Mixed Integer Programming Model (MIP) 
The LED sorting machine scheduling problem in this paper can be denoted by 1 4 max4( ,..., ) | |jO Pm Pm r C  in 
the standard classification [12]. Each job should be processed only once by one machine in each stage without 
pre-determined route. After the four stages being finished for job j, a completion time of job j is recorded as jC . 
This paper attempts to find an optimal schedule to minimize the completion time when all jobs are finished, i.e., 

max 1( )n
j jC Max C== . To obtain an optimal solution constructing a MIP model is traditional and intuitional me-

thodology, and it is also nature way to specify explicitly and precisely the characteristics of problem. 

2.1. Notation 
n: number of jobs 
s: number of stages 

km : Number of machines at each stage k, 1, 2,...,k s=  
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jr : release time of job j, 1, 2,...,j n=  
jkp : processing time of job j at stage k 
jklX : 1 if job j is processed at stage k before than stage l and 0 otherwise, 1, 2,...,j n= ; 1, 2,...,k s= ;  

1, 2,...,l s=  
ijkgY : 1 if job i is processed before job j for machine g at stage k and 0 otherwise, 1, 2,...,i n= ; 1, 2,...,j n= ; 
1, 2,...,k s= ; 1, 2,..., kg m=  
jkgZ : 1 if job j is processed on machine g at stage k and 0 otherwise, 1, 2,...,j n= ; 1, 2,...,k s= ; 
1, 2,..., kg m=  
jC : the completion time of job j 
jkC : the completion time of job j at stage k 
maxC : makespan 

2.2. Model 
Min  

maxC                                           (1) 

Subject to 

1 1

( 1)
2

s s

jkl
k l

s sX
= =

× −
=∑∑  1, 2, ,j n=                               (2) 

1
1

km

jkg
g

Z
=

=∑  1, 2, ,j n=  ; 1, 2, ,k s=                              (3) 

jk j jkC r p> +  1, 2, ,j n=  ; 1, 2, ,k s=                             (4) 

j jkC C≥  1, 2, ,j n=  ; 1, 2, ,k s=                               (5) 

1ijkg jikgY Y+ ≤  1, 2, ,i n=  ; 1, 2, ,j n=  ; 1, 2, ,k s=  ; 1, 2, , kg m=  ; i j<            (6) 

(1 )jl jk jl jklC C p M X≥ + − −  1, 2, ,j n=  ; 1, 2, ,k s=  ; 1, 2, ,l s=  ; k l<            (7) 

( ) 2( ) 0ikg jkg ijkg jikgZ Z Y Y+ − + ≥  , 1, 2, ,i j n=  ; 1, 2, ,k s=  ; 1, 2, , kg m=  ; i j<           (8) 

( ) ( ) 1ikg jkg ijkg jikgZ Z Y Y+ − + ≤  , 1, 2, ,i j n=  ; 1, 2, ,k s=  ; 1, 2, , kg m=  ; i j<            (9) 

(1 )jk ik jk ijkgC C p M Y≥ + − −  , 1, 2, ,i j n=  ; 1, 2, ,k s=  ; 1, 2, , kg m=  ; i j<           (10) 

max jC C≥  1, 2, ,j n=                                   (11) 

The objective (1) is to minimize the makespan. Constraints (2) specify that the precedence relationship be-
tween stages for processing job j. Constraints (3) ensure that each job scheduled only once to be processed by 
one machine at each stage. Constraints (4) are used to calculate the completion time for each j at stage k. Con-
straints (5) define that the completion time of job j. Constraints (6) specify that the precedence relationship be-
tween two stages (k and l) for processing job j and ensure that stage k is either preceded by stage l or succeed by 
stage l for processing job j. Constraints (7) specify that two jobs must have precedence relationship if the two 
jobs (i and j) are processed on the same machine for each stage, and ensure that job i must be either preceded by 
job j or succeeded by job j if the two jobs are processed on the same machine for each stage. Constraints (8) and 
(9) define the relationship of two jobs (i and j) being processing on the same machine at stage k and ensure that 
the completion time of job j has to be greater than or equal to the completion time of job i. Constraints (10) de-
fine that the completion times of two jobs (i and j) which are processed on the same machine at stage k. Con-
straints (11) specify that the makesapn.  

3. Particle Swarm Optimization (PSO) 
As a majority of combinational optimization problem like scheduling problems is difficult to obtain optimal so-
lutions, some meta-heuristic algorithms such as simulated algorithm (SA), genetic algorithm (GA) and particle 
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swarm optimization (PSO) are proposed for those tough problems. PSO was developed by Kennedy and Eber-
hart [13] for optimization of continuous non-linear functions, and then extended to solve discrete or combina-
tional optimization problems including scheduling problems. Inspired by the motion of a flock of birds search-
ing for food, the search process of PSO is a constructive cooperation between particles as opposed to survival of 
the fittest approach used in GAs.   

However, similar to other evolutionary algorithms, PSO algorithm also starts with a population of initial solu-
tions called particles. Each particle is located at position with its velocity. In the PSO, each particle is measured 
by the fitness value that defines the quality of solution. Furthermore, the position of each particle is adjusted to 
move toward a better feasible solution for the problem based on its own best movement experience and that of 
all other members until a stopping criterion is satisfied. The proposed PSO for the 1 4 max4( ,..., ) | |jO Pm Pm r C  
problem is addressed as follows. 

Step 1: Generate initial particles randomly 
Suppose there are n jobs to be scheduled through four stages without pre-deterministic sequence and each di-

mension is represented as a job in π -Dimensional space where π  is equal to 4n× . Consequently, each par-
ticle i at iteration t is defined as  

( )1 2, ,...,t t t t
i i i iX x x x π=  

where t
ijx  represents the continuous position value of the ith particle with respect to the jth operation in tth ite-

ration. In this representation, the rank order value is used to form an operation permutation. In this paper, the 
fifty initial particles are generated. 

Step 2: Give an initial position and velocity  
In this PSO, the initial position and velocity for each particle is randomly generated according to the two equ-

ations  
0

min max min( )ijx x x x rand= + − × , and 0
min max min( )ijv v v v rand= + − ×  

where max 5.0x = , min 5.0x = − , max 5.0v = , min 5.0v = − , and denotes a random number uniformly distributed 
in [0,1]. 

Step 3: Fitness of particles 
Fitness value plays an important role to adjust the movement for each particle from the current position value 

to the next one at iteration t. In this study, the fitness value of a particle is defined by the makespan. For each 
given particle, we use a decode procedure to construct a complete schedule according to each particle from step 
1 and obtain the fitness, i.e. to obtain makespan for each particle. The decode procedure includes three steps as 
follows: 

Step 3.1 Generate a string with 4n×  number between [0,1] randomly 
Step 3.2 Apply rank order value (ROV) method to produce a list 
Step 3.3 Use the following equations to generate an operation permutation for the list.  

( ) 1int 1
_

ilist valuestage
job number

 −
= + 

 
, 

( ) 1mod 1
_

ilist valuejob
job number

 −
= + 

 
, 1,..., 4i n= ×  

To explain the decode procedure to obtain makespan for each particle; an example is given as shown in Table 
1 and Table 2. If (0.859, 0.600, 0.022, 0.393, 0.800, 0.326, 0.963, 0.984, 0.751, 0.149, 0.403, 0.065, 0.842, 
0.097, 0.429, 0.138, 0.439, 0.602, 0.970, 0.339) of a string is generated randomly, and then (3, 12, 14, 16, 10, 6, 

 
Table 1. The example with five jobs with four stages. 

Job j Release time ( jr ) 
Processing time ( jkp ) 

1s  2s  3s  4s  

1 4 6 4 8 2 

2 2 7 3 9 3 

3 0 6 2 7 5 

4 3 8 4 9 2 

5 5 9 2 8 6 
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Table 2. The number of machine in each stage. 

 
Stages 

1s  2s  3s  4s  

Number of machines 2 1 2 1 

 
20, 4, 11, 15, 17, 2, 18, 9, 5, 13, 1, 7, 19, 8) of an list is obtained by rank order value (ROV). Finally, apply two 
above equations to generate a corresponding operation permutation, for example, the first value is equal to 3 in 
the list, we can obtain operation 31O  which indicates job 3 is assigned to stage 1. The complete operation per-
mutation is { 31O , 23O 43O 14O 52O 12O 54O 41O 13O 53O 24O 21O 34O 42O 51O 33O 11O 22O 44O 32O }, and based on 
the operation permutation and non-delay concept, the 30 of makespan can be obtained. 

Step 4: Particle movement 
In the PSO, each particle is designed to move toward its own best position (pbest), and the best position of the 

whole swarm (gbest) by velocity updating mechanism. Several velocity equations have been developed in the  
literature. This paper uses the standard formula ( ) ( )1 1 1

1 1 2 2
t t t t
ij ij ij ij ij ijv wv c r pbest x c r gbest x− − −= + − + −  where w is  

the inertia weight used to control exploration and exploitation. A higher value of w prevents particles from get-
ting trapped into local optimal. Meanwhile, a smaller value of w forces them to exploit under the same search 
area. Constants 1c  and 2c  are respectively called cognitive and social parameters, which determine whether 
particles prefer to move closer to the pbest or gbest positions, while 1r  and 2r  are uniform random numbers  
between 0 and 1. Once the velocity t

ijv  of each particle is updated for iteration t, each particle’s new position is 

generated by 1t t t
ij ij ijx x v−= + , where 1t

ijx −  is the position of the particle i at the previous iteration. In this paper, 

1c  and 2c  are set to 2, and w is equal to 1. 
Step 5: Stopping criterion 
For a PSO, this paper use time limit to terminate the PSO procedure. When execution time of the proposed 

PSO is greater than or equal to 1 second, terminate the PSO and print out the final best schedule, otherwise go to 
Step 3. 

4. Result 
For testing performance of the proposed PSO, random test problem instance are generated. This test problem 
can be formally as follows: a set of n (n = 5, 10, 15, 20) jobs to be processed in a 4 stage multiprocessor open 
shop where the number of machines in each stage is generated are generated from a uniform distribution be-
tween 1 and 3. The processing time ( jkp ) are generated from the uniform distribution in the ranges [1,20], and 
the release time ( jr ) from uniform distribution between 0 and 50. For each problem, 20 instances are generated, 
totally 80 instances are generated. IBM ILOG CPLEX Optimization Studio Version 12.5 is used to test the ef-
fectiveness of proposed MIP model, and PSO is coded in C++ gcc version 4.8.4, all tests are conducted on a 
LINUX (Ubuntu 14.04LTS) with Intel Xeon E5-1630 3.7 GHz (12GB RAM). 

Five independent replications of a PSO run for each test instance, and the best solution is obtained as the re-
sulting performance measure values. For MIP model, all optimal solutions can be obtained within 3600 CPU 
time (in seconds) for the problems with five jobs, while for other problems the solutions are not sure for optimal 
solved within 3600 CPU time. Table 3 provides results for MIP and PSO. The columns under “Av. Cmax” give 
the average Cmax value over 20 instances. The other columns under “#best” denote the number of time each me-
thod finds the optimal or the best solutions. From Table 3, it is obvious that PSO and MIP are equivalent when 
comparing the average Cmax values, however, PSO finds slightly better solutions for larger problems (n = 20), 
furthermore, the average CPU time consumed by MIP significantly increases incredibly as the problem size in-
creases, it is expected that the solutions of the problems that are larger than 20 jobs could not be obtained in 
3600 CPU times (in seconds). 

5. Conclusion 
The main contributions of this paper is the formulation of the LED sorting operations into a 4-stage multipro- 
cessor open shop problems with job release time and proposes the PSO algorithm. Based on the results of an 
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Table 3. The results obtained by MIP and PSO. 

n 
MIP PSO 

Av. Cmax #best Av. Time Av. Cmax #best 

5 88.90 20 0.73 88.90 20 

10 112.95 20 2247.55 112.95 20 

15 148.10 20 3092.05 148.10 20 

20 185.10 15 3528.40 184.75 20 

 
experiment, the proposed PSO has successfully obtain the optimal or best solutions for problems with up to 20 
jobs in 1 second. The results demonstrate that the proposed PSO is outstanding, and additionally the PSO algo-
rithm should be very promising for actual problems in the real world environment. To further examine the per-
formance of the PSO, a valid and effective lower bound for the problem is needed for future research, addition-
ally; developing different meta-heuristic algorithms is also an attractive research direction. 
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