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ABSTRACT 

In this work we present a model for the determination of the interaction energy for triplet and singlet states in atoms 
with incomplete filled shells. Our model includes the modification of the Coulomb’s law by the interaction between the 
magnetic moments of the electrons. We find that the energy of the triplet state is lower than the energy of the singlet 
state. We calculate the interaction energy between the electrons from the adjacent atoms in fcc lattices and we find that 
the minimum interaction energy is attained for the triplet state. The result is presented for the interaction between the 
electrons of the first coordination group and those of the second coordination group. The interaction energy which 
aligns the spins is used to evaluate the Curie temperature in a mean field model. 
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1. Introduction 

In condensed matter physics we are often interested on 
the importance that interactions between particles have 
on ground and excited states of the system and on its 
physical properties. To solve the many-body problem 
is a very difficult task and different methods and mo- 
dels are used which explain more or less accurate the 
physical effects that are measured. For example, mag- 
netism in materials remains a very hot topic of re- 
search but the fundamental question of the magnetic 
order is based on the assumptions of the model used. 
Recent notable research in magnetism includes the 
nature of the ground state of an interacting two-dimen- 
sional (2D) electron gas in a magnetic field, as in 
quantum Hall effect and giant magnetoresistance [1- 
4]. 

An important problem is that of the origin of ferro-
magnetism. The physical effect that produces magnetic 
ordering of adjacent magnetic moments is the same that 
leads to magnetic ordering within an ion and produces 
Hund’s rules. Interactions between spins are actually just 
a convenient way to record the end result of electrostatic 
repulsion [5]. Two electrons circling a nucleus reduce 
their Coulomb interaction by adopting an anti-symmetric 
wave function that vanishes whenever they come near 
each other. The Pauli principle demands that the overall 

wave function must be anti-symmetric, so the spin wave 
function must be symmetric. The electrons lower their 
energy by adopting the same spin state and developing a 
local magnetic moment. The important concepts were 
introduced by Heisenberg [6] and Stoner [7]. It was 
shown by Hubbard [8] that the correlation effects will 
lower the energy of non-magnetic states more than that 
of the ferromagnetic states and make the condition for 
ferromagnetism more stringent. The spin wave excita-
tions give a way to explain the temperature dependence 
of the magnetization in magnetic materials at low tem- 
peratures [9]. 

In this paper, using an effective field Hamiltonian (de-
tailed in [10]), we investigate the influence of the mag-
netic moments on the electron-electron interaction. We 
first discuss the modification of Coulomb’s law by the 
interaction between the magnetic moments of the elec-
trons. Next, we present the case of an isolated atom with 
applications to Hund’s rules and the condition for ferro-
magnetism in fcc lattices. 

2. Model and Formalism 

In this Section, we review the electron-electron interac-
tion by using an effective field Hamiltonian [9] and ex-
tend the results to the case of the interaction between the 
magnetic moments of the electrons. The energy of the 
electron-electron interaction is given by the expression 
(see Appendix): *Corresponding author. 
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where D is a coupling constant, m is the mass of an elec-
tron, R is the distance between the two electrons, ρo is the 
massive density of the interacting field, DR/c2 is the 
“massless density” of the interacting field, ωq = cq is the 
classical oscillation frequency of the interacting field, 

oq  is the oscillation frequency of an electron, q is the 
wave vector of the interacting field, qo is the wave vector 
of the boson associated with the electron, k is the wave 
vector of the electron and 2 2k m k  , nq is the occu-
pation number of the bosons associated with the inter-
acting field, 

oq  is the occupation number of the bosons 
associated with the electrons, nk is the occupation num-
ber for the electrons. When the interacting field is a pho-
ton field, then ρo = 0. For a quasi free electron 

q

n

   ,  �k k q
2 2oq m 

oq  ( m is an effective elec-
tron mass) and by using that nq,  = 0, nk, nk–q = 1, 
Equation (1) becomes: 
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To calculate Equation (2) we consider the two sums 
separately. The first sum can be easily calculated as: 
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and from the second one we obtain for q1 = q2 = qo, R2 – 
R1 = R: 
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where Γ = q2 R2 – q1 R1 for n = 1, 2. 
The interaction energy becomes: 

0.00729I

c
E

R R
 

 c
           (4) 

Taking the upper limit of qo as 0.94π/R, which is with 
6% lower than π/R one obtains the value of α just as ex-
perimental value. The relation (4) represents the Cou-
lomb’s law, which now is obtained without taken into 
account the electric charge concept. It can be shown [9] 
that for the charges of opposite sign the interaction energy 
(4) has the sign minus.  

In presence of a magnetic field in the above equations 
we introduce the vector potential and thus we substitute  

qo·r by d
e

  oq r A r
 �

. The second sum becomes: (See 

Equation (5), below). 
The energy levels of atomic electrons are affected by 

the interaction between the electron spin magnetic mo-
ment and the orbital magnetic momentum of the electron. 
It can be visualized as a magnetic field caused by the 
electron’s orbital motion interacting with the spin mag-
netic moment. The effective magnetic field can be ex- 
pressed in terms of the electron orbital angular momen-  

tum. We consider the vector potential 
3r

 


r
A where μ  

is the magnetic dipole moment and r is a vector from the 
middle of the loop to an observation point. An electron in 
a stationary state in an atom, having a definite angular 
momentum projection Lz = ħml (ml the quantum magnetic 
number), has a magnetic moment ( )l

z B lm   where 
2B e m    is the Bohr magneton. The theory and ex-

periments demonstrate that the free electron has a mag-
netic moment equal to the Bohr magneton μB, and a spin 
s, the projection of which on a specified direction are 

2z ss m     where 1 2sm    is the spin quantum 
number. For ( )s
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where     and li sih e h em m  are the flux vectors. For 
qi = qj =qo: 

2

2

2 2

2

2

2

2

2

cos d
2

d
    d 2

2 2

d
    2 cos

2

2π 2π

2

2π 22π 2
    

2

li
o ij i

i

lj ij
j si

j

ji

2
ij

sj o
ji

o li lj
t j

sjsi

ij ji

me
q R R

m R

m Re e
R m

m mR R

Re
m q R

m R

e
m m

m R R

mme

m R R





  

 

 

 
   

  
 

  




 



�

� �

� o




 

 

In these conditions, 
 2

2

2
ˆ

2
l s

o o

m me

m R


  q q x  where 

x̂  is a unit vector perpendicular to R and μ. The interac-
tion energy between two electrons, by taken into account 
their magnetic moments, becomes: 
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where Ro = Ri = Rj is the radius of the electron orbit and 
R = Rij. For mli – mlj = 1, we obtain: 
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For mli = mlj the above relation reduces to: 
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For an average value of R equal to Ro,  = 2 . 
In Figure 1, we plot a o o , that is 
the difference between the function for the triplet state 
and the function for the singlet state. It is observed that 
for Γo = π the amplitude of this function has an absolute 
maximum, which is negative and therefore the interac-
tion energy for the triplet state is lower than that associ-
ated with the singlet state. Thus for an atom with two 
valence electrons in a shell with l > 1, the interaction 
energy between the two electrons when they occupy dif-
ferent Lz states (all degenerate in energy) and adopt a 
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triplet spin state, is smaller than the interaction energy 
when they occupy the same Lz state, in which case they 
must have opposite spins. Therefore, the triplet state is 
favorable. This may explain Hund’s rules related to the 
organization of electrons in incompletely filled shells. 

3. Condition for Ferromagnetism 

We consider an atom that has its total spin in the up di-
rection. The intra-atomic interactions are of such a nature 
that this atom tends to attract electrons with spin up and 
repel those with spin down. In the case of the face-cen- 
tered cubic lattice every atom is surrounded by 12 nearest 
neighbors, which have the coordinates   2 1, 1,0a   , 
      2 1,0, 1 , 2 0, 1, 1a a    . Suppose the magnetic 
moment μ(0, 0, μ). Then, the vector potential can be 
chosen in the following form A(Ax, Ay, 0). We obtain: 
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where Γo is given by Equation (7b) for the triplet state 
and by Equation (9) for the singlet state. The sum in the 
interaction energy becomes: 
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Figure 1. Difference between the functions for the triplet 
and singlet states Δfa, as a function of Γo in an isolated atom 
with an incompletely filled shell. 
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From Equations (12) and (13), it appears that there is 
an oscillating interaction between the two electrons be-
longing to different atoms. The nature of this interaction 
may be not different of that which is encountered in the 
case of interaction between two ions by indirect ex-
change [11]. In the later case, the electrons belonging to 
an ion flip a conduction electron which then travels to 
another site and interacts with the spin of the ion of the 
second site. Perhaps the most significant application of 
the RKKY theory has been to the theory of giant mag-
neto resistance (GMR) [3,4]. GMR was discovered when 
the coupling between thin layers of magnetic materials 
separated by a non-magnetic spacer material was found 
to oscillate between ferromagnetic and anti ferromag-
netic as a function of the distance between the layers. 
The period of an oscillation is determined by the Fermi 
wave vector, in the case of free electron gas, via 

2π 2 πF Fk k   . The phase of the cosine in RKKY 
theory is kFR while in our theory this phase is  

2Γ π 1o oe mR k R   where 2πok m e . In this case 
the “period” of an oscillation is dependent of R. From the 
condition , one obtains  

1 1n n n o n n

   1Γ Γ 2πn n
o o

 
2R R k R R     The effective mass of the 

electron in d-band is larger than the free electron mass. 
For Rn ~ 3.3 Ǻ and m = 5mo results λn ~ 0.4 Ǻ a value 
which is larger than the Compton wavelength, ħ/mc = 8 × 
10–3 Ǻ, and is lower than the period of the RKKY oscil-
lation, which is of the order of 3 Ǻ. The oscillatory be- 
haviour is the result of the interference of two oscillating 
fields generated by the magnetic moments of the two 
electrons. Each fringe arises from a definite difference in 
phase. The effect is an oscillatory polarization of the 
conduction electrons as it occurs in RKKY model. 

 

In Figure 2, we show    2fcc fcc o fcc of f f     , 
that is the difference between the function ffcc for the 
triplet state and the singlet state. It is observed that this 
function attains its absolute maximum at  

  Γ π 2 or 2 1 π 2n o  and therefore the interaction 
energy between the two electrons for the triplet state is 
lower than that for the singlet state. The component of EI 
which aligns the spins in the triplet state is: 
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for a = 3.55 Ǻ. We must now take into account the 
screening effect due to the conduction electrons. The 
appropriate screening constant is κ2 = 2 2 2πF ome k  , 
where the wave vector at the Fermi level is  

 1 323πFk n . In the Co fcc lattice, the density of elec- 
trons is 3 298 1.8 10 mn a 3   . For the effective mass 
of the conduction electrons, m = 0.76 mo, where mo is the 
free electron mass, one obtains κ = 2.8 × 109 m–1. If we 
substitute in Equation (12) q'os by q'os + iκ (s = x, y, z) we 
obtain a multiplicative factor e–κa (Yukawa form) to the 

above estimate ΔEI reducing it to the order of magnitude 
–0.18 eV. The Curie temperature may be estimated as in 
the mean field theory applied to the spin-wave model 
[12,13]: 
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where M is the magnetic moment per atom, μB is the 
Bohr magneton, E(qo) is the spin-wave energy which is 
related to the exchange parameter Joj by a simple Fourier 
transformation: 
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Substituting the exchange parameter by our interaction 
parameter used in Equation (2), finally we obtain: 

2

3B c Ik T E   

where ΔEI is given by the above expression. For cobalt 
results Tc = 1411 K. A more elaborate method is the ran-
dom phase approximation [12-14]. The Curie tempera-
ture can be also estimated numerically by employing the 
method of Monte Carlo simulations applied to effective 
Heisenberg Hamiltonian [15]. 

We take now into account the interaction with the at-
oms of the second group of coordination. If in a fcc 
structure we take into account the fact that every atom is 
surrounded by 6 neighbours of second order, which have 
the coordinates a(±1, 0, 0), a(0, ±1, 0), a(0, 0, ±1), then 
we must add to Equation (10) the term: 
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and the corresponding energy of interaction is: 
 

 

Figure 2. Difference between the functions for the triplet 
and singlet state, Δffcc, as a function of Γo, in an fcc lattice 
filled shell. 
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Figure 3. Difference between the function of the triplet and 
the singlet state, Δffcc, as a function of Γo in a simple cubic 
lattice. 
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with  ( ) 4sinsc o of     
In Figure 3 Δfsc = fsc(Γo) – fsc(2Γo) as a function of Γo 

is shown. It is observed that depending on the distance 
between the atoms the coupling may be ferromagnetic at 
Γo = 2.1 + 2sπ, as well as antiferromagnetic at  

 This situation is also 
adequate for a simple cubic lattice. We note that in an fcc 
lattice of transition metals the ferromagnetic state is deter-
mined by the interaction between nearest neighbours. 

 Γ 2π 2.1 2 π,  = 0, 1, 2o s s   

4. Conclusion 

Using an effective field Hamiltonian we have shown that 
the Coulomb’s law is modified by the spin-spin interac-
tion. If we take into account the spin magnetic moment, 
when the spins are oriented antiparallel, the Coulomb 
interaction is modulated by a cosine term whose argu-
ment depends on the spin magnetic moment and on the 
distance between the two electrons. Evidently, this situa-
tion occurs in the absence of the magnetic field, for ex-
ample in superconductors. Further, we have studied the 
influence of the electron magnetic moments, both orbital 
and spin, on the electron-electron interaction in an iso-
lated atom. We have found that in an incomplete shell the 
interaction energy of the triplet state is smaller than the 
energy of the singlet state. On this basis may be explained 
Hund’s rules. The condition of ferromagnetism is studied 
in a fcc lattice of transition metals and the obtained re-
sults are in a good agreement with experimental data. By 
using the mean field approximation, we have estimated 
the Curie temperature. The coupling, due to the magnetic 
field generated by the two interacting electrons, oscillate 
with a “period” 1/koR where ko = m/πe2. This period of 
oscillation is dependent of R and for R = 3.3 Ǻ and m/mo 

= 5, is equal to 0.4 Ǻ, a value which is smaller than the 
RKKY period of ~3 Ǻ. This means that the magnetic 
field generated by the magnetic moments of the electrons 
is modulated by an oscillation which has a period of π/kF, 
where kF is the Fermi wave vector. 
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The electron will always carry with it a lattice polariza- 
tion field. The composite particle, electron plus phonon 
field, is called a polaron; it has a larger effective mass 
than the electron in the unperturbed lattice. By analogy, 
in our model, we consider a coupling between an elec- 
tron and a boson. 
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Consider a linear chain of N bodies, separated at a dis- 
tance R. The Hamiltonian operator of the interacting 
bodies (electrons) and the boson connecting field takes 
the general form: 
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zation vectors and χ(σ) is the spin wave function. sn is the 
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the direction of R and, in the approximation of nearest 
neighbours, it is assumed that D does not depend on n. 
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q, q' are the wave vectors associated with the bosons of 
the connecting field, qo is the wave vector associated 
with the oscillations of the electron, and k, k' are the  

where q  is the classical oscillation frequency, α is the 
restoring force constant, D is the coupling constant, ρ is 
the linear density of flux lines, ,  are the boson 
creation and annihilation operators and 
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ρo is the density of the interacting field, if this is a mas- 
sive field, c is the velocity of the boson waves. The in- 
teraction Hamiltonian operator HI is given by the expres- 
sion [16]: 

wave vectors of the electrons. Consider the integral over z: 
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where Δ(x) = 1 for x = 0 and Δ(x) = 0, otherwise. In the 
bulk crystal NR is replaced by V = NΩ where Ω is the 
volume of a unit cell and N is the number of unit cells. 
We write: 
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In Equation (A1) we choose q' =qo, k' = k + q. In the 
interaction picture the effective Hamiltonian is given by: 
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The expectation value of the energy of HI1
eff is the energy 

of the electron-electron interaction given by Equation (1) 

in the text. The expectation value of the energy of HI2
eff is 

the self energy of the electron and is used to calculate, 
for example, the polaron energy [10]. 
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