Electronic and Optical Properties of Rare Earth Oxides: \textit{Ab Initio} Calculation

Sezen Horoz1, Sevket Simsek2, Selami Palaz3, Amirullah M. Mamedov4,5*

1Institute of Natural Sciences, Cukurova University, Adana, Turkey
2Department of Material Science and Engineering, Hakkari University, Hakkari, Turkey
3Department of Physics, Faculty of Science and Letters, Harran University, Sanliurfa, Turkey
4Nanotechnology Research Center (NANOTAM), Bilkent University, Ankara, Turkey
5International Scientific Center, Baku State University, Baku, Azerbaijan

Email: *mamedov@bilkent.edu.tr

Received 17 April 2015; accepted 25 May 2015; published 29 May 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).

\url{http://creativecommons.org/licenses/by/4.0/}

Abstract

In this work, we have investigated the electronic and optical properties of the technologically important rare earth oxide compounds—\(X_2O_3\) (\(X: \text{Gd, Tb}\)) using the density functional theory within the GGA. The band structure of \(X_2O_3\) have been calculated along high symmetry directions in the first brillouin zone. The real and imaginary parts of dielectric functions and the other optical responses such as energy-loss function, the effective number of valence electrons and the effective optical dielectric constants of the rare earth sesquioxides (\(\text{Gd}_2O_3\) and \(\text{Tb}_2O_3\)) were calculated.

Keywords

Rare Earth Oxides, \textit{Ab Initio} Calculation, Electronic Structure, Optical Properties

1. Introduction

\(X_2O_3\) (\(X: \text{Gd, Tb}\)) are the interesting materials from both fundamental and industrial perspectives and have a wide range of applications. They are thermodynamically stable, making them useful for corrosion resistive coating [1]-[5]. Additionally, their high refractive indices lead to applications in optics, such as antireflection coatings, switches, filters and modulators [1] [4]. The most recent interest of them is due to their high dielectric constants and electrical stability, making them good candidates for a new class of gate oxides in metal-oxide semiconductor field-effect transistors [1]. In addition, many properties of rare-earth sesquioxides are determined by their semicore \(f\)-levels. While being mainly localized on the rare-earth atoms and usually not participating in

*Corresponding author.

\url{http://dx.doi.org/10.4236/wjcmp.2015.52011}
bonding and electronic conduction, f-shell electrons are available for optical transition and can establish strong magnetic order [1]. So far as we know, no ab initio general potential calculation of the optical properties of the rare-earth sesquioxides has been reported. The main purpose of this work is to provide some additional information to the existing features of Gd$_2$O$_3$ and Tb$_2$O$_3$ by using density functional theory. Therefore, in this work, we have investigated the electronic and optical properties of Gd$_2$O$_3$ and Tb$_2$O$_3$ compounds.

2. Method of Calculation

In the present paper, all calculations have been carried out using the ab-initio total-energy and molecular-dynamics program VASP (Vienna ab-initio simulation program) developed at the Faculty of Physics of the University of Vienna [6]-[9] within the density functional theory (DFT) [10]. The exchange-correlation energy function is treated within the GGA (generalized gradient approximation) by the density functional of Perdew et al. [11]. We get a good convergence using a $5 \times 5 \times 5$ Monkhorst-Pack [12] mesh grid for the total-energy calculation with a cutoff energy of 510 eV for both compounds. The electronic iterations convergence is 1.0×10^{-6} eV using the Normal (blocked Davidson) algorithm and reciprocal space projection operators. These values were found to be sufficient for studying the electronic and optical properties of X$_2$O$_3$ crystals.

3. Results and Discussion

3.1. Structural and Electronic Properties

In the first step of our calculations, we have carried out the equilibrium lattice constants of Gd$_2$O$_3$ and Tb$_2$O$_3$ by minimizing the ratio of the total energy of the crystal to its volume using the experimental data [13] [15]. We have compared the present results for lattice parameters of X$_2$O$_3$ with previous experimental values [13]-[29] and are given in Table 1. These results are within the accuracy range of calculations based on density functional theory.

<table>
<thead>
<tr>
<th>Material</th>
<th>Reference</th>
<th>a = b = c (Å)</th>
<th>E_g (eV)</th>
<th>Space Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd$_2$O$_3$</td>
<td>Present (GGA-VASP)</td>
<td>10.817</td>
<td>3.86</td>
<td>$Ia3$ (No:206)</td>
</tr>
<tr>
<td></td>
<td>Ref. [14]</td>
<td>10.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [15]</td>
<td>10.816</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [16]</td>
<td>10.817</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [17]</td>
<td>10.812</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [18]</td>
<td>10.808</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [19]</td>
<td>10.819</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [20]</td>
<td>10.817</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [21]</td>
<td>10.817</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb$_2$O$_3$</td>
<td>Present (GGA-VASP)</td>
<td>10.758</td>
<td>3.82</td>
<td>$Ia3$ (No:206)</td>
</tr>
<tr>
<td></td>
<td>Ref. [15]</td>
<td>10.758</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [22]</td>
<td>10.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [23]</td>
<td>10.745</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [24]</td>
<td>10.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [25]</td>
<td>10.735</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [26]</td>
<td>10.728</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [27]</td>
<td>10.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ref. [28]</td>
<td>10.728</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The investigation of electronic band structure for understanding the electronic and optical properties of X_2O_3 is very useful. The band structures of the X_2O_3 were calculated using GGA. The electronic band structures were calculated along the special lines connecting the high-symmetry points Γ, H, N, and P for X_2O_3 in the k-space. The electronic band structure of Gd$_2$O$_3$, and Tb$_2$O$_3$ along the high symmetry directions have been calculated by using the equilibrium lattice constants and are given in Figure 1 and Figure 2.

As can be seen in Figure 1, the Gd$_2$O$_3$ compound has a direct band gap semiconductor with the value 3.86 eV (in Γ-high symmetry point). The band gap with the value 3.82 eV of Tb$_2$O$_3$ compound has the same character of that of Gd$_2$O$_3$ (Figure 2). The band gap values obtained for X_2O_3 are good agreement with the earlier theoretical results, but is less than the estimated experimental results [1] [3] [5]. In these figures (Figure 1 and Figure 2), the lowest valance bands that occur between 0 and -3.5 eV (72 energy states) are dominated by O 2p states while the valence bands that occur between -14 eV and -16.5 eV (24 energy states) are dominated by Gd 6s and Tb 6s states. The lowest occupied valance bands are essentially dominated by O 2s (-19 eV and -21.5 eV and include 48 energy states).

3.2. Optical Properties

It is well known that the effect of the electric field vector, $E(\omega)$, of the incoming light is to polarize the material. At the level of a linear response, this polarization can be calculated using the following relation [29]:

Figure 1. The calculated electronic band structure and Density of State for Gd$_2$O$_3$.

Figure 2. The calculated electronic band structure Density of State for Tb$_2$O$_3$.

\begin{align}
\mathbf{P}''(\omega) &= \chi_{ij}^{(1)}(-\omega,\omega)\mathbf{E}'(\omega) \\
\end{align}

where \(\chi_{ij}^{(1)}\) is the linear optical susceptibility tensor and it is given by [30]

\begin{align}
\chi_{ij}^{(1)}(-\omega,\omega) &= \frac{e^2}{\hbar \Omega} \sum_{n,m,k} f_{nm}(k) r_{nm}^i(k) r_{nm}^j(k) \frac{\omega_{nm}(k) - \omega}{4 \pi} \\
\end{align}

where \(n,m\) denote energy bands, \(f_{nm}(k) \equiv f_n(k) - f_m(k)\) is the Fermi occupation factor, \(\Omega\) is the normalization volume. \(\omega_{nm}(k) \equiv \omega_n(k) - \omega(k)\) are the frequency differences, \(\hbar \omega_n(k)\) is the energy of band \(n\) at wave vector \(k\). The \(r_{nm}\) are the matrix elements of the position operator [30].

As can be seen in Equation (2), the dielectric function \(\varepsilon_{ij}(\omega) = 1 + 4\pi \chi_{ij}^{(1)}(-\omega,\omega)\) and the imaginary part of \(\varepsilon_{ij}(\omega), \varepsilon_{ij}''(\omega)\) is given by

\begin{align}
\varepsilon_{ij}''(\omega) &= \frac{e^2}{\hbar \pi} \sum_{n,m} \int dk f_{nm}(k) \frac{v_{nm}(k)v_{nm}^j(k)}{\omega_{nm}} \delta(\omega - \omega_{nm}(k)) \\
\end{align}

The real part of \(\varepsilon_{ij}(\omega), \varepsilon_{ij}''(\omega)\), can be obtained by using the Kramers-Kronig transformation [30]. Because the Kohn-Sham equations determine the ground state properties, the unoccupied conduction bands as calculated, have no physical significance.

The known sum rules [30] can be used to determine some quantitative parameters, particularly the effective number of the valence electrons per unit cell \(N_{\text{eff}}\), as well as the effective optical dielectric constant \(\varepsilon_{\text{eff}}\), which make a contribution to the optical constants of a crystal at the energy \(E_0\). One can obtain an estimate of the distribution of oscillator strengths for both intraband and interband transitions by computing the \(N_{\text{eff}}(E_0)\) defined according to

\begin{align}
N_{\text{eff}}(E) &= \frac{2m e^2}{\hbar^2 e^2 N_a} \int_0^E \varepsilon_2(E) E dE \\
\end{align}

where \(N_a\) is the density of atoms in a crystal, \(e\) and \(m\) are the charge and mass of the electron, respectively, and \(N_{\text{eff}}(E_0)\) is the effective number of electrons contributing to optical transitions below an energy of \(E_0\).

Further information on the role of the core and semi-core bands may be obtained by computing the contribution that the various bands make to the static dielectric constant, \(\varepsilon_0\). According to the Kramers-Kronig relations, one has

\begin{align}
\varepsilon_0(E) - 1 &= \frac{2}{\pi} \int_0^E \varepsilon_2(E) E^{-1} dE \\
\end{align}

One can therefore define an “effective” dielectric constant, that represents a different mean of the interband transitions from that represented by the sum rule, Equation (5), according to the relation

\begin{align}
\varepsilon_{\text{eff}}(E) - 1 &= \frac{2}{\pi} \int_0^E \varepsilon_2(E) E^{-1} dE \\
\end{align}

The physical meaning of \(\varepsilon_{\text{eff}}\) is quite clear: \(\varepsilon_{\text{eff}}\) is the effective optical dielectric constant governed by the interband transitions in the energy range from zero to \(E_0\), i.e. by the polarization of the electron shells.

We first calculated the real and imaginary parts of the linear dielectric function of the Gd_2O_3 and Tb_2O_3 compounds (Figure 3 and Figure 4). In order to calculate the optical response by using the calculated band structure, we have chosen a photon energy range of 0 - 65 eV and have seen that a 0 - 40 eV photon energy range is sufficient for most optical functions. We first calculated the real and imaginary parts of linear dielectric function of the Gd_2O_3 and Tb_2O_3 compounds (Figure 4 and Figure 5). All the Gd_2O_3 and Tb_2O_3 compounds
studied so far have ε_1 are equal to zero in the energy region between 9 eV and 40 eV for decreasing ($d\varepsilon_1/dE < 0$) and increasing of ($d\varepsilon_1/dE > 0$) ε_1 (see, Table 2). Also, values of ε_1 versus photon energy have main peaks in the energy region 4 eV and 30 eV. Some of the principal features and singularities of the ε_2 for both investigated compounds are shown in Table 3.

The peaks of the correspond to the optical transitions from the valence band to the conduction band and are in agreement with the previous results. The maximum peak values of ε_2 for Gd$_2$O$_3$ and Tb$_2$O$_3$ are around 9.31 eV and 9.49 eV, respectively.

The corresponding energy-loss functions, $L(\omega)$, were calculated using Equation (7) and are also presented in Figure 3 and Figure 4. The $L(\omega)$ describes the energy loss of fast electrons traversing the material. The sharp maxima in the energy loss function are associated with the existence of plasma oscillations [30]. The curves of L have a maximum near 35 eV (Gd$_2$O$_3$) and 38 eV (Tb$_2$O$_3$).

$$L(\omega) = \frac{\varepsilon_2(\omega)}{\varepsilon_1(\omega) + \varepsilon_2(\omega)} \quad (7)$$

The calculated effective number of valence electrons N_{eff} is given in Figure 5(a). The effective number of valence electron per unit cell, N_{eff} up to 5 eV is zero (below the band gap) then reaches saturation values at
Figure 5. The calculated (a) effective number of electrons participating in the interband transitions and (b) effective optical dielectric constant.

Table 2. The energy values at the zero point of real part of dielectric function for Gd$_2$O$_3$ and Tb$_2$O$_3$.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd$_2$O$_3$</td>
<td>9.676</td>
<td>13.446</td>
<td>26.574</td>
<td>35.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb$_2$O$_3$</td>
<td>10.039</td>
<td>13.628</td>
<td>27.830</td>
<td>31.419</td>
<td>32.494</td>
<td>36.628</td>
</tr>
</tbody>
</table>

Table 3. The maximum peak values of the imaginary part of the dielectric function for Gd$_2$O$_3$ and Tb$_2$O$_3$.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd$_2$O$_3$</td>
<td>6.9803</td>
<td>9.3121</td>
<td>26.574</td>
<td></td>
</tr>
<tr>
<td>Tb$_2$O$_3$</td>
<td>7.328</td>
<td>9.494</td>
<td>27.648</td>
<td>32.676</td>
</tr>
</tbody>
</table>

about 30 eV (Gd$_2$O$_3$) and 35 eV (Tb$_2$O$_3$). This means that deep-lying valence orbitals participate in the interband transition as well (see Figure 1 and Figure 2). The effective optical dielectric constant, ε_{eff}, is shown in Figure 5(b).

The curves of ε_{eff} can be arbitrarily divided into two parts. The first part is characterized by a rapid growth of ε_{eff} and extends up to 12 eV. The second part shows a smoother and slower growth of ε_{eff} and reaches a saturation values at about 30 eV (Gd$_2$O$_3$) and 35 eV (Tb$_2$O$_3$). This means that the largest contribution to ε_{eff} is made by transitions corresponding to the bands at ~5 eV and ~12 eV.

4. Conclusion

In the present work, we have made a detailed investigation of the electronic, and frequency-dependent linear optical properties of the X$_2$O$_3$ (X: Gd and Tb) crystals using the density functional methods. The result of the structural optimization implemented using the GGA are in good agreement with the experimental and theoretical
results. We have examined photon-energy dependent dielectric functions, some optical properties such as the energy-loss function, the effective number of valance electrons and the effective optical dielectric constants for both materials.

Acknowledgements

This work is supported by the projects DPT-HAMIT, DPT-FOTON, NATO-SET-193 and TUBITAK under Project Nos., 113E331, 109A015, 109E301.

References

423. http://dx.doi.org/10.1016/S0022-4596(02)00224-4

