Parallel Algorithms for Residue Scaling and Error Correction in Residue Arithmetic

Hao-Yung Lo, Ting-Wei Lin

Department of Electrical Engineering, National Tsing Hua University, Hsinchu City, Chinese Taipei. Email: hylo@ee.nthu.edu.tw

Received August 3rd, 2013; revised September 11th, 2013; accepted September 30th, 2013

Copyright © 2013 Hao-Yung Lo, Ting-Wei Lin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In this paper, we present two new algorithms in residue number systems for scaling and error correction. The first algorithm is the Cyclic Property of Residue-Digit Difference (CPRDD). It is used to speed up the residue multiple error correction due to its parallel processes. The second is called the Target Race Distance (TRD). It is used to speed up residue scaling. Both of these two algorithms are used without the need for Mixed Radix Conversion (MRC) or Chinese Residue Theorem (CRT) techniques, which are time consuming and require hardware complexity. Furthermore, the residue scaling can be performed in parallel for any combination of moduli set members without using lookup tables.

Keywords: Chinese Remainder Theorem (CRT); Error Correction; Error Detection; Parallel Residue Scaling; Residue Number Systems (RNS); Target Race Distance (TRD); Target Residue-Digit Difference

1. Introduction

Because the residue number system (RNS) operations on each residue digit are independent and carry free property of addition between digits, they can be used in high-speed computations such as addition, subtraction and multiplication. To increase the reliability of these operations, a number of redundant moduli were added to the original RNS moduli [RRNS]. This will also allow the RNS system the capability of error detection and correction. The earliest works on error detection and correction were reported by several authors [1-12]. Waston and Hastin [1,2] proposed the single residue digit error correction. Yau and Liu [3] suggested a modification with the table lookups using the method above. Mandelbaum [4-6] proposed correction of the AN code. Ramachandran [7] proposed single residue error correction. Lenkins and Altman [8-10] applied the concept of modulus projection to design an error checker. Etzel and Jenkins [11] used RRNS for error detection and correction in digital filters. In [12-16] an algorithm for scaling and a residue digital error correction based on mixed radix conversion (MRC) was proposed. Recently Katti [17] has presented a residue arithmetic error correction scheme using a moduli set with common factors, i.e. the moduli in a RNS need not have a pairwise relative prime.

In this study, we developed two new algorithms without using MRD (Mixed-radix digit) or CRT (Chinese remained Theorem) for speeding-up the scaling processes and simplifying the error detection and correction in RNS. The first algorithm is used for these purposes, through the residue digit difference cyclic property (CPRDD) within the range of $0 \leq x \leq M_i$ with r additional moduli. The moduli $\{m_1, m_2, \cdots, m_r\}$ are called the nonredundant moduli; $\{m_{n+1}, m_{n+2}, \cdots, m_n\}$ are the redundant moduli. The interval, $[0, M - 1]$, is called the legitimate range, where $M = n \cdot m_i$, and the interval, $[M, M_i - 1]$, is the illegitimate range, where $M_i = n \cdot m_i' = M \cdot \Pi_{i=1}^{r} m_{i'}$, and M_i is the total range. This paper is organized as follows: Section II will describe the scheme the cyclic property of residue digit difference (CPRDD). Section III describes the Target Race Distance (TRD) algorithm and followed by some examples. Section IV discusses residue scaling and error correction using the TRD and CPRDD algorithms. Finally, the conclusion is given in section V.

2. Error Detection and Correction Using Residue Digit Difference Cyclic Property

Any residue digit x representation in moduli set (m_1, m_2, \cdots, m_n) has its cyclic length with respect to its module number. For example, if the moduli set is (4, 5, 7,
9), then the cyclic lengths of any residue digits
\((x_1, x_2, x_3, x_4)\) are 4, 5, 7 and 9, respectively. Since these cyclic lengths are not equal, they are very difficult to use as tools for error detection and correction. Actually, there exists the property of common (uniform) cyclic length in RNS between residue digital-differences (RDD). Consider three moduli set \((m_1, m_2, m_3) = (2, 3, 5)\). The residue representations and their corresponding digit-differences are shown in Table 1 and defined as the difference in value between two digits, \(d_{ij} = (x_i - x_j)_{m_j}\),

where \(d_{ij}\)'s are all modulo to positive values with respect to \(m_j\) if the cycle length of \(m_j\) is assigned.

Note that the residue digit-differences \((d_{ij})_{m_j}\) in Table 1 are obtained from \((x_i - x_j)_{m_j}\) if \(m_i < m_j\), and from \((x_i - x_j)_{m_i}\) if \(m_j < m_i\). This difference of \((x_i - x_j)\) or \((x_j - x_i)\) in values may be positive or negative, depending upon \(x_i \geq x_j\) or \(m_j \geq m_i\) and \(x_i < x_j\) or \(x_j < x_i\), respectively.

All negative values must be modulo to positive values. For example, on starred row 28, as shown in Table 1, the digit difference in value for \(x_i = 3\) and \(x_j = 0\) is \(d_{ij} = 13 - 3 = -10\). It results in \(d_{ij} = 3\) in value may be positive or negative, depending upon \(x_i \geq x_j\) or \(m_j \geq m_i\) and \(x_i < x_j\) or \(x_j < x_i\), respectively.

All negative values must be modulo to positive values.

From the cyclic property of residue-digit difference (CPRDD) in RNS, we now have the following theorem.

Theorem 1. For a moduli set \((m_1, m_2, \ldots, m_r, m_{r+1}, \ldots, m_n)\) and residue representation for \(x = (x_1, x_2, \ldots, x_r, \ldots, x_n)\) in RNS, there exists a cyclic property in differences between two residue digits,

\[d_{ij} = (x_i - x_j)_{m_j} \]

where \(p = 0, 1, \ldots, (m_j - 1)\),

and \(i, j, p, q\) are integers.

For simplicity, we only consider the case of \(m_i < m_j\) and assume \(m_i - m_j = r\), and the case of \(m_i > m_j\) can be obtained in a similar way.

The related theorem and algorithm are described as follows.

1) In cycle 0, (the initial cycle), we have \(X = x_j = 0, 1, \ldots, (m_i - 1)\) with \(q = 0\),

\[d_{ij} = 0 = (x_i - x_j)_{m_j} = (x_i + p m_i - x_j)_{m_j} \]

As \(x_j = x_i + p\)

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Table 1. Cyclic property of Residue Digit Difference.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>(m_1 = 2)</td>
</tr>
<tr>
<td>(d_{ij})</td>
<td>(d_{ij})</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>28*</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
</tr>
</tbody>
</table>

\(m_i\) with \(p = 0, 1, \ldots, [m_j/m_i]\), we have \(d_{ij} = 0\) with \(m_j\)'s 0s in cycle 0, where \([x]\) means the largest
integer less than or equal to \(x \).

Thus, the RDD has \(m_i \)'s “0” in the initial cycle for each modulus, i.e., in cycle 0, \(\{d_{ij}\}_{m_i} = (0, 0, \cdots, 0) \) for all \(i \neq j \).

2) Next consider each modulus \(m_i \).

Since \(x_i = X - pm_i \) and \(x_j = X - qm_j \), then

\[
\{d_{ij}\}_{m_i} = \left\{ \left(x_i - x_j \right)_{m_i} \right\} = \left\{ \left(x_i + pm_i \right) - \left(x_j + qm_j \right) \right\}
\]

where

\[
x_i = 0, 1, 2, \cdots, (m_i - 1) \quad \text{and} \quad x_j = 0, 1, 2, \cdots, (m_j - 1)\]

for \(m_i, m_j > 0 \) and \(m_i \neq m_j \).

For RDD = 1 (not necessary in cycle 1),

\[
\{d_{ij}\}_{m_i} = \left\{ \left(x_i - x_j \right)_{m_i} \right\} = \left\{ \left(x_i + pm_i \right) - \left(x_j + qm_j \right) \right\}
\]

with \(m_i \)'s 0's.

For RDD = \(m_i - 1 \)

\[
\{d_{ij}\}_{m_i} = \left\{ \left(x_i - x_j \right)_{m_i} \right\} = \left\{ \left(x_i + pm_i \right) - \left(x_j + qm_j \right) \right\}
\]

with \(m_i \)'s (\(m_i - 1 \)'s) s.

Corollary 1. From the above theorem, we can immediately obtain that each cycle in the residue-digit difference of \(x \) will start at location 0, and end at location \((m_i m_j m_k - 1) = M - 1 \).

Corollary 2. It is easily shown that there exists \(m_i \) number of cycles with respect to the cyclic length of \(M \).

Proof. Since the residue-digit difference of \(x = (x_1, x_2, \cdots, x_i, x_j, \cdots, x_k) \) representation is pair-wise, the legitimate range of this pair-wise RDD (\(x_i, x_j \)) is \(m_i, m_j \), (from 0 through \(m_i m_j - 1 \)). From corollary 1, the cyclic length is \(m_i m_j \). Thus the number of cycles within this cyclic length for \(N_i \) is \(N_i = \frac{m_i m_j}{m_i} = m_j \), and for \(m_j, N_j = \frac{m_i m_j}{m_j} = m_i \).

Theorem 2. The algorithm of theorem 1 and its corollaries can be extended to two or more pair-wise residue-digit differences.

Proof: consider a three moduli set, we have two pair-wise moduli sets, whose RDD (Residue Digital Difference) is

\[
\{d_{ij}\}_{m_i} = \left\{ \left(x_i - x_j \right)_{m_i} \right\} = \left\{ \left(x_i + pm_i \right) - \left(x_j + qm_j \right) \right\}
\]

Assume \(m_i = m_j + r_z \), and also pair-wise numbers \(x_j = 0, 1, 2, \cdots, (m_j - 2) \), \((m_j - 1), 0, 1, \cdots, (r_z - 1) \) and

\[
\text{of } m_k \left(x_k = 0, 1, 2, \cdots, (m_k - 1) \right). \quad \text{The cyclic length is } \left(m_j \right) \cdot \left(m_i \right) = r_z, \text{ and the number of cycles for } m_j \text{ is } m_j = m_i + r_z = m_j + m_k - m_j \text{ or } m_i \cdot m_k / m_j \).

2) For \(q \neq s \neq 0 \) and \(\{d_{ij}\}_{m_i} = h \) (a constant for any RDD) if \(x_j \neq x_k \)

This shows that \(\{d_{ij}\}_{m_i} \) has also \(m_i \) “0”’s in cycle \(0 \).

\[
\{d_{ij}\}_{m_i} = \left\{ \left(x_i - x_j \right)_{m_i} \right\} = \left\{ \left(x_i + pm_i \right) - \left(x_j + qm_j \right) \right\}
\]

This shows that \(\{d_{ij}\}_{m_i} = h \) in any location has also \(m_i \)’s “h” in cycle \(i \) of \(m_i \). The number of cycles for \(m_i \) is still \(m_i \left(m_j, m_k / m_i \right) \). Combining these three moduli \(\left(m_i, m_j, m_k \right) \) into one set, we have cyclic
length $M_n = m_1 \cdot m_2 \cdot m_3$ (for example, $m_1 \cdot m_2 \cdot m_3 = 2 \cdot 3 \cdot 5 = 30$). The number of cycles for m_{n-1}, m_{n-2}, m_1 are $N_1 = m_2 \cdot m_3 = 3 \cdot 5 = 15$,
$N_2 = m_1 \cdot m_3 = 2 \cdot 5 = 10$, and $N_3 = m_1 \cdot m_2 = 2 \cdot 3 = 6$, respectively. As shown in Table 1, the RDD pairs of
(d_{y_1},d_{y_2}) are $(0,0), (1,2), (0,1), (1,0), (0,2)$, and

$$(1,1)$$

In general, $M_p = m_1 \cdot m_2 \cdots m_k$ with m_k rows and $(n-i)$RDD in each row.

This completes the proof.

Example 2-1.

Consider a moduli set $(m_1,m_2,m_3) = (4,5,7)$, $X = 9$ and its corresponding residue digits representation set is
$(1,4,2)$. The cyclic length is $140 (= 4 \cdot 5 \cdot 7)$ and the number of cycles for $m_1,m_2,$ and m_3 are
$N_1 = 35, N_2 = 28,$ and $N_3 = 20,$ respectively.

Error detection and correction:

Before the CPRDD algorithm used for error detection and correction is described, some basic terms in use must be defined.

Definition 1: Stride distance S_j: It is the incremental or decremental distance between moduli m_i and m_j in
absolute value from ith cycle to $(i+1)$th cycle.

For example: $S_{23} = |5-7| = 2$.

1) Error detection

Let the moduli set be
(m_1,m_2,\cdots,m_k) where m_1,m_2,\cdots,m_k
are the nonredundant moduli and m_{k+1},\cdots,m_{k+r}
are the redundant moduli. Since the cyclic lengths of CPRDD
d_i's are constant, it is thus easily found that the number
of cycles on track L_y from the starting point 0 (or other d_i)
its target position. In turn the distance of RDD's can also
be found.

Theorem 3. The number of cycles on track L_y (column d_y) from any starting point (say d_y) to its target position d_y can be found using the equation below;

$$d_y + S_y k_y \mod m_y = d_y$$

where S_y is the stride distance between moduli m_i and m_j, and $k = \text{the number of cycles passing through from starting point} d_y \text{ to the destination, } d_y = \text{on track } L_y \text{ If } d_y = 0, \text{ then the number of cycles are equal to the total cycles from the starting point “0” to its target position } d_y$.

Proof: Since k_y is the number of cycles from 0 to d_y with respect to module m_i, and M_n is the cyclic length, thus $k_y m_i$ is the total distance from the starting point $d_y = 0$ to its target position d_y. The remaining distance for d_y on track L_y in the (k_y)th cycle must be on the same row of d_y on track L_y. Thus, RDD$(x_i) = RDD(x_i) = (k_y m_i + d_y)$.

Once the RDD’s of x_1,x_2,\cdots,x_n,x_y are found, the error detection and correction for moduli can be found just by comparing the calculated cycles or RDD with the original residue representation, pair-wise so that the error module can be detected.

The procedure for error detection by using CPRDD algorithm is summarized as follows.

1) Choose two most significant (largest) moduli as the referred moduli among the n moduli, say m_1 and m_n.
2) Find the skip distance of a cycle $S_{(n-1)a} = |m_{n-1} - m_a|$.
3) Find the digit difference $d_{(n-1)a} = x_{a-1} - x_a \mod m_a$ from $X = (x_1,x_2,\cdots,x_{n-1},x_n)$
4) Create the equation of

$\text{RDD}(x_{a-1},x_a) = \{d_{(n-1)a} \mod m_a\}$
or

$\text{RDD}(x_{a-1},x_a) = \{S_{(n-1)a} k_{(n-1)a}\} \mod m_a = \{d_{(n-1)a},x_a\}_m$ \hspace{1cm} (2-2)

5) Solve for $k_{(n-1)a}$ from Equation (2-2) as the

$S_{(n-1)a}$ and $\{d_{(n-1)a},x_a\}_m$ are known. The value of $k_{(n-1)a}$ must be less than or equal to $(m_1 \cdots m_k \cdots m_{n-1})$.

6) Find the corresponding RDD(x_{a-1},x_a) distance from the starting point to x_{a-1}.

7) Calculate $\{x_1,x_2,\cdots,x_n\}$ from RDD$_1$, RDD$_2$, \cdots, and check the values of $(x_1,x_2,\cdots,x_a),(x_1,x_2,\cdots,x_2),\cdots,x_2,\cdots,x_2,\cdots,x_2,\cdots,x_2)$, and If these sets’ numbers are equal, then no error occurs; otherwise, error exists.

We take the similar numerical as example 2-1 to verify this algorithm. (CPRDD)

Example 2-2. Assume that a moduli set $(m_1,m_2,m_3,m_4) = (4,5,7,9)$ and number X whose residue representation is $(x_1,x_2,x_3,x_4) = (1,2,6,7) = (97)_{10}$. If an error occurs at $m_2, X = (1,3,6,7)$, the error detection can be described as follows.

Let us begin our procedures from the

RDD$(x_1,x_2) = \{d_{(x_1,x_2)}\}$. Since

$S_{34} (\text{skip distance of a cycle}) = |m_3 - m_4| = |7-9| = 2$,

$d_{13} = -5 \mod 3 = 3$, and

$d_{23} = -3 \mod 2 = 1$,

$d_{24} = 6 \mod -1 = 8$. Then

$N(d_{24}) = \{S_{34} \cdot k_{34}\}_b = \{2\cdot k_{34}\}_b = 8$. Solve for k_{34}, and

let $k_{34} = (m_3m_4) = 20$ within legitimate range $4 \cdot 5 \cdot 7 = 140$, then $k_{34} = 4,13$.

Copyright © 2013 SciRes.
The corresponding RDD \((x_1, x_4)\) primary distances for these two \(k_{14}\) are, respectively,

\[
\text{RDD}_1(4) = 4 \cdot 7 + 6 = 34
\]

\[
\text{RDD}_2(13) = 13 \cdot 7 + 6 = 97
\]

Thus, the generated results of the residue representation from RDD \((4)\) and RDD \((13)\) are respectively

\[
X_1(34) = (x_1, x_2, x_3, x_4) = (2, 4, 6, 7),
\]

\[
X_2(97) = (x_1, x_2, x_3, x_4) = (1, 2, 6, 7).
\]

Since the calculated results of \(X_1\) and \(X_2\) are not identical, there must be errors in one of these moduli. We cannot determine which one is erroneous. To locate the module where the error exists, at least one additional (redundant) module must be used.

The procedure for error correction by using CPRDD algorithm is essential the same as the error detection. However, two additional redundant moduli \(m_1\) and \(m_2\) must be added for one error correction. Note that only one redundant modulus added for error detection.

1) Choose \(m_i\) or \(m_j\) as a referred modulus.

2) Find \(k_{0}(x_1)k_{1}(x_2), \ldots, k_{ij}(x_j)\) as the same procedures of error detection steps 2-7.

3) Examine the values of \(k_{0}(x_1)k_{1}(x_2), \ldots, k_{ij}(x_j)\). If common value exists among, \(k_{0}(x_1)k_{1}(x_2), \ldots, k_{ij}(x_j)\), then no error occurs. If there is one and only one, say \(k_{0}(x_1)\) that has no common value with all other \(k_{ij}(x_j)\), then an error exists in module \(m_i\). This completes the error correction procedures.

The following example is illustrated here to verify this algorithm.

Example 2-3: Error correction

As before we can further locate and correct a single error by adding two redundant moduli, \(m_1\) and \(m_2\). Let us use the same example. The moduli set \((m_1, m_2, m_3, m_4, m_5) = (4, 5, 7, 9, 11)\), where \(m_4\) and \(m_5\) are redundant moduli \(m_1 = 9\) and \(m_2 = 11\), and the residue \(X\) representation,

\[
(x_1, x_2, x_3, x_4) = (1, 2, 6, 7, 9)\].

If a single error occurs at \(m_1\), e.g. \(X = (1, 2, 5, 7, 9)\), and \(m_1\) is assigned as a reference module, then \(d_{ij} = \{-6\}_4 = 2\), \(d_{24} = \{-5\}_4 = 0\), \(d_{45} = \{-2\}_4 = 5\), and \(d_{45} = \{-2\}_4 = 9\). From CPRDD algorithm, we can find the number of cycles for these RDD’s

\[
\{S_{45}k_{14}\}_4 = \{2k_{14}\}_4 = 2
\]

\[
\{S_{24}k_{45}\}_5 = \{4k_{24}\}_5 = 0
\]

\[
\{S_{45}k_{14}\}_7 = \{2k_{45}\}_7 = 5
\]

Since the cycle length is 9, all above \(k_1\) values must be less than \(\left\lfloor \frac{140}{9} \right\rfloor = 16\). Thus we have

\[
k_{14} = 2, 6, 10, 14
\]

\[
k_{24} = 0, 5, 10, 15
\]

\[
k_{45} = 6, 13
\]

\[
k_{45} = 10
\]

If no errors occur, all \(k_1\)’s are equal, i.e.,

\[
k_{14} = k_{24} = k_{45} = k_{45}.
\]

Compared to the above results with pairwise moduli, only \(k_{14} = k_{24} = k_{45} = 10\) meets this condition. There exists no such value in \(k_{45}\).

This shows that the module \(m_1\) is faulty, therefore we can correct it as follows: since \(k_{14} = k_{24} = k_{45} = 10\), the \(\text{RDD} = k_{14}\) cycle length + \(x_4 = 10 \cdot 9 + 7 = 97\).

Thus \(x_1 = \{97\}_4 = 1\), \(x_2 = \{97\}_5 = 2\), \(x_3 = \{97\}_7 = 6\), \(x_4 = \{97\}_9 = 7\).

This completes the error correction.

Note that the above CPRDD’s for each residue-digit difference, \(d_{ij}\), and \(k_{ij}\) can be processed in parallel. In addition, if the referenced module is assigned to the erroneous module by chance, e.g., \(m_3\), this algorithm will fail to locate the error. In this case, there are no \(k_{ij}\)’s values that can be found to match this condition. The way to solve the problem is, of course, to assign any other moduli, e.g., \(m_1\) or \(m_2\).

The hardware design for the proposed algorithm in Example 2-3 is shown in Figure 1.

3. The Target Race Distance (TRD) Scheme

The conversion or decoding technique from residue representation to \(X\) in binary is usually accomplished using the mixed-radix digit (MRD) or Chinese remainder theorem (CRT). An optimal matched and parallel converter of this kind can be seen in [13]. The MRD is shown by the following expression with weighted numbers:

\[
X = \{a_1m_0 + a_2m_1 + a_3m_2 + \cdots + a_{n-1}m_{n-1}\}_M
\]

\[
= \sum_{i=1}^{n-1} \alpha_i (m_0m_1\cdots m_{i-1}) \text{ with } m_0 = 1
\]

where \(M = m_1m_2\cdots m_n = \Pi_{i=1}^{n} m_i\), and \(\alpha_i \in [0, m_{i-1}]\) is the mixed-radix conversion (MRC) of \(x\).

Optimization can be obtained using this method, as the accessed table lookup time is exactly equal to the right addition time, after immediate column stage for the tree network of the adders.
Parallel Algorithms for Residue Scaling and Error Correction in Residue Arithmetic

However, time is still consumed reading a large number of lookup tables. Additional hardware complexity is required by the adder-tree networks. An algorithm called the target race distance was developed for high-speed conversion.

TRD algorithm

Suppose each residue number in the RNS\{X_i\}_{m_i} has its own track \(L_i \), and the distance over track \(L_i \) from 0 (starting point) to \(X_i \) (end point) through \(k_i \) cycles can be expressed using

\[D_i = x_i + k_i m_i, \quad k_i = 0, 1, \ldots, (m_i - 1), \]

Obviously, the primary (no multiples of \(m_i \)) distance of \(x_i \) is \((D_i)_{\text{prim}} = x_i (k_i = 0) \). To obtain the \(X \) from its residue representation of \(x_1, x_2, \ldots, x_n \), we must find a target such that \(x_1, x_2, \ldots, x_n \) traversing the same distances over tracks \(L_1, L_2, \ldots, L_n \) respectively, i.e., when the TRD distance of each target \(x_i \) is reached, then \(D_1 = D_2 = \cdots = D_n \). The TRD distance of \(X \) can be found from the following theorem:

Theorem 4. Consider the simple case of two moduli sets \((m_1, m_2) \). Its residue representation and targets are \(x_1 \) and \(x_2 \) respectively. Let \((D_1)_p \) be the primary distance of residue \(x_1 \) from 0 to \(x_1 \) on the track \(L_1 \), and \((D_2)_p \) be the primary distance of \(x_2 \) from 0 to \(x_2 \) on track \(L_2 \). Then the TRD distance for these two residues \(x_1 \) and \(x_2 \) that have the same TRD distances can be obtained by the following equation.

\[\text{TRD}(x_1, x_2) = (x_1 + k_1 m_1) = (x_2 + k_2 m_2) \]

In addition, \(k_1 \) can be calculated from the equation

\[\langle x_i + k_1 m_1 \rangle_{m_1} = (D_2)_p = x_2 \]
where m_1 is the cyclic length of x_i, and k_1 is number of cycles, all of the integers,

$$k_1 = 0, 1, 2, \cdots, m_1 - 1.$$

Proof: It is easy to show that the above TRD(x_i, x_i+1) is the common target distance of x_1 and x_2, since

$$\langle x_i + k_1 m_1 \rangle_{m_1} = x_i$$

And $\langle x_2 + k_2 m_2 \rangle_{m_2} = x_2$ is $\langle x_1 + k_1 m_1 \rangle_{m_1} = x_1$ since $m_1 > m_2$, and $\langle x_1 + k_1 m_1 \rangle_{m_1} = X$ is the TRD distances for both of x_1 and x_2.

Corollary: It is evident that the above theorem can be extended to n moduli set (m_1, m_2, \cdots, m_n) and residue number (x_1, x_2, \cdots, x_n). The corresponding TRD of (x_1, x_2, \cdots, x_n) are therefore

$$\text{TRD}(x_1, x_2, \cdots, x_n) = \langle x_i + k_1 m_1 \rangle_{m_1} + \langle x_2 + k_2 m_2 \rangle_{m_2} + \cdots + \langle x_n + k_{n-1} m_{n-1} \rangle_{m_{n-1}}$$

In addition, k_i can be solved from the following equations.

$$\langle x_1 + k_1 m_1 \rangle_{m_2} = x_2$$

$$\vdots$$

$$\langle x_i + k_i \cdot m_i \cdots m_{i+1} \rangle_{m_{i+1}} = x_{i+1}$$

where $k_i = 0, 1, \cdots, (m_{i+1} - 1)$

Note that x_1, x_2, \cdots, x_n are the targets of moduli m_1, m_2, \cdots, m_n, respectively and the TRD(x_1, x_2, \cdots, x_n) is the distance that has equal track lengths, i.e.

$$L_1 = L_2 = \cdots = L_n = L.$$ That is;

$$\langle L \rangle_{m_1} = x_1, \langle L \rangle_{m_2} = x_2, \langle L \rangle_{m_3} = x_3, \cdots, \langle L \rangle_{m_n} = x_n.$$

Example 3-1 Let the moduli set be $(m_1, m_2, m_3, m_4) = (4, 5, 7, 9)$ and the residue representation be $(x_1, x_2, x_3, x_4) = (3, 1, 2, 5)$. The procedures to find the TRD distance can be described as follows:

1) Find the primary distance (D_1) of residue $x_1 = (D_1)_p = \langle 3 \rangle_{m_2}$ since $m_2 > m_1$ and $\langle 3 + k_1 \cdot 4 \rangle_5 = 1$ is required, thus $k_1 = 2$, and TRD(x_1, x_2) = $(3 + 2 \cdot 4) = 11$

2) Repeat the procedure 1 to find the number of cycles k_2 and k_3 and the last TRD distances (destinations),

TRD(x_1, x_2, x_3) and TRD(x_1, x_2, x_3, x_4).

Since $\hat{x}_1 = \{11\}_7 = 4$

$\langle \hat{x}_1 + k_1 \cdot 4 \cdot 5 \rangle_7 = 2$

$\langle 4 + k_2 \cdot 4 \cdot 5 \cdot 7 \rangle_9 = 5$

$\therefore k_3 = 7$

thus TRD(x_3) = $2 \cdot 4 \cdot 5 = 40$

and TRD(x_1, x_2, x_3) = $11 + 40 = 51$

$\hat{x}_4 = \{51\}_9 = 6$

$\langle 6 + k_3 \cdot 4 \cdot 5 \cdot 7 \rangle_9 = 5$

$\therefore k_4 = 7$

thus TRD(x_4) = $7 \cdot 4 \cdot 5 \cdot 7 = 980$

and TRD(x_1, x_2, x_3, x_4) = $51 + 140 \cdot 7 = 1031$

The final TRD distance is the common distinction of this system for targets x_1, x_2, x_3 and x_4 i.e.

TRD(x_1, x_2, x_3, x_4) = $1031 = X$. This result can be verified as follows:

$\{1031\}_4 = 3, \{1031\}_5 = 1, \{1031\}_7 = 2$ and $\{1031\}_9 = 5$

Figure 2 shows the TRD’s on tracks L_1, L_2, L_3 and L_4 respectively.

Error detection and correction by TRD algorithm

A redundant residue number system with $r = 1$ redundant moduli will allow detection of any single error [4, 14]. Consider the moduli set $(m_1, m_2, m_3, m_4) = (4, 5, 7, 9)$ and the correct residue representation $X(x_1, x_2, x_3, x_4) = (1, 2, 6, 7) = 97$. Let us

<table>
<thead>
<tr>
<th>Track</th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>L_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x_1 - 3)$</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_1 = 2$</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_2 = 2$</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_3 = 7$</td>
<td></td>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>1031</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 2. TRD’s on track L_1, L_2, L_3 and L_4.

Copyright © 2013 SciRes.

WET
assume that \(m_4 = 9 \) is the redundant moduli with a single error \(x_p(x_1, x_2, x_3, x_4) = (1, 3, 6, 7) \) residue representation. The TRD theorem can be used to detect this error. We find that final TRD for \(x_1, x_2, x_3 \) and \(x_4 \) does not fall into the legitimate range as follows \(i.e. \)

\[
R_c > (4 \cdot 5 \cdot 7) = 140
\]

\[
\mathrm{TRD}_1 (x_1 = 1) = 1
\]

\[
\mathrm{TRD}_2 (x_2 = 3) = 12 (k_i = 3)
\]

\[
\mathrm{TRD}_3 (x_3 = 6) = 0
\]

\[
\hat{x}_3 = \{13\} = 6 = x_3
\]

\[
\mathrm{TRD}_4 (x_4 = 6) = 0
\]

\[
\hat{x}_4 = \{13\} = 4
\]

\[
\{4 + k_3 \cdot 140\} = 7, k_3 = 3
\]

\[
\mathrm{TRD}_4 (x_1, x_3, x_4) = 13 + 84 = 97
\]

\[
\hat{x}_5 = \{97\} = 9 = x_5
\]

\[
\therefore \mathrm{TRD}_5 (x_1, x_3, x_4, x_5) = 97 < 140(\text{within legitimate range}).
\]

Thus, the error is located at module \(m_5 \) and must be corrected to \(x_5 = \{97\} \). This algorithm can also be used for multiple error corrections. However, at least three redundant moduli are required. The procedures are similar.

4. Scaling with Error Correction

The above proposed algorithm used for error detection and correction has the advantage of not requiring lookup tables. No CRT (Chinese residue theorem) decoding processes are required. However, it is still time consuming and requires extensive hardware complexity for each module having multiple-value inputs to the match unit and selecting a correct one as an output. To improve this drawback, an optimal matching algorithm is proposed here for the error correction. The following two theorems will be used and an example follows.

Theorem 5. Let \(m_1 \) and \(m_2 \) be two relative prime numbers in RNS for module 1 and module 2 respectively. Then there must exist the relation represented by the equation \(\{m_1 x_1\} < m_2 \) and \(\{m_2 x_2\} < m_1 \), where

\[
0 \leq \{m_1 x_1\} \leq m_2, 0 \leq \{m_2 x_2\} \leq m_1
\]

so that \(0 \leq |k| \leq m_2 \), assuming \(m_2 > m_1 \). The \(x_i, x_2 \) and \(k \) are restricted to integers.

Proof: As a first step, let \(k = 0 \). It is easily seen that \(x_1 = m_2 \) and \(x_2 = m_1 \) will be satisfied. Next consider \(k \neq 0 \). Since there are two different pair combination \(\{m_1 x_1\} \leq m_2 \) and \(\{m_2 x_2\} < m_1 \), thus the difference between \(m_1 x_1 \) and \(m_2 x_2 \) of \(k \) will always be satisfied for \(0 \leq |k| \leq m_2 \), where \(k \) is restricted in integers.

Theorem 6. If the values of \(m_1 \) and \(m_2 \) and \(k \) in the equation \(\{m_1 x_1\} < m_2 \) and \(\{m_2 x_2\} < m_1 \), the difference \(k \) can always be determined from equation

\[
\{m_2 - m_1 \} p_1 = k \quad \text{or} \quad \{m_2 - m_1 \} p_2 = k,
\]

where \(p_1, p_2 \) and \(k \) are within the range: \(0 \leq p_1, p_2 \leq (m_2 - m_1) \).

Proof: Let the difference value of \(m_2 - m_1 \) be equal to \(d \), then \(d \) will be the integers within the range between \(0 \) and \(m_2 - m_1 \), \(i.e., \ p_1 = 0, 1, 2, \ldots, (m_2 - m_1) \), or

\[
p_2 = 0, 1, 2, \ldots, (m_2 - m_1). \]

These two expressions show that we can always select an integer value \(p \), within the interval between \(0 \) and \((m_2 - m_1) \) to satisfy the

Copyright © 2013 SciRes.
conditions \(\langle dp_1 \rangle_m = k \) or \(\langle dp_2 \rangle_m = k \)

Example 4-1 Let \(m_1 = 5 \) and \(m_2 = 7 \). Find the minimum values of \(p_1 \) and \(p_2 \) respectively from the following equation:

\[
7p_1 - 5p_2 = 3
\]

Since \(m_1 = 5 \) and \(m_2 = 7 \), we have
\[
d = m_2 - m_1 = 7 - 5 = 2,
\]
and
\[
\langle 2p_1 \rangle_s = 3 \quad (4.1),
\]

or
\[
\langle 2p_2 \rangle_s = 3 \quad (4.2),
\]

from Equation (4.1)

\[
\langle 2p_1 \rangle_s = 3 \quad \text{so} \quad p_1 = 4, \quad (2\cdot 4) - 5 = 3,
\]

from Equation (4.2)

\[
\langle 2p_2 \rangle_s = 3, \quad \text{so} \quad p_2 = 5 \quad \text{for} \quad (2\cdot 5) - 7 = 3.
\]

This result can be verified by substituting \(7\cdot 4 - 5\cdot 5 = 3 \) into the above equation. Theorem 6 is very useful as shown in the following example.

In Theorem 3 of Section III, the number of cycles on track \(L_{ij} \) from the starting point “0” to its target position “\(s_{ij} \)’” can be expressed by setting \(d_{ij} = 0 \), i.e.

\[
\langle s_{ij}k_{ij} \rangle_m = d_{ij}, \quad \text{or} \quad \langle s_{ij}k_{ij} + p_i m_i \rangle_m = d_{ij} \quad (4.3),
\]

where \(s_{ij} \) is the module \(i \) stride distance referring to module \(j \). Similarly, the number of cycles on track \(L_{jk} \) from the starting point “0” to its target position “\(s_{jk} \)’” can be expressed by setting \(d_{jk} = 0 \), i.e.;

\[
\langle s_{jk}k_{jk} \rangle_m = d_{jk}, \quad \text{or} \quad \langle s_{jk}k_{jk} + p_k m_j \rangle_m = d_{jk} \quad (4.4)
\]

Since, from theorem 3, the cyclic length of the residue digits differences reference to module \(m_j \) is constant (uniform), then there must exist a condition,

\[
c_{ij}\cdot s_{ij} \cdot k_j = c_{jk}\cdot s_{jk}\cdot k_j
\]

Eliminating the above terms from Equations (4.3) and (4.4),

\[
c_{ij} \cdot p_i \cdot m_i - c_{jk} \cdot p_k \cdot m_j = c_{ij} \cdot d_{ij} - c_{jk} \cdot d_{jk} = D_k'
\]

\[
p_i m_i - p_k m_j = D_k'
\]

where \(p_i' = c_{ij} p_i \), \(p_k' = c_{jk} p_k \) and \(D_k' = c_{ij} d_{ij} - c_{jk} d_{jk} \)

Example 4-2

Let the moduli set \(\{m_1, m_2, m_3, m_4, m_5\} = (4, 5, 7, 9, 11) \)

\[
x = (x_1, x_2, x_3, x_4, x_5) = (1, 2, 6, 7, 9)\), and the error
\]

\[
x' = (x'_1, x'_2, x'_3, x'_4, x'_5) = (1, 2, 5, 7, 9)\), the error occurs at \(m_3 \).

Follow the same procedures of the Example 4-1 to use this algorithm.

\[
\langle S_{i_3k_{i_3}} \rangle_s = \langle 5k_{i_3} \rangle_s = 2, \quad \text{or} \quad \langle 5k_{i_3} + 4p_i \rangle_s = 2 \quad (4.5)
\]

\[
\langle S_{i_3k_{i_3}} \rangle_s = \langle 4k_{i_4} \rangle_s = 0, \quad \text{or} \quad \langle 4k_{i_4} + 5p_i \rangle_s = 0 \quad (4.6)
\]

\[
\langle S_{i_3k_{i_4}} \rangle_s = \langle 2k_{i_4} \rangle_s = 5, \quad \text{or} \quad \langle 2k_{i_4} + 7p_i \rangle_s = 5 \quad (4.7)
\]

\[
\langle S_{i_3k_{i_5}} \rangle_s = \langle 2k_{i_5} \rangle_s = 9, \quad \text{or} \quad \langle 2k_{i_5} + 11p_i \rangle_s = 9 \quad (4.8)
\]

Eliminating \(5k_{i_4} \) and \(4k_{i_4} \) from Equation’s (4.5) and (4.6)

\[
16p_i - 25p_2 = 8 ,
\]

\[
p_i = 13, \quad \text{and} \quad p_2 = 8,
\]

solve for \(k_{i_4} \) from (4.5),

\[
\langle 5 * k_{i_4} + 4 * 13 \rangle_s = 2,
\]

\[
\therefore \quad k_{i_4} = 10,
\]

or \(4 \cdot k_{i_4} = 5 \cdot 8 = 40 \),

\[
\therefore \quad k_{i_4} = 10. \ldots
\]

Check from Equation (4.5),

\[
\langle 2 * 10 \rangle_s = 9, \quad \langle 2 * 10 \rangle_s = 6 \neq 5.
\]

This shows that the error occurs at module \(m_3 \). From this result, we can immediately obtain \(\langle 2 * 10 \rangle_s = 6 \). Noting that it may happen that the assigned referenced memory moduli falls coincidentally with error memory module \(m_3 \). In this occurrence, we cannot find the correct (integers) values of \(P_1 \) and \(P_2 \) within the legitimate range. It seems that this algorithm can only detect error. To complete the error correction procedure, we can simply change the referenced module to any other and follow the same procedure as before. This guarantees that the proposed algorithm in Theorem 4 will also work well in this case. The hardware structure for illustrating this algorithm is shown in Figure 3.

The proposed TRD (target Race Distance) scheme used for error correction can be used for scaling and assigning numbers in a residue number system. A redundant residue number system (RRNS) is defined as before in an RNS with \(r \) additional moduli. The moduli \(\{m_1, m_2, \ldots, m_r, \ldots, m_N\} \), are called the nonredundant moduli, while the extra \(r \) moduli, \(\{m_r+1, m_r+2, \ldots, m_N\} \), are the redundant moduli. The interval, \([0, M_k - 1] \), is called the legitimate range where \(M_k = \prod_{i=1}^{r} m_i \) and the interval, \([M_k, M_k - 1] \), is the illegitimate range, where \(M_k = M_k M_s = M_k \prod_{i=1}^{r} m_{si} \) is the total range. In the RRNS, the negative numbers within the dynamic range are represented as states at the upper extreme of the total range, which is part of the illegitimate range. The positive members are mapped to the interval \(\left[0, \frac{(M_k - 1)}{2}\right] \), if \(M_k \) is odd, or \(\left[0, \frac{M_k}{2}\right] \), if \(M_k \) is even. The negative numbers are mapped to the interval
Parallel Algorithms for Residue Scaling and Error Correction in Residue Arithmetic

\[m_1 = 4, m_2 = 5, m_3 = 7, m_4 = 9, m_5 = 11 \]

Figure 3. In the block diagram using optimal matching between multiples \(P_i \cdot m \) and \(P_k \cdot m_k \), the residue digits are corrected by \(s_i - x_4 = d_{i4} \).

\[\left[M_{i\nu} - \frac{(M_k - 1)}{2}, M_{i\nu} - 1 \right] \text{ if } M_k \text{ is odd or} \]
\[\left[M_{i\nu} - \frac{M_k}{2}, M_{i\nu} - 1 \right] \text{ if } M_k \text{ is even} \ [14]. \]

The one-to-one correspondence between the integers of the dynamic range and the states of the legitimate range in the RRNS can be established using a polarity shift. \[\{1, 2\} \]

\[\left[\begin{array}{c} p \times M_k \times X \\ \pm \end{array} \right] \text{ if } M_k \text{ is odd} \]
\[\left[\begin{array}{c} p \times M_k \times X \\ \pm \end{array} \right] \text{ if } M_k \text{ is even} \ [11]. \]

Since \(\left[\begin{array}{c} x \times M_k \\ \pm \end{array} \right] \), and can be repre-
sented uniquely by \(\{a_{k+1}, a_{k+2}, \ldots, a_{k+r}\} \), where \(a_{k+i} \)'s are the coefficient from the Chinese Remainder Theorem (CRT), i.e., \(X'_p = \sum_{i=1}^{k+r} a_i \prod_{j=1}^{k+r} m_j \), where \(m_0 = 1, 0 \leq a_i \leq m_i \).

Note that the redundant digits \(a_{k+i}, a_{k+i+1}, \ldots, a_{k+r} \) are zeros if no error is introduced, while at least one redundant digit is not equal to zero if a single error is introduced. Therefore, it has the same meaning that \(\left[X'_p \right]_{M_k} = m_0 \).

or \(\{a_{k+i}, a_{k+i+1}, \ldots, a_{k+r}\} \) is used to be the entries of the error correction.

1) \(M_r > m_r m_{r+1} \ldots m_{s-1} \), \(1 \leq i \leq k \), \(1 \leq s \leq r \), and
2) \(M_r > 2m_r m_j - m_i - m_j \), \(1 \leq i, j \leq k \), and \(i \neq j \).

Although the errors detection and correction described in section II have been simplified the processes due to no need of CRT conversion. It is still hardware complex and time consuming for the residue scaling operation. To improve this drawback, a direct residue-scaling algorithm can be used. It is flexible and direct to detect and prevent the errors. The flexibility means that the scaling factor can be arbitrary chosen any single module such as \(m_i \), i.e., not necessarily beginning from \(m_i, m_{i+1}, \ldots, m_r \) in order. The direct capability means no requirement for CRT extension processes for decoding or lookup tables. The following theorem (theorem 7) and example are clarified.

Theorem 7. If the scaling factor \(K \) is one of the module set \(\{m_1, m_2, \ldots, m_s, \ldots, m_k, \ldots, m_r\} \) and the residue digits are \(\{x_1, x_2, \ldots, x_s, \ldots, x_r\} \), respectively, then the residue digit \(x_i \) scaled by a factor \(m_{j,s} \), \(j \neq s \), can be obtained using the equation

\[
\{m_{ij} y_i\}_{m_j} = x_i
\]

Proof: It is easy to show that when \(m_i = m_j \), and Equation (4-9) is divided by \(m_i \) on both side, we have

\[
\left[\frac{m_{ij} y_i}{m_j} \right]_{m_j} = x_i
\]

Example 4-3. For convenient comparison of the proposed TRD algorithm to other schemes such as appeared in [14], we take the same numerical example in [11]. Let the moduli set \(\{m_1, m_2, m_4, m_5, m_6, m_7\} = \{2, 5, 7, 9, 11, 13\} \), where \(\{m_1, m_2, m_4, m_5, m_6\} \) are regular modular and \(\{m_7\} \) are redundant modular. Then \(M_7 = 2 \cdot 5 \cdot 7 \cdot 9 = 630 \), \(M_6 = 11 \cdot 13 = 143 \), \(M_5 = M_4 \cdot M_6 = 630 \cdot 143 = 90090 \), and

\[
X_p = \left[\frac{M_k}{2}, \frac{M_k}{2} \right] = [-315, 315].
\]

The sufficient conditions for correcting single residue digits errors are

1) \(M_r > m_r m_{r+1} \ldots m_s \), \(i = 1, 2, 3 \), or \(4 \), \(s = 1 \), or \(2 \), \(k = 4 \). The maximum

\[
m_r m_{r+1} = m_r \cdot m_6 = 9 \cdot 13 = 117 < 143 (M_7),
\]

2) \(M_r > 2m_r m_j - m_i - m_j \), \(i = 1, 2, 3 \), or \(4 \).

The max \(\{2m_r m_j - m_i - m_j\} = 2m_r m_i - m_i - m_i = 2 \cdot 7 \cdot 9 - 7 - 9 = 110 < 143 (= M_7) \).

Thus the moduli set satisfies the necessary and sufficient conditions for correcting single errors digit. Assume \(X = -311 = \{1, 4, 4, 4, 8, 1\} \) and a single digit error \(e_2 = 4 \) is introduced, then \(X' = \{1, 3, 4, 4, 8, 1\} \).

After a polarity shift, \(X''_p = X' + \frac{M_k}{2} = \{0, 3, 4, 4, 4, 4\} \).

Follow the same procedures as shown in Example 4-2. CPRDD is applied for correction without the need for using a table.

1) Assign the moduli \(m_i = 9 \) as the reference moduli, the following residue digit references and its corresponding CPRDD equations: \(\{sk_i\}_{m_i} = \{d_{ij}\}_{m_j} \) are obtained

\[
\{d_{i4}\}_2 = 1, \{7k_{i4}\}_2 = 1;
\]

\[
\{d_{i5}\}_4 = 4, \{4k_{i5}\}_4 = 4;
\]

\[
\{d_{i7}\}_4 = 0, \{2k_{i7}\}_4 = 0;
\]

\[
\{d_{i8}\}_4 = 7, \{2k_{i8}\}_4 = 7;
\]

\[
\{d_{i6}\}_4 = 3, \{4k_{i6}\}_4 = 3.
\]

2) Choose two highest digit difference as one pair for equal target race distance e.g.

\(\{2k_{i6}\}_{i1} = 7 \) and \(\{4k_{i6}\}_{i3} = 3 \). Then the true primary RDD equations are

\[
\{2k_{i6} + 11p_i\}_{i1} = 7
\]

(4-11),

And \(\{4k_{i6} + 13p_i\}_{i3} = 3 \) (4-12),

where \(p_1 \) and \(p_2 \) are selected so that the two RDD are equal distances.

3) Eliminating \(k \) terms in Equation’s (4-11) and (4-12) by putting \(k_{i5} = k_{i6} \)

\[
(22p_1) - (13p_2) = 11,
\]

\[
p_1 = \frac{11 + (13p_2)}{22}
\]

where

\[
p_2 = 11, \text{ then } p_1 = \frac{11 + 143}{22} = 7.
\]

4) Substituting \(p_1 \) and \(p_2 \) into equations (4-9) and (4-10) respectively, we have \(2k_{i5} = 11 - 7 + 7 = 70 \), then \(k_{i5} = -35 \), and \(4k_{i6} + 13 \cdot 11 = 3 \), also,

\[
k_{i6} = -143 + 3 \]

\[
4 = -35.
\]
5) Checking other three RDD’s:

\[4k_{24}, 4 - 35 \]
\[0 \]
\[1 \]
\[4 \]

The only different module residue occurs on module number at \(m = 5 \), i.e., \(x'_5 = x_5 = 4 - 0 = 4 \). The three target distances, can be from any module residue, say, (except \(m = 5 \)), \(m = 7 \). After subtracting 4, the following two equations can be obtained:

\[\begin{align*}
2k_{34} & = 7, \\
4k_{45} & = 3.
\end{align*} \]

2) Choose two highest digit differences as one pair for equal target race distances. e.g.

\[2k_{34} = 7 \text{ and } 4k_{45} = 3, \]

3) Eliminating k terms in (4-13a) and (4-13b) by putting

\[k = k_{24} \]
\[22p_1 - 13p_2 = 0 \text{ then } p_1 = 13 \text{ and } p_2 = 22. \]

4) Substituting \(p_1 \) and \(p_2 \) into Equation’s (4-13a) and (4-13b) respectively, we have \(2k_{34} + 11 \cdot 13 = 0 \), then

\[k_{34} = - \frac{13}{2} \text{ and } 4k_{45} + 13 \cdot 22 = 0, \]

\[k_{45} = - \frac{13}{2}. \]

After a polarity shift, \(x'_p = x' + \frac{M}{2} = 54058 = \{1, 3, 4, 4, 8, 1\} \{0, 3, 4, 4, 4, 4\} \]
\[\mathbf{X'} \times \mathbf{K} \]
\[85(M_k = 2 \cdot 5 \cdot 7 \cdot 9 = 630). \]

For verifying our proposed algorithm, the table of the corresponding equation is not required as [13]. The processes for finding and correcting a single error based on our method are described below.

1) Find the residue digit difference to a selected module, say \(m_1 \) as before \(x' = 53743 = \{1, 3, 4, 4, 8, 1\} \). For verifying that our proposed algorithm detects and corrects single error without using a table, the same numerical example is used to describe the procedure as follows:

\[(1 + 12) = 0 \]
\[(4 + 4) = 4 \]
\[(7 + 8) = 4 \]
\[(3 + 1) = 4 \]

Obviously, the error is located at \(m_2 = 5 \) thus \(x'_p = x' + \frac{M}{2} = 3 \cdot 4 = -1. \)

Furthermore, the CPRDD algorithm can be used directly and in parallel for residue scaling and error correction. Thus the process is greatly speeded up.

Example 4-4 For convenient comparison, the same numeric example as [13] is illustrated here. Consider \(\{m_1, m_2, m_3, m_4, m_5, m_6\} = \{2, 5, 7, 9, 11, 13\} \), and scaling factor \(K = m_1 \cdot m_2 = 2 \cdot 5 = 10 \). If an input \(X = \{0, 5, 2, 4, 3\} \) and a single residue digit error \(e_3 = 1 \), corresponding to \(m_3 = 7 \),

Then \(X' = 25535 = \{1, 0, 6, 2, 4, 3\} \). After a polarity shift, \(x'_p = x' + \frac{M}{2} = 25850 = \{0, 0, 6, 2, 0, 6\} \)

1) Dividing by \(m_1 = 2 \) after subtracting \(x'_p = 0 \) from \(x_1, x_2, \ldots, x_6 \)

\[(2p_2) = 0, \text{ this leads } p_2 = 0. \]
Parallel Algorithms for Residue Scaling and Error Correction in Residue Arithmetic

\[\{2p_1\} = 6, p_3 = 3, \]
\[\{2p_2\} = 2, p_4 = 1, \]
\[\{2p_3\} = 0, p_5 = 0, \]
\[\{2p_6\} = 6, p_3 = 3. \]

2) Dividing by \(m = 5 \) after subtracting \(x'_{p_3} \) from \(x_1, x_2, \ldots, x_6 \)

\[\{5k_1\} = 3, k_3 = 2, 9, 16, \ldots; \]
\[\{5k_4\} = 1, k_3 = 2, 11, 20, \ldots; \]
\[\{5k_5\} = 0, k_3 = 0, 11, 22, \ldots; \]
\[\{5k_6\} = 3, k_3 = 11, 24, 37, \ldots. \]

Since from above only \(k_3 \) does not match with all other’s \(k_i \), i.e. \(k_3 \cap k_3 = 0 \) and \(k_3 \cap k_6 = 11 \). Therefore, there occurs an error in \(m = 7 \). Once this error is detected, it is easily found and corrected from the above equations, \(\{9k_1\} = \{5-11\} = 6, \) which in turn \(p_3 = 6 \) and \(X = (2p_1) = (2 \times 6) = 12 \).

Divided by "2",

\[\{2p_1\} = p_3 = 0; \]
\[\{2p_2\} = p_3 = 5, p_3 = 6; \]
\[\{2p_3\} = p_3 = 2, p_4 = 1; \]
\[\{2p_4\} = p_3 = 0, p_4 = 0; \]
\[\{2p_5\} = p_6 = 6, p_3 = 3; \]
\[\{2p_6\} = p_3 = 0, p_4 = 3 \]

that \(\{p_1, p_2, p_3, p_4, p_5, p_6\} = (0, 0, 5, 2, 0, 6) \)

Divided by "5",

\[\{5k_1\} = p_3 - 6, p_3 = 4; \]
\[\{5k_2\} = p_3 + 1, p_4 = 2; \]
\[\{5k_3\} = p_3 = 0, p_4 = 0; \]
\[\{5k_4\} = p_3 = 3, p_6 = 11; \]

\[\{p_3, p_4, p_5, p_6\} = (42011) = 11 = (55/5) \]

The hardware structure of this example for the residue scaling is shown in Figure 4.

Actually this algorithm can be divided by any arbitrary moduli.

Example 4-5

Divided by any arbitrary moduli, say \(m_3 = 9 \), it must subtract \(x'_{p_3} = 2 \) from \(X \)
Figure 4. Hardware structure of the residue scaling number for Example 4-4.

\[d_{25} = 0, S_{25} = 6, \left\{ 6 \cdot k_{25} \right\} = 0, k_{25} = 0.5; \]
\[d_{35} = 3, S_{35} = 4, \left\{ 4 \cdot k_{35} \right\} = 3, k_{35} = 6.13; \]
\[d_{45} = 1, S_{45} = 2, \left\{ 2 \cdot k_{45} \right\} = 1, k_{45} = 5.14; \]
\[\left\{ d_{55} \right\}_{13} = \left\{ -3 \right\}_{13} = 10, S_{56} = 2, \left\{ 2 \cdot k_{56} \right\}_{13} = 10, k_{56} = 5.18; \]
the correct \(k_{i,5} = 5 \). RDD = 11 \cdot 5 = 55, and
\[\left\{ k'_{55} \right\}_{5} = \left\{ 55 \right\}_{5} = 6. \]

This shows \(k_{25} = k_{45} = k_{56} (= 5) k_{35} \). Therefore the error correction is made by \(d_{35} = \left\{ 4 \cdot 5 \right\}_{7} = 6 \), and
\[X_3 = d_{35} + X_3 = 6 + 0 = 6, \]
which corresponds to the value in Example 4-4, in scaling factor \(k = 10 \), (dividing by “5” part).

From above results, this checks that scaling
\[\frac{x}{k} = 11 - \frac{315}{10} = -20.5 \]
which is within the accuracy of the residue scaling factor.

In a general case, \(x_j \neq x_j \neq 0 \), this time we must modify the subtraction of \(x_i \) and \(x_j \) from the \(X \), before the process of the scaling. If \(k = m_i \cdot m_j \) is the scaling factor, then the subtraction must change to
\[X' = X - \left(x_j + x_j \right), \]
where \(x_j = m_i k_i \) so that
\[x_j = x_i + \left\{ m_i k_i \right\}_{m_j} \] or \(\left\{ m_i k_i \right\}_{m_j} = x_j - x_i \). Let us consider the following example:

Example 4-8
\[X = \{ 1, 2, 0, 3, 5 \} = 135 \]
of moduli set
The scaling factor $K = m_1 \cdot m_2 = 2 \cdot 7 = 14$ is assumed. Then, residue $x^\Delta = m_k k_i$ and k_i can be found from

$$\langle 2k_i \rangle = x_i - x_3 = (2 - 1) = 1, \quad \langle k_i \rangle \leq \frac{M_j}{m_j}, \quad k_i = 4.$$ Thus

$$x^\Delta_i = 2 \cdot 4 = 8, \quad \text{and} \quad (x_i + x^\Delta_i) = 1 + 8 = 9.$$

Alternatively, it could be from other module m_3,

$$x^\Delta_i = \langle 7k_i \rangle_j, \quad \text{where} \quad \langle 7k_i \rangle_j = x_i - x_3 = (1 - 2) = \langle -1 \rangle = 1, \quad \text{and} \quad 7k_i = 7 : (x_i + x^\Delta_i) = (2 + 7) = 9 \quad \text{which has the same number to be subtracted.}$$

$m_1 m_2 m_3 m_4 m_5 m_6$

$\begin{align*}
&\; m_1 = 2 & m_2 = 5 & m_3 = 7 & m_4 = 9 & m_5 = 11 & m_6 = 13 \\
&\; x_i = 1 & 0 & 2 & 0 & 35 & 135 \\
&\; x_i - 9 = \langle -8 \rangle = \langle -9 \rangle = \langle -7 \rangle = \langle -9 \rangle = \langle -6 \rangle = \langle -4 \rangle = 135 - 9 = 126 \\
\end{align*}$

From CPRDD algorithm, the scaling processes are performed as before, we then have the following results by scaling factor $K = m_1 \cdot m_2 = 2 \cdot 7 = 14$;

$$\begin{align*}
&\langle 14P_i \rangle_j = 1, P_i = 4, 9, \ldots; \\
&\langle 14P_i \rangle_j = 0, P_i = 0, 1, 2, \ldots, 9, \ldots; \\
&\langle 14P_i \rangle_j = 0, P_i = 9, 18, \ldots; \\
&\langle 14P_i \rangle_j = 5, P_i = 9, \ldots; \\
&\langle 14P_i \rangle_j = 9, P_i = 9, \ldots \\
\end{align*}$$

Thus $X = 9$, which is exactly the value $\frac{126}{14} = 9$ and is the most closed to $\frac{135}{14} = 9$.

This result can be checked using sequential steps as follows:

For $x_i - 1, i = 1, 2, 3, \ldots, 6$;

$m_i = (2, 5, 7, 9, 11, 13)$

$x_i = (1, 0, 2, 0, 3, 5)$

$x_i - 1 = (0, -1, 1, 1, 2, 4)$

Divided by 2:

$$\begin{align*}
&\langle 2k_i \rangle = -1, k_i = -3; \\
&\langle 2k_i \rangle = 1, k_i = 4; \\
&\langle 2k_i \rangle = -1, k_i = -5; \\
&\langle 2k_i \rangle = 2, k_i = 1; \\
&\langle 2k_i \rangle = 4, k_i = 2; \\
\end{align*}$$

$m_i = (2, 5, 7, 9, 11, 13)$

$k_i = (\langle -3 \rangle, 4, -5, 1, 2)$

Divided by 7:

$$\begin{align*}
&\langle 7q_i \rangle = \langle -2 \rangle = 3, q_i = 9; \\
&\langle 7q_i \rangle = 0, q_i = 9; \\
&\langle 7q_i \rangle = \langle -3 \rangle = 8, q_i = 9; \\
&\langle 7q_i \rangle = 11, q_i = 9. \\
\end{align*}$$

This result of $q = \frac{135}{14} = 9$ shows that the CPRDD algorithm has the capability of parallel processing operations in residue scaling and error corrections, i.e., any combination moduli scaling factors for Ks of moduli set $\{m_1, m_2, \ldots, m_k\}$ can be performed simultaneously.

5. Conclusions

The arithmetic operations in the residue number system for addition, subtraction, and multiplication can be speeded up by using its parallel processing properties. However, some difficult operations, such as error detection and correction, must go through conversion or decoding processes from the residue representation to the regional binary number x. This is because the decoding technique is usually accomplished using the mixed-radix digit (MRD) or Chinese Remainder Theorem (CRT), which are time consuming processes requiring hardware complexity. We proposed two algorithms for scaling and error correction without the need for lookup tables or increasing the encoding process.

The Cyclic property of the Residue-Digit Difference (CPRDD) algorithm can detect and correct errors from the RNS cyclic property. Any residue moduli set has a specific cycle length, which can be obtained from the individual residue number, difference, each pair, to a reference memory module m_i. Once the cyclic length is known, then the original value x is easily found, and in turn, the errors can be detected and corrected.

The TRD (Target Race Distance) algorithm combined with CPRDD is used for scaling and for error detection and correction. The scaling results and error correction can be directly performed by these two algorithms without using MRD or CRT. Thus, the decoding process is significantly reduced, and the hardware structure is greatly simplified. Several examples are illustrated and verified for these two algorithms.

REFERENCES

Parallel Algorithms for Residue Scaling and Error Correction in Residue Arithmetic

1965.

