Importance of Ankle/Brachial Pressure Index in Saudi Patients with Coronary Artery Disease

Abdullah M. Alshehri¹, Mohamed Elsharawy²*
¹Departments of Internal Medicine (Cardiology Division), University of Dammam, Dammam, KSA
²General Surgery (Vascular Division), University of Dammam, Dammam, KSA
Email: elsharawya@yahoo.co.uk

Received May 10, 2013; revised June 10, 2013; accepted June 18, 2013

ABSTRACT

Background: The ankle/brachial pressure index (ABPI) has been shown to be a good marker of systemic atherosclerosis and a powerful predictor of cardiovascular morbidity and mortality. The objective of this study was to determine the importance of measuring ABPI in Saudi patients with coronary artery disease (CAD).

METHODS: This is a hospital based cross-sectional study which was conducted on all Saudi patients who underwent coronary angiography without symptoms of peripheral arterial disease at King Fahd Hospital of the University, Al-Khobar Saudi Arabia. All patients underwent measurement of their ABPI. The study was carried out between December 2010 and November 2011.

RESULTS: During the study period, two hundred and five patients were included. Fifty-nine (28.8%) patients were Group II (ABPI ≤ 0.90) and the rest was Group I (ABPI > 0.90). Significant correlation was also found between low ABPI and the extent of CAD (mean number of arteries involved in Group I was 1.78 ± 0.83 compared to 2.10 ± 0.736 in Group II p = 0.011). Nevertheless, the correlation between low ABPI, and the severity of presentation of CAD were also significant (Incidence of myocardial infarction with congestive heart failure was 0.5% in Group I compared to 12% in Group II p < 0.001).

CONCLUSION: The ABPI is an important prognostic indicator for Saudi patients with CAD.

Keywords: Coronary Artery Disease; Ankle Brachial Pressure Index; Atherosclerosis

1. Introduction

Atherosclerotic diseases are the leading causes of death throughout the world and are estimated to account for 24% of all mortality worldwide in the year 2000 [1,2]. Atherosclerosis is a systemic disease and can affect different territories at the same time [3-6]. There was more than one arterial territory affected at the same time in 12% [1] - 40% [7]. Several epidemiological studies have shown positive association between coronary artery disease (CAD) and peripheral arterial disease (PAD) [4,8,9].

The ankle/brachial pressure index (ABPI), used to diagnose PAD, has been shown to be a good marker of systemic atherosclerosis and a powerful predictor of cardiovascular morbidity and mortality [10]. The objective of this study was to determine the importance of measuring ABPI in Saudi patients with CAD.

2. Patients and Methods

This is a hospital based cross-sectional study on consecutive series of patients underwent coronary angiography without symptoms of PAD at King Fahd Hospital of the University, Al-Khobar Saudi Arabia. “ABPI” has been measured for all patients. The study was carried out between December 2010 and November 2011.

Risk factors for atherosclerosis were stratified for all patients including: diabetes mellitus, smoking, dyslipidemia, hypertension and obesity measured by body mass index (BMI). Information on age and gender was also recorded.

Hypertension was defined as mean systolic blood pressure of ≥140 mmHg, mean diastolic blood pressure of ≥90 mmHg, physician diagnosis, or medication use. Average blood pressure was composed of up to four readings on two separate occasions. Dyslipidemia was defined as triglyceride level ≥150 mg/dl and/or HDL level ≤40 mg/dl in males or ≤50 mg/dl in females and/or LDL-C level ≥160 mg/dl and/or physician diagnosis or medication use. Diabetes was defined as self-reported physician diagnosis, use of antihyperglycemic agents, fasting glucose of ≥126 mg/dl in 3 separate occasions.
hours post 75 gm oral glucose tolerance test of ≥200 mg/dl in 3 separate occasions, random blood glucose ≥200 mg/dl in the presence of classical symptoms of hyperglycemia or hemoglobine A1C >6.5%.

2.1. Coronary Angiography

All patients underwent selective coronary angiography using the standard technique. Lesion severity assessed visually if more than 70% or less than 40% but for lesions between 40% - 70% Computer-Assisted Quantitative Angiography (QCA) used to calculate the severity of the lesion. Lesion considered being significant if the luminal stenosis exceeds 50% in any epicardial vessel. The extent of CAD was reported as one, two or three vessel disease and if there is left main artery involvement. The presentation of CAD was graded as: stable angina, Non ST elevation acute coronary syndrome (NSTEMI), ST-elevation acute coronary syndrome (STEMI) and/or congestive heart failure.

A comprehensive medical history was obtained from all patients, full physical examination was performed with special attention to palpating pulses in both lower extremities. Any patient had history of claudication, rest pain, ulcer, ischemic ulcer or gangrene was excluded from the study. Measuring of ABPI was obtained from each extremity using a Multi Doppler II Advanced Bi-directional Doppler (Huntleigh, UK). The higher measured values of the arm and ankle pressures (dorsalis pedis or posterior tibial) were used to calculate ABPI. Patients were considered to have PAD if the ABPI was <0.9. The blood pressure was measured by one trained nurse and the ABPI by consultant or senior registrar in vascular surgery.

Patients were divided into 2 groups based on the ABPI results. Those with ABI ≥0.9 were assigned as Group I and those <0.9 as Group II.

2.2. Statistical Analysis

Comparison between prevalence of risk factors in both Groups I & II was done. Data of the 2 groups were summarized either as the mean ± standard deviation (SD) or as percentage of the risk factors. Differences between the groups were tested for statistical significance using t-test, chi-square test or Fisher’s exact test as appropriate. Significance was set at p < 0.05 and 0.05 - 0.1 was considered as statistical trend for all comparisons. Statistical analyses were performed using SPSS 15 software (Chicago, USA).

3. Results

During the study period, two hundred and five patients were included. The mean age (±SD) was 54.7 ± 9.73 years (range 29 - 81) with high incidence of dyslipidemia (86%) Table 1. One hundred forty six (71.2%) of our patients were classified as group I and Fifty nine (28.8%) patients as Group II. Group II was significantly older than Group I (53.27 ± 9.06 in Group I compared to 58.25 ± 10.52 in Group II p = 0.001). There was also significant difference between both groups in the incidence of diabetes mellitus (74 (51%) in Group I compared to 42 (71%) in Group II p = 0.012) and hypertension (72 (49%) in Group I compared to 44 (75%) in Group II p = 0.001). There were no significant differences between both groups as regards gender distribution, dyslipidemia, smoking, family history and BMI (Table 2).

Significant correlation was also found between low ABPI and the extent of CAD (mean number of arteries involved in Group I was 1.78 ± 0.83 compared to 2.10 ± 0.736 in Group II p = 0.011 Table 3). Nevertheless, the correlation between low ABPI, and the severity of presentation of CAD was also significant (Incidence of Myocardial infarction with congestive heart failure was 0.5% in group I compared to 12% in Group II p < 0.001) (Table 4).

Discussion

Peripheral arterial disease is a common manifestation of atherosclerosis [11]. It is associated with increased risk for cardiovascular events due to coexistence of CAD and cerebrovascular disease, such events being more frequent

<table>
<thead>
<tr>
<th>Table 1. Patients characteristic.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>Age (mean ± SD)</td>
</tr>
<tr>
<td>Sex: Male/Female</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Smoking</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Dyslipidemia</td>
</tr>
<tr>
<td>Family history of cardiovascular disease</td>
</tr>
<tr>
<td>BMI (mean ± SD)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Risk factors for atherosclerosis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I (No. 146)</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Age (mean ± SD)</td>
</tr>
<tr>
<td>Sex (male/female)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Dyslipidemia</td>
</tr>
<tr>
<td>Smoking</td>
</tr>
<tr>
<td>Family history</td>
</tr>
<tr>
<td>BMI (mean ± SD)</td>
</tr>
</tbody>
</table>
Our prospective study demonstrated that among patients with documented CAD; 28% have asymptomatic PAD which is higher than that have been shown in other western studies (21% - 22%) [24,31]. This might indicate the higher prevalence of asymptomatic PAD in Saudi patients compared to other ethnic groups. In agreement with the Peripheral Arterial Disease in Interventional Patients Study (PIPS) [32] a significant correlation was found between low ABPI and the extent of CAD (mean number of arteries involved). Furthermore, involvement of left main coronary was shown to be significantly higher in patients with PAD (present study and others [33]).

The presence of asymptomatic PAD confers on average a 30% risk of myocardial infarction, stroke, and vascular death over 5 years [34]. In our study, Patients with CAD and low ABPI had more incidence of myocardial infarction with congestive heart failure compared to those with ABPI >1 (12% 0.5% p < 0.001). This finding is very important since presence of PAD might be used in the risk stratification to indicate higher risk CAD patients who will need more aggressive intervention including percutaneous revascularization and coronary artery bypass surgery. In addition, early detection of PAD is fundamental to implement early risk Factor modification and disease management.

4. Conclusion

Our prospective study showed that PAD is highly prevalent among patients with angiographically documented CAD. Use of ABPI is a very valuable and easy diagnostic method to screen such patients for concomitant PAD. Low ABPI is associated with more diffuse CAD and linked to worse clinical outcome with higher incidence of myocardial infarction and congestive heart failure.

REFERENCES


ology, Vol. 15, Suppl. B, 2003, pp. 8B-9B.

http://dx.doi.org/10.1177/0003319707302494


http://dx.doi.org/10.1191/1358863x03vm506ra


http://dx.doi.org/10.1016/j.jvs.2009.04.055


http://dx.doi.org/10.1001/jama.286.11.1317

http://dx.doi.org/10.1191/1358863x03vm506ra

http://dx.doi.org/10.1016/j.jvs.2009.04.055

http://dx.doi.org/10.1111/j.1742-1241.2008.01953.x


