An Efficient and Concise Algorithm for Convex Quadratic Programming and Its Application to Markowitz’s Portfolio Selection Model

Zhongzhen Zhang¹, Huayu Zhang²

¹School of Management, Wuhan University of Technology, Wuhan, China
²Institute of Applied Informatics and Formal Description Methods (AIFB), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

E-mail: zhangzz321@126.com, huayu.zhang@kit.edu

Received May 16, 2011; revised September 9, 2011; accepted September 16, 2011

Abstract

This paper presents a pivoting-based method for solving convex quadratic programming and then shows how to use it together with a parameter technique to solve mean-variance portfolio selection problems.

Keywords: Convex Quadratic Programming, Mean-Variance Portfolio Selection Model, Pivoting Algorithm

1. Introduction

There are a variety of algorithms for solving convex quadratic programming (QP). The most well-known one is active set method [1,2]. However this method is difficult to learn for many people due to its operational manner. In this paper we present a pivoting-based method for solving convex QP which is efficient for calculating and concise for understanding.

The Karush-Kuhn-Tucker conditions (KKT conditions) of QP is a system of (in) equalities where all the expressions are linear equalities or inequalities except for complementarity conditions. Like Wolfe’s method [3] we solve the linear part by a kind of pivoting operation while maintaining the complementarity conditions in the computational process. However the system computed by our method has a much smaller size because many variables are deleted from the KKT conditions.

In 1952 Harry Markowitz published the milestone paper “Portfolio Selection” in which the portfolio selection problem is formulated as a convex quadratic program with nonnegative variables [4,5]. It is nearly 60 years. However most people still think the model is difficult to solve and few people conduct their investment activities by calculating efficient portfolios for references. We see that every investments textbooks have a figure to show portfolios which are formed by two assets with different correlation coefficients. But we can hardly see a book which has an example to show portfolios formed by three or more assets in the case of no short sale. We will present a pivoting-based algorithm together with a parameter technique to solve Markowitz’s portfolio selection model in a very simple form. The most important advantage of our parameter technique is that it can continuously obtain minimal risk portfolios at different levels of return in linear time after a portfolio is established by the pivoting algorithm.

The rest sections of this paper are organized as follows. In Section 2, we introduce a pivoting-based algorithm for solving the system of linear inequalities and the parameter technique for generating new basic solutions which are associated with different right-hand side terms. In Section 3, we introduce basic concepts and operations for solving the convex QP. In Section 4, we discuss how to solve Markowitz’s mean-variance portfolio selection model. For brevity, relative theorems and proofs as well as tedious reasoning processes are omitted. For details, the reader refers to [6-8].

2. The System of Linear Inequalities

Consider a system of linear inequalities in the form:

\[a_i x = b_i, \ i = 1, 2, \ldots, l, \]

\[a_i x \geq b_i, \ i = l + 1, l + 2, \ldots, m. \] \hspace{1cm} (2.1)

where \(x = (x_1, x_2, \cdots, x_n)^T \), \(a_i = (a_{i1}, a_{i2}, \cdots, a_{in}) \) and \(b_i \) is a scalar, \(i = 1, 2, \cdots, m. \)

In our algorithm, the following concepts are em-
A set of maximum linearly independent vectors of \(a_1, a_2, \ldots, a_m\) is called a basis of (2.1). Vectors in the basis are called basic otherwise called nonbasic. The equalities and inequalities associated with basic vectors are called basic otherwise called nonbasic. The system of basic (in) equalities is called a basic system and whose solution set is called a basic cone. The solution to the system of equations that are corresponding to basic (in) equalities, i.e., the vertex of the basic cone, is called basic solution.

Geometrically, our algorithm begins with a basic cone whose vertex is denoted by \(x^{(1)}\). If \(x^{(1)}\) lies on the hyper-planes determined by every equalities and lies in the half-spaces determined by every inequalities of (2.1), it is a solution to the entire system. Otherwise there exists an inequality (or equality) such as \(a_i x \geq b_i\) which is called a violating inequality against \(x^{(1)}\). If the intersection of the half-space \(a_i x \geq b_i\) and the basic cone is empty, there is no solution for (2.1). Otherwise \(x^{(1)}\) is projected onto the boundary \(a_i x = b_i\) of the half-space where \(a_i x \geq b_i\) replaces a basic inequality to constitute a new basic cone. Then the same process is repeated.

Algebraically, a nonbasic (in) equality replacing a basic inequality is accomplished by the following pivoting operation.

Given a basis of (2.1), let \(I_0, I_1, I_2\) and \(I_3\) be the index sets for basic equalities, basic inequalities, nonbasic inequalities and nonbasic equalities respectively. Let \(x^{(1)}\) be the basic solution, i.e., \(a_i x^{(1)} = b_i,\ i \in I_0 \cup I_1\). Suppose that

\[
a_i = \sum_{j \in I_0 \cup I_1} w_{ij} a_j,\ i \in I_3 \cup I_2. \tag{2.2}
\]

If \(w_{ir} \neq 0\) for an \(r \in I_3 \cup I_2\) and an \(s \in I_1\), from the \(r\) th expression of (2.2) we have

\[
a_r = (1/w_{rs}) a_r + \sum_{j \in I_0 \cup I_1 \setminus \{s\}} (-w_{rj}/w_{rs}) a_j. \tag{2.3}
\]

Substitute it into the other expressions of (2.2) to yield

\[
a_i = (w_{ir}/w_{rs}) a_r + \sum_{j \in I_0 \cup I_1 \setminus \{s\}} \left[w_{rj}/w_{rs} - (w_{ir}/w_{rs}) w_{ij} \right] a_j,\ i \in I_3 \cup I_2 \setminus \{r\}. \tag{2.4}
\]

Now, we have a new basic cone whose index set is \(\{r\} \cup I_0 \cup I_1 \setminus \{s\}\) and the associated basic solution is denoted by \(x^{(2)}\). Multiply both sides of (2.4) by \(x^{(2)}\) on the right to have

\[
a_i x^{(2)} = \left(w_{ir}/w_{rs} \right) a_r x^{(2)} + \sum_{j \in I_0 \cup I_1 \setminus \{s\}} \left[w_{rj}/w_{rs} - (w_{ir}/w_{rs}) w_{ij} \right] a_j x^{(2)}
\]

\[
= \left(w_{ir}/w_{rs} \right) b_r + \sum_{j \in I_0 \cup I_1 \setminus \{s\}} \left[w_{rj}/w_{rs} - (w_{ir}/w_{rs}) w_{ij} \right] b_j.
\]

Multiply both sides of (2.2) by \(x^{(1)}\) to have

\[
a_i x^{(1)} = \sum_{j \in I_0 \cup I_1} w_{ij} b_j
\]

Therefore

\[
a_i x^{(2)} - a_i x^{(1)} = \left(w_{ir}/w_{rs} \right) b_r - \sum_{j \in I_0 \cup I_1} \left(w_{ir}/w_{rs} \right) w_{ij} b_j
\]

\[
= \left(w_{ir}/w_{rs} \right) b_r - a_i x^{(1)}.
\]

Rewrite the above expression as

\[
a_i x^{(2)} - b_i = a_i x^{(1)} - b_i - \left(w_{ir}/w_{rs} \right) \left(a_i x^{(1)} - b_i \right)
\]

and let \(\sigma_i = a_i x^{(1)} - b_i,\ \sigma_r = a_i x^{(2)} - b_i\), \(\sigma'_i = a_i x^{(2)} - b_i\) to have

\[
\sigma_i' - \left(w_{ir}/w_{rs} \right) \sigma_r, i \in I_3 \cup I_2 \setminus \{r\}.
\]

In the same way, from (2.3) we have

\[
a_i x^{(2)} - b_i = -\left(w_{ir}/w_{rs} \right) \left(a_i x^{(2)} - b_i \right)
\]

or

\[
\sigma_i' = -\sigma_r/w_{rs},
\]

where \(\sigma_i' = a_i x^{(2)} - b_i\).

The above operational process is called a pivoting (operation) and \(w_{rs}\) is called pivot (element). The row of \(a_i x = b_i\) enters and \(a_i\) leaves the basis and the exchange of these two vectors is denoted by \(a_i \leftrightarrow a_r\). The process is simply shown by Tables 1 and 2. Where

\[
w_{ij}' = w_{ij} - \left(w_{ir}/w_{rs} \right) w_{ij}, i \in I_3 \cup I_2 \setminus \{r\}, j \in I_0 \cup I_1 \setminus \{s\};
\]

\[
\sigma_i' = \sigma_i - \left(w_{ir}/w_{rs} \right) \sigma_r, i \in I_3 \cup I_2 \setminus \{r\}.
\]

For Table 1, \(\sigma_i = a_i x^{(1)} - b_i\) is called the deviation of \(a_i\) or the associated (in-) equality with respect to \(x^{(1)}\). If

\[
\sigma_i = a_i x^{(1)} - b_i = 0, i \in I_3;
\]

\[
\sigma_i = a_i x^{(1)} - b_i \geq 0, i \in I_2,
\]

then \(x^{(1)}\) is a solution to system (2.1). If \(\sigma_i = a_i x^{(1)} - b_i < 0\) for some \(r \in I_2, a_i x \geq b_i\) is called
violating inequality against $x^{(1)}$ and $|a_\sigma x^{(1)} - b_\sigma| ||a_\sigma||$ is called the distance from $x^{(1)}$ to $a_\sigma x \geq b_\sigma$.

The computational steps for the system of linear inequalities are as follows.

Algorithm 2.1. Pivoting algorithm for system (2.1).

Step 1. Construct initial table.

If (2.1) has an inequality in the form of $x_i \geq l_i$, $x_i \geq -M$ is an initial basic inequality; otherwise introduce $x_i \geq -M$ into (2.1) and let $x_i \geq -M$ be the initial basic inequality, $i = 1, 2, \cdots, n$. Where M is a number large enough, $x_i \geq -M$ is called artificial inequality and whose coefficient vector is called artificial vector. The initial basic solution is $x^{(0)} = (x_1^{(0)}, \cdots, x_n^{(0)})^T$ where $x_i^{(0)} = l_i$ or $-M$, $i = 1, 2, \cdots, n$. The initial basic vector is e_i which is the ith row of the identity matrix of order n, $i = 1, 2, \cdots, n$. Other (in) equalities of (2.1) and their coefficient vectors are nonbasic whose deviation with respect to $x^{(0)}$ is $\sigma_i = a_i x^{(0)} - b_i$. Thus we have an initial table as shown by Table 1.

Step 2. Preprocessing.

Let I_1 be the index set of equalities, i.e., $I_1 = \{1, \cdots, l\}$.

1) If $I_1 = \emptyset$, go to step 3. Otherwise, for an $r \in I_1$ if the deviation a_r of a_r is negative, positive or zero, go to 2), 3) and 4) respectively.

2) If there is no positive element in the row of a_r that is corresponding to the basic inequality, (2.1) has no solution; otherwise carry out a pivoting on one of the positive elements, let $I_j = I_1 \setminus \{r\}$ and return to 1).

3) If there is no negative element in the row of a_r that is corresponding to the basic inequality, (2.1) has no solution, otherwise carry out a pivoting on one of the negative elements, let $I_j = I_1 \setminus \{r\}$ and return to 1).

4) If all of the elements in the row of a_r that are corresponding to basic inequalities are zeros, let $I_j = I_1 \setminus \{r\}$ and return to 1); otherwise carry out a pivoting on one of the non-zero elements, let $I_j = I_1 \setminus \{r\}$ and return to 1).

Step 3. Main iterations.

1) If all of the deviations of non-basic vectors are nonnegative, the current basic solution is a solution to (2.1). Otherwise

2) select a non-basic vector with negative deviation to enter the basis. If there is no positive element in the row of entering vector that is corresponding to the basic inequality, (2.1) has no solution, otherwise carry out a pivoting on one of the positive elements and return to 1).

Note that step 1 of Algorithm 2.1 is just a simplified statement for constructing the initial table. In fact, if (2.1) has no inequality $x_i \geq l_i$ but has $x_i \leq u_i$ for a finite u_i, $-\epsilon_i \geq -u_i$ can serve as an initial basic inequality and no need to introduce the artificial $x_i \geq -M$.

From steps 2 and 3 of Algorithm 2.1 we see that basic equalities never leave the basic system. Because if (2.1) has a solution, it must satisfy all the equalities. Therefore, once a non-basic equality enters the basic system, the corresponding column can be eliminated.

Sometimes, a system of inequalities has inequalities in the form of $b_i^* \geq a_i x \geq b_i$, especially $a_i x \geq b_i$, which are formally written as $a_i x \geq b_i$ and $-a_i x \geq -b_i$ in our method. Let π be the basic solution, then deviations of a_i and $-a_i$ are $a_i \pi - b_i$ and $-a_i \pi + b_i$ respectively and with a sum of $b_i^* - b_i$. Since a_i and $-a_i$ are linearly dependent, they cannot be basic simultaneously. If one of them is basic, the deviation of the other one is $b_i^* - b_i > 0$, hence can be ignored. If both of a_i and $-a_i$ are non-basic, they can share one row in the table since the coefficients in the expressions of a_i and $-a_i$ in terms of basic vectors have reversed signs.

It should be noted that even though the basic solution is not explicitly presented in the table, it can be easily obtained from the table. Let $\pi = (\pi_1, \cdots, \pi_n)^T$ be the basic solution which is obtained as follows. If $x_i \geq l_i$ or $-M$ is basic, $\pi_i = l_i$ or $-M$; otherwise π_i equals to the deviation of this inequality plus l_i or $-M$. Or if $x_i \geq -u_i$ is basic, $\pi_i = u_i$; otherwise π_i equals to u_i minus the deviation of $-x_i \geq -u_i$.

There are many rules for selecting a vector to enter or leave the basis. We will give several ones which are used in the main iterations stage.

For a given basis of (2.1) let I_0, I_1 and I_2 be index sets for basic equalities, basic inequalities and non-basic inequalities respectively. Let $x^{(1)}$ be the current basic solution and

$$a_i = \sum_{j : a_{ij} \neq 0} w_j a_{ij}, \sigma_i = a_i x^{(1)} - b_i, i \in I_2.$$

Rule 1. (The smallest deviation rule). Among all the non-basic vectors with negative deviations, select a vector a_i having the smallest deviation to enter the basis. That is if $\sigma_i = \min\{\sigma_i : \sigma_i < 0, i \in I_2\}$, then a_i enters the basis.

Rule 2. (The largest distance rule). Among all the non-basic vectors with negative deviations, select a vector a_i, whose associated inequality is farthest away from the current basic solution to enter the basis. That is if $\sigma_i / ||a_i|| / ||a_i|| = \min\{\sigma_i / ||a_i|| : \sigma_i < 0, i \in I_2\}$, then a_i enters the basis.

Rule 3. (Rule of the farthest distance along an edge). Among all the non-basic vectors with negative deviations, select a vector a_i, whose associated inequality is farthest away from the current basic solution along an edge of the basic cone to enter the basis. That is if $\sigma_i / w_{eq} = \min\{\sigma_i / w_{eq} : \sigma_i < 0 \text{ and } w_{eq} > 0, i \in I_2\}$ for an $s \in I_1$, then a_i enters the basis.

Rule 4. (The smallest index rule). Among all the non-basic vectors with negative deviations, select a vector a_i having the smallest index to enter the basis; and among all the basic vectors to leave the basis, select a vector a_i.

Copyright © 2011 SciRes.
having the smallest index to leave the basis. That is if \(r = \min \{ i \in I_B : \sigma_i < 0 \} \), then \(a_r \) enters the basis; and if \(s = \min \{ i \in I_I : w_j > 0 \} \), then \(a_s \) leaves the basis.

Like Bland’s anti-cycling rule [9], it can be proved that when the smallest index rule is used to solve system (2.1), cycling doesn’t occur.

Now let us consider the parameter technique by which a new basic solution can be obtained from the current table by changing the right-hand side terms of some basic (in) equalities.

For a basis of (2.1), let \(I_B \) and \(I_N \) denote the index sets of basic and nonbasic vectors respectively and \(\overline{\mathbf{x}} \) be the basic solution. Suppose

\[
\alpha_i = \sum_{j=1}^{m} w_j a_j, \quad i \in I_N.
\]

Multiply both sides by \(\mathbf{\overline{a}} \), since \(a_j \overline{\mathbf{x}} = b_j, \quad j \in I_B \), to have

\[
\alpha_i \overline{\mathbf{x}} = \sum_{j=1}^{m} w_j b_j.
\]

Therefore the deviation of the nonbasic \(a_i \) is

\[
\sigma_i = \alpha_i \overline{\mathbf{x}} - b_i = \sum_{j=1}^{m} w_j b_j - b_i, \quad i \in I_N.
\]

If \(b_j \) is changed to \(b_j + \delta_j, \quad j \in I_B \), the deviation of \(a_i \) becomes

\[
\sigma'_i = \sum_{j=1}^{m} w_j (b_j + \delta_j) - b_i = \sigma_i + \sum_{j=1}^{m} w_j \delta_j, \quad i \in I_N. \tag{2.5}
\]

The above operation is denoted by \(a_{j+\delta_j}, \quad j \in I_B \).

Usually we just change the right-hand side of one basic (in) equality such as changing \(b_j \) to \(b_j + \Delta \) for an \(s \in I_B \). Then the deviation of \(a_i \) becomes

\[
\sigma'_i = \sigma_i + w_i \Delta, \quad i \in I_N. \tag{2.6}
\]

It indicates that when the right-hand side of a basic (in) equality is increased by \(\Delta \), deviations of nonbasic vectors with respect to the new basic solution can be obtained by multiplying the column of this basic (in) equality by \(\Delta \), and then add it to the last column (the deviation column). We will use \(a_{i+\Delta} \) to denote such an operation which gives the result (2.6).

3. Convex Quadratic Programming

3.1. Fundamental Concepts and Algorithm

Consider quadratic programming in this form:

\[
\begin{align*}
\min \ f(x) &= \frac{1}{2} x^T H x + c^T x \\
\text{s.t.} \ ax &= b, \quad i = 1, 2, \ldots, l, \\
ax &\geq b, \quad i = l + 1, l + 2, \ldots, m, \\
x &\geq l, \quad i = 1, 2, \ldots, n.
\end{align*}
\]

where \(x = (x_1, x_2, \ldots, x_n)^T \), \(H = (h_{ij})_{n \times n} \) is positive semi-definite, \(c = (c_1, c_2, \ldots, c_m) \), \(a_i = (a_{i1}, a_{i2}, \ldots, a_{in}) \), \(b_i, \) and \(l_i \) are real numbers.

Let \(\lambda_i \) be the Lagrange multiplier associated with \(a_i x = b_i \) or \(a_i x \geq b_i \), \(\mu_i \) be the Lagrange multiplier associated with \(x_i \geq l_i \), and \(e_i \) be the \(i \)-th row of the identity matrix of order \(n \). The KKT conditions for (3.1) are as follows.

\[
\begin{align*}
Hx + c^T &= \sum_{i=1}^{m} \lambda_i a_i^T + \sum_{i=1}^{n} \mu_i e_i^T, \\
\lambda_i &\geq 0, \quad \lambda_i (a_i x - b_i) = 0, \quad i = l + 1, l + 2, \ldots, m, \\
\mu_i &\geq 0, \quad \mu_i (x_i - l_i) = 0, \quad i = 1, 2, \ldots, n, \\
a_i x &= b_i, \quad i = l + 1, l + 2, \ldots, m, \\
x_i &\geq l_i, \quad i = 1, 2, \ldots, n.
\end{align*}
\]

Since

\[
Hx - \sum_{i=1}^{m} \lambda_i a_i^T + c^T = \sum_{i=1}^{n} \mu_i e_i^T = (\mu_1, \mu_2, \ldots, \mu_n)^T \geq 0,
\]

eliminate all the \(\mu_i \) from above KKT conditions to have

\[
\begin{align*}
&h_1 x_1 + \cdots + h_m x_n - a_{11} \lambda_1 - \cdots - a_{1m} \lambda_m \geq -c_1, \quad i = 1, 2, \ldots, n, \\
&a_{11} x_1 + \cdots + a_{m1} x_m = b_1, \quad i = l + 1, l + 2, \ldots, m, \\
&a_{11} x_1 + \cdots + a_{m1} x_m \geq b_1, \quad i = l + 1, l + 2, \ldots, m, \\
x_i &\geq l_i, \quad i = 1, 2, \ldots, n, \\
&\lambda_i \geq 0, \quad i = l + 1, l + 2, \ldots, m, \\
&(a_{i1} x_1 + \cdots + a_{im} x_m - b_i) \lambda_i = 0, \quad i = 1, 2, \ldots, n, \\
&(a_{i1} x_1 + \cdots + a_{im} x_m - b_i) \lambda_i \geq 0, \quad i = 1, 2, \ldots, m.
\end{align*}
\]

(3.2)

We will solve the linear part of (3.2) by Algorithm 2.1 while maintaining all of the complementarity conditions.

(3.2) has \(n + m \) variables where \(\lambda_1, \lambda_2, \ldots, \lambda_i \) are free.

In order to initiate the computation, we introduce artificial inequalities

\[
\lambda_1 \geq -M, \quad \lambda_2 \geq -M, \ldots, \lambda_l \geq -M
\]

into (3.2). The coefficient vectors of first \(n + m \) (in) equalities of (3.2) are

\[
\begin{align*}
h_i &= (h_{i1}, \ldots, h_{im}, -a_{i1}, \ldots, -a_{im}), \quad i = 1, 2, \ldots, n, \\
&= (a_{i1}, \ldots, a_{im}, 0, \ldots, 0), \quad i = l + 1, l + 2, \ldots, m,
\end{align*}
\]

and the coefficient vectors of last \(n + m \) inequalities are denoted by \(e_i \), which is the \(i \)-th row of the identity matrix of order \(n + m, i = 1, 2, \ldots, n + m \).

In system (3.2),
Linearly independent and suppose l pivoting operations can be carried out along the diagonal of the sub-matrix

$$
\begin{pmatrix}
 a_1 & \cdots & a_i & \cdots & a_n \\
 \vdots & & \vdots & & \vdots \\
 a_{i1} & \cdots & a_{ii} & \cdots & a_{in} \\
 \vdots & & \vdots & & \vdots \\
 a_{n1} & \cdots & a_{ni} & \cdots & a_{nn}
\end{pmatrix}
$$

In order to maintain the complementarity conditions, another l pivoting operations are carried out along the diagonal of

$$
\begin{pmatrix}
 -a_{i1} & \cdots & -a_{ii} & \cdots & -a_{in} \\
 \vdots & & \vdots & & \vdots \\
 -a_{n1} & \cdots & -a_{ni} & \cdots & -a_{nn}
\end{pmatrix}
$$

which translate the l basic artificial vectors out of the basis. The above $2l$ pivoting operations are called preprocessing. Since the basic solution must satisfy every equality constraints, once an equality enters the basic system, it is never selected to leave the basic system. For this reason, the columns of basic equalities and the associated rows of artificial inequalities can be deleted from the table. It implies that the upper bound M of the artificial variable may be any number. For convenience of computation, we always take $M = 0$.

The computational process following the preprocessing is called main iterations where each table is called general (pivoting) table, as shown by Table 4.

Where h_N and h_B are a partition of the Lagrange vectors of $\{h_1, \cdots, h_n\}$, e_B and e_N are a partition of the Lagrange vectors of $\{e_{n+1}, \cdots, e_{n+m}\}$, a_N and a_B are partitions of the constraint vectors $\{a_1, \cdots, a_n\}$ and $\{a_{n+1}, \cdots, a_{m}\}$ respectively, and σ_B, σ_E, σ_N in the last column are vectors formed by deviations of the corresponding nonbasic vectors.

We say the principal sub-matrix associated with nonbasic Lagrange vectors and basic constraint vectors to be Lagrange matrix and denote it by L, and say the principal sub-matrix associated with nonbasic constraint vectors and basic Lagrange vectors to be constraint matrix and denote it by Γ. For the initial table, $L = H$ and $\Gamma = O$; for Table 4,

$$
L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} \quad \quad \Gamma = \begin{pmatrix} D_1 & D_{12} \\ D_{21} & D_{22} \end{pmatrix}
$$

Table 3. Initial table for (3.2).

<table>
<thead>
<tr>
<th>e_1</th>
<th>\cdots</th>
<th>e_n</th>
<th>e_{n+1}</th>
<th>\cdots</th>
<th>e_{n+m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>h_{11}</td>
<td>\cdots</td>
<td>h_{1k}</td>
<td>$-a_{11}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>h_n</td>
<td>h_{n1}</td>
<td>\cdots</td>
<td>h_{nk}</td>
<td>$-a_{n1}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>a_1</td>
<td>a_{11}</td>
<td>\cdots</td>
<td>a_{1k}</td>
<td>0</td>
<td>\cdots</td>
</tr>
<tr>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>a_m</td>
<td>a_{m1}</td>
<td>\cdots</td>
<td>a_{mk}</td>
<td>0</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Table 4. The general table.

<table>
<thead>
<tr>
<th>e_B</th>
<th>a_B</th>
<th>h_B</th>
<th>e_{n+B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_N</td>
<td>L_{11}</td>
<td>L_{12}</td>
<td>$-E_{11}$</td>
</tr>
<tr>
<td>e_{n+N}</td>
<td>L_{21}</td>
<td>L_{22}</td>
<td>$-E_{21}$</td>
</tr>
<tr>
<td>e_E</td>
<td>E_{11}</td>
<td>E_{12}</td>
<td>D_{11}</td>
</tr>
<tr>
<td>a_E</td>
<td>E_{21}</td>
<td>E_{22}</td>
<td>D_{21}</td>
</tr>
</tbody>
</table>
It can be proved that both Lagrange matrix and constraint matrix are positive semi-definite when the Hessian matrix H of (3.1) is positive semi-definite. A positive semi-definite matrix has the property that if the ith diagonal entry is zero, then all the entries in the ith row and in the ith column are zeros.

Main iterations involve two kinds of operations. One is called principal pivoting which is carried out on a positive diagonal element of the table. The other one is called double pivoting which is carried out on a pair of symmetric off-diagonal elements successively while the diagonal element is zero. The $2l$ pivoting operations in the preprocessing stage are l double pivoting operations.

The basic solution associated with Table 4 is

$$x_b = l_b, \quad x_n = \sigma^e + l_n, \quad \lambda_b = 0, \quad \lambda_n = \sigma^e.$$

Besides, we have $\mu_p = 0$ and $\mu_q = \sigma^e$. Where l_b and l_n are vectors formed by the right-hand side terms of basic and nonbasic $x_i \geq l_i, \lambda_b$ and λ_n are vectors formed by basic and nonbasic multipliers of $\lambda_1, \lambda_2, \ldots, \lambda_m$, μ_b and μ_n are vectors formed by basic and nonbasic multipliers of $\mu_1, \mu_2, \ldots, \mu_n$ respectively.

Computational steps for the convex QP are as follows.

Algorithm 3.1. Computational steps for (3.2).

Step 1. Initial step.

Let

$$x_i \geq l_i, \ldots, x_n \geq l_n, \lambda_i \geq 0, \ldots, \lambda_m \geq 0$$

be the initial basic system and construct initial table given by Table 3.

Step 2. Preprocessing.

For $i = 1, 2, \ldots, l$, when the deviation of $a_i l$ is less than, greater than, or equal to 0, go to 1), 2) and 3) respectively.

1) If there is no positive elements in the row of a_i that are corresponding to basic inequalities, there is no feasible solution, stop; otherwise carry out a pivoting on one of the positive elements and then carry out a pivoting on the symmetric element.

2) If there is no negative elements in the row of a_i that are corresponding to basic inequalities, there is no feasible solution, stop; otherwise carry out a pivoting on one of the negative elements and then carry out a pivoting on the symmetric element.

3) If all the elements in the row of a_i that are corresponding to basic inequalities are zero, delete the row of a_i and then delete the column of e_{ai}; otherwise carry out a pivoting on one of the nonzero elements and then carry out a pivoting on the symmetric element.

Step 3. Main iterations.

1) If all the deviations of nonbasic vectors (except for nonbasic Lagrange vectors $e_{a_{n+1}}, \ldots, e_{a_n}$ that are corresponding to equality constraints) are non-negative, the current basic solution is the solution to (3.2), stop; otherwise select a nonbasic vector with negative deviation to enter the basis.

2) If there is no positive element in the row of the entering vector that is corresponding to the basic inequality, (3.2) has no solution, stop. Otherwise

3) if the diagonal element in the row of the entering vector is positive, carry out a pivoting on that diagonal element, return to 1); otherwise carry out a pivoting on the largest off-diagonal element in the row of the entering vector, and then carry out a pivoting on the symmetric element, and return to 1).

We will prove that the smallest index rule can prevent cycling even though it may involve more pivoting operations than the smallest deviation rule does. Here each pair of complementary vectors has the same index. For example, h_l and e_i have index i for $i = 1, 2, \ldots, n$, and a_i and e_{n+i} have index $n + i$ for $i = 1, 2, \ldots, m$.

If cycling occurs, some vectors would enter and leave the basis repeatedly. Let s be the largest index of such vectors and consider two tables in the computational process. In one table the sth Lagrange vector enters and the sth constraint vector leaves the basis, and in the other table just reverse. Let P and Q be the principal sub-matrices associated with complementary nonbasic vectors of these two tables, and σ_P and σ_Q be deviations associated with P and Q respectively. Then

$$Q = P^{-1}, \quad \sigma_Q = \sigma_P$$

$$\sigma^T \sigma_Q = -\sigma^T \sigma_Q^T \sigma \leq 0$$

where Q can be partitioned into a 2×2 matrix as shown in Table 4 or positive definite. It contradicts the assumption that the components of σ_P and σ_Q with index s are negative and other components are nonnegative.

3.2. Convex QP with Upper Bounded Variables

Now let us consider the quadratic programming where variables are bounded from above:

$$\min f(x) = \frac{1}{2} x^T H x + cx$$

s.t. $a_i x \geq b_i, \quad i = 1, 2, \ldots, l,$

$$a_i x \geq b_i, \quad i = l + 1, l + 2, \ldots, m,$$

$$u_i \geq x_i, \quad i = 1, 2, \ldots, n.$$ (3.3)

Let

$$h_i (x, \lambda) = h_{ai} x_i + \cdots + h_{an} x_n - a_{ai} \lambda_i - \cdots - a_{an} \lambda_n + c_i,$$

$$i = 1, \ldots, n$$

and let I_1 and I_2 be a partition of $\{1, \ldots, n\}$, i.e., $I_1 \cup I_2 = \{1, \ldots, n\}$ and $I_1 \cap I_2 = \varnothing$. But empty I_1 or I_2 is allowed. It can be verified that if \bar{x} is a solution to the system
and every component of \bar{x} satisfies $-x_i \geq -u_i$ (for all $i \in I_1$) and $x_i \geq l_i$ (for all $i \in I_2$), then \bar{x} is the optimal solution for (3.3).

The solution of (3.4) is as follows.

Firstly, let $I_1 = \{1, 2, \ldots, n\}$ and $I_2 = \emptyset$, i.e., ignoring all the upper bounds u_i, to solve (3.4) where the first two steps of Algorithm 3.1 are applied. In the following computational process we will make the basic solution satisfy not only $x_i \geq l_i$, but also $-x_i \geq -u_i$. That is we should make deviations of both e_i and $-e_i$ non-negative.

In other words, if the deviation of e_i or $-e_i$ is negative, then it is a candidate to enter the basis.

If $-e_i$ is entering the basis but it does not appear in the table, we change the table as follows. Replace the deviation σ_i of e_i with $u_i - l_i - \sigma_i$, reverse signs of other entries in the row of e_i, and then substitute $-e_i$ for e_i; reverse signs of entries in the column of h_i and then substitute $-h_i$ for h_i. The above operation is called a vector substitution for e_i. It amounts to replacing the nonbasic $x_i \geq l_i$ with $-x_i \geq -u_i$ and replacing the basic $h_i(x, \lambda) \geq 0$ with $-h_i(x, \lambda) \leq 0$. Similarly, if e_i is entering the basis but it does not appear in the table, we update the table by conducting a vector substitution for $-e_i$.

Another problem in solving (3.4) is that when a Lagrange vector h_i, $-h_i$, or e_{n+i} is entering the basis, all the entries in this row are non-positive. In this situation, the change of the table is stated in the following 1) and 2).

1) Suppose that the Lagrange vector h_i is entering the basis but all the entries in this row are non-positive. In this case we conduct a vector substitution for h_i, i.e., reverse signs of all the entries of the row of h_i and then substitute $-h_i$ for h_i; reverse signs of entries in the column of h_i and then substitute $-e_i$ for e_i. It amounts to replacing the nonbasic $h_i(x, \lambda) \geq 0$ with $-h_i(x, \lambda) \leq 0$ and replacing the basic $-x_i \geq l_i$ with $-x_i \leq -u_i$. The associated equalities of the last two inequalities are $x_i = l_i$ and $x_i = u_i$, therefore the change of the right-hand side of $x_i = l_i$ is $u_i - l_i$. Considering signs of all the entries in the column of $-e_i$ had been reversed, by (2.6) we multiply the column of $-e_i$ by $l_i - u_i$, and then add it to the deviation column. Similarly, if $-h_i$ is entering the basis but all the entries in this row are non-positive, we conduct a vector substitution for $-h_i$.

2) Suppose that the Lagrange vector e_{n+i} ($i = l + 1$, \ldots, m) is entering the basis but all the entries in this row are non-positive. We see that e_{n+i} is a $n + m$ dimensional unit vector with 1 at the $(n + i)$th position, h_i and $-h_i$ are n and m dimensional vector whose last m components are not all zeros, and the last m components of constraint vectors are zeros. It implies that the expression of e_{n+i} in terms of basic vectors must contain h_i or $-h_i$. Suppose that w_{ij} is a negative off-diagonal entry in the row of e_{n+i} and in the column of $h' = h_i$, then it is a candidate to enter the basis.

We conduct a vector substitution for e_{n+i} in this way: reverse signs of entries in the column of h' and then substitute $-h'$ for h'; replace the deviation σ_j of e'_j for $-e'_j$ with $u_j - l_j - \sigma_j$, reverse signs of other entries in the row of e'_j, and then substitute $-e'_j$ for e'_j. This substitution transforms w_{ij} into a positive number so that a regular pivoting $e_{n+i} \leftrightarrow -h'$ can be carried out.

Now let us give the algorithm for solving (3.3). In this algorithm, the non-basic vectors include not only those listed in the table but also those that are not listed in the table where $e'_j = e_j$ or $-e_j$ and $h'_i = h_i$ or $-h_i$.

Algorithm 3.2. Computational steps for (3.4).

Step 1. Initial step, see step 1 of Algorithm 3.1.

Step 2. Preprocessing, see step 2 of Algorithm 3.1.

Step 3. Main iterations.

1) If all the deviations of non-basic vectors except for e_{n+i} are non-negative, the current basic solution is optimal for (3.3), stop.

2) Select a non-basic vector with negative deviation to enter the basis. If the entering vector is a_i, e'_i, h'_i or e_{n+i}, go to a), b), c), d), respectively.

a) If all the entries in the row of a_i that are corresponding to basic inequalities are non-positive, (3.3) has no feasible solution, stop. If the diagonal entry in the row of a_i is positive, carry out a pivoting on that entry, return to 1); otherwise carry out a pivoting on the largest entry in the row of a_i and then carry out a pivoting on the symmetric entry, return to 1).

b) If e'_i is not listed in the table, conduct a vector substitution for $-e'_i$. In the row of the entering vector e'_i, if all the entries that are corresponding to basic inequalities are non-positive, (3.3) has no feasible solution, stop; otherwise if the diagonal entry is positive, carry out a pivoting on that entry, return to 1); otherwise carry out a pivoting on the largest entry and then carry out a pivoting on the symmetric entry, return to 1).

c) If the diagonal entry in the row of h'_i is positive, carry out a pivoting on that entry, return to 1); otherwise if there is a positive entry in the row of h'_i, carry out a pivoting on the largest entry and then carry out a pivoting on the symmetric entry, return to 1); otherwise conduct a vector substitution for h'_i, return to 1).

d) If the diagonal entry in the row of e_{n+i} is positive, carry a pivoting on that entry, return to 1); otherwise if there is a positive entry in the row of e_{n+i}, carry out a pivoting on the largest entry and then carry out a pivoting on the...
ing on the symmetric entry, return to 1); otherwise conduct a vector substitution for \(e_{v+1}\), return to 1).

4. Mean-Variance Portfolio Optimization

4.1. Markowitz’s Portfolio Selection Model

Suppose that there are \(n\) assets for selection. The rates of return of these \(n\) assets are \(r_1, \ldots, r_n\) (random variables) whose means are \(\mu_1, \ldots, \mu_n\) respectively and the covariance matrix is \(\Sigma = (\Sigma_{ij})_{n \times n}\) where \(\Sigma_{ij} = \text{COV}(R_i, R_j)\).

Let \(x_1, x_2, \ldots, x_n\) be fractions of \(n\) assets. The problem is to determine the portfolio \((x_1, x_2, \ldots, x_n)\) so that it has a minimal variance risk at a certain level of expected return rate. It is formulated as follows.

\[
\begin{aligned}
\min & \quad \frac{1}{2} x^T \Sigma x \\
\text{s.t.} & \quad r_1 x_1 + \cdots + r_n x_n = r_p, \\
& \quad x_1 + \cdots + x_n = 1, \\
& \quad x_1, \ldots, x_n \geq 0,
\end{aligned}
\tag{4.1}
\]

where \(x = (x_1, x_2, \ldots, x_n)^T\) and \(r_p\) is the expected return rate of the investor. Obviously, \(r_p\) should satisfy

\[
\min \{r_1, \ldots, r_n\} \leq r_p \leq \max \{r_1, \ldots, r_n\}
\]

to ensure the feasibility.

The KKT conditions of model (4.1) are

\[
\begin{aligned}
\sigma_{i1} x_1 + \cdots + \sigma_{in} x_n - \lambda_1 - \lambda_2 r_p & \geq 0, \quad i = 1, \ldots, n, \\
\lambda_1 x_1 + \cdots + \lambda_n x_n - r_p & = 0, \\
x_1, \ldots, x_n & \geq 0, \\
(\sigma_{i1} x_1 + \cdots + \sigma_{in} x_n - \lambda_1 - \lambda_2 r_p) x_i & = 0, \quad i = 1, \ldots, n.
\end{aligned}
\tag{4.2}
\]

Add up the \(n\) complementarity conditions to have \(x^T \Sigma x - \lambda_1 - \lambda_2 r_p = 0\), thus

\[
x^T \Sigma x = \lambda_1 + \lambda_2 r_p.
\]

This is another way to compute the variance risk of the portfolio.

(4.1) is a special case of (3.1) mainly in that (4.1) has no general inequality constraints and has feasible solutions. It makes the computation of (4.1) much easy.

Algorithm 4.1. Pivoting algorithm for (4.2).

Step 1. Initial step.

Let

\[
x_1 \geq 0, \ldots, x_n \geq 0, \lambda_1 \geq 0, \lambda_2 \geq 0
\]

be the initial basic system to construct initial table as shown by Table 5.

Where \(e_1, \ldots, e_n, e_{v+1}, e_{v+2}\) are coefficient vectors of the initial basic system which are the \(n + 2\) rows of the identity matrix of order \(n + 2\), \(h_1 = (\sigma_{i1}, \ldots, \sigma_{in}, -1, -r_p)\), \(e = (1, \ldots, 1, 0, 0)\) and \(r = (r_1, \ldots, r_n, 0, 0)\).

Step 2. Preprocessing.

Suppose that \(r_j = \min \{r_1, \ldots, r_n\}\), \(r_2 = \max \{r_1, \ldots, r_n\}\) and \(r_j < r_2\). Carry out four pivoting operations as follows:

\[
e \leftrightarrow e_1, h_1 \leftrightarrow e_{v+1}, r \leftrightarrow e_2, h_2 \leftrightarrow e_{v+2}.
\]

Step 3. Main iterations.

1) If all the deviations of nonbasic vectors except for \(e_{v+1}\) and \(e_{v+2}\) are nonnegative, the current basic solution is the solution of (4.2), stop.

2) select a nonbasic vector (except for \(e_{v+1}\) and \(e_{v+2}\)) with the most negative deviation to enter the basis. If the diagonal entry in the row of entering vector is positive, carry out a pivoting on that entry, return to 1); otherwise carry out two pivoting operations first on the largest entry in the entering vector row and then carry out a pivoting on the symmetric entry, return to 1).

Denote \(\text{rank}(H)\) by the rank of \(H\). It can be proved that among \(n\) basic vectors \(e_1, \ldots, e_n\) at most \(\text{rank}(H) + 2\) ones may be pivoted out of the basis. It implies that at most \(\text{rank}(H) + 2\) components of \((x_1, \ldots, x_n)\) may be nonzeros.

Let \(r_1, \ldots, r_T\) be the realization of \(R_i\) in \(T\) periods, then

\[
r_i = \sum_{t=1}^{T} r_{it} / T.
\]

Let

\[
D = \begin{bmatrix}
\hat{r}_1 - r_1 & \hat{r}_2 - r_2 & \cdots & \hat{r}_n - r_n \\
\hat{r}_2 - r_2 & \hat{r}_3 - r_3 & \cdots & \hat{r}_n - r_n \\
\vdots & \vdots & \ddots & \vdots \\
\hat{r}_n - r_n & \hat{r}_1 - r_1 & \cdots & \hat{r}_{n-1} - r_{n-1}
\end{bmatrix},
\]

then the covariance matrix \(H = D^T D / (T - 1)\). Since \(D\) is an \(T \times n\) matrix, \(\text{rank}(H)\) is no more than \(T\). Therefore each portfolio obtained by Algorithm 4.1 contains no more than \(T + 2\) assets no matter how larger \(n\) is.

An experiment was conducted by using algorithm 4.1 combining with the parameter formula (2.6) for 70 weekend closed prices of 1072 stocks. Here \(n = 1072\) and \(T = 70 - 1 = 69\). It experiences about 80 pivoting operations to obtain one efficient portfolio and 314 pivoting operations to obtain 20 minimal variance portfolios with different values of \(r_p\) which are evenly ranging from the
minimal mean to the maximal mean of the 1072 stocks. Each pivoting requires about 1074 × 1075 multiplications and additions. Therefore the total amounts of computation are 80 × 1074 × 1075 and 314 × 1074 × 1075 multiplications and additions respectively. We know that it requires about 1072^3/3 multiplications and additions to solve a system of 1072 linear equations in 1072 variables by Gaussian elimination.

Now let us give a small example to show how to solve the portfolio problem by using Algorithm 4.1 and the parameter technique introduced in section 2.

Example 1. An investor is interested in three assets. The means of these three assets are 0.05, 0.11 and 0.08,

\[\begin{pmatrix} 0.54 & 0.11 & 0.09 \\ 0.11 & 0.32 & 0.02 \\ 0.09 & 0.02 & 0.21 \end{pmatrix} \]

and the covariance matrix is a portfolio with the minimal variance risk at expected return rate \(r_p = 0.07 \), 0.08, 0.09 or 0.1.

Solution. The model of this problem is

\[
\begin{align*}
\min & \quad \frac{1}{2} x^T H x \\
\text{s.t.} & \quad x_1 + x_2 + x_1 = 1, \\
& \quad 0.05 x_1 + 0.11 x_2 + 0.08 x_3 = r_p, \\
& \quad x_1, x_2, x_3 \geq 0,
\end{align*}
\]

where \(x = (x_1, x_2, x_3)^T \), \(H \) is the covariance matrix and \(r_p = 0.07, 0.08, 0.09 \) or 0.1.

The initial table for \(r_p = 0.07 \) is given by Table 6.

Since the minimal mean is in the first column, we carry out a double pivoting (\(e \leftrightarrow e_1, h_1 \leftrightarrow e_3 \)) to have Table 7.

Since the maximal mean in the second column of the initial table, we carry out a double pivoting (\(r \leftrightarrow e_2, h_2 \leftrightarrow e_3 \)) to have Table 8.

In Table 8, ignoring the deviations of \(e_1 \) and \(e_3 \) since they are associated with equalities, there is only one negative deviation \(-0.2217\) taken by \(h_3 \). Therefore \(h_3 \) enters the basis. Since the diagonal entry 0.37 in the row of \(h_3 \) is positive, carry out a principal pivoting on 0.37 to yield Table 9 ignoring the last three columns.

From the column \(r_p = 0.07 \) we see that all the deviations of nonbasic vectors except for \(e_4 \) and \(e_5 \) are positive, therefore the minimal risk portfolio for \(r_p = 0.07 \) is \((x_1, x_2, x_3) = (0.3671, 0.0338, 0.5991) \), and \(\lambda_1 = 0.4165 \) and \(\lambda_2 = -3.2117 \). The variance risk of this portfolio is

\[
\lambda_1 + \lambda_2 r_p = 0.4165 - 3.2117 \times 0.07 = 0.1916.
\]

Now consider the portfolio with \(r_p = 0.08 \). Since \(\Delta = 0.08 - 0.07 = 0.01 \), by (2.6), we multiply the column of \(r \) by 0.01 and then add it and the column of \(r_p = 0.07 \) to get the column of \(r_p = 0.08 \). We see that the last three numbers of the column of \(r_p = 0.08 \) are still positive. Therefore the minimal risk portfolio for \(r_p = 0.08 \) is \((x_1, x_2, x_3) = (0.2095, 0.2095, 0.5811) \), and \(\lambda_1 = 0.2607 \) and \(\lambda_2 = -1.4459 \). The variance risk of this portfolio is

\[
\lambda_1 + \lambda_2 r_p = 0.2607 - 1.4459 \times 0.08 = 0.1451.
\]

For \(r_p = 0.09 \), since \(\Delta = 0.09 - 0.08 = 0.01 \), we multiply the column of \(r \) by 0.01 and then add it and the column of \(r_p = 0.08 \) to get the column of \(r_p = 0.09 \). We see that the last three numbers of the column of \(r_p = 0.09 \) are positive also. Therefore the minimal risk portfolio for \(r_p = 0.09 \) is \((x_1, x_2, x_3) = (0.0518, 0.3851, 0.5631) \), and \(\lambda_1 = 0.1050 \) and \(\lambda_2 = 0.3198 \). The variance risk is

\[
\lambda_1 + \lambda_2 r_p = 0.1050 + 0.3198 \times 0.09 = 0.1338.
\]

In the same way, we can get the column of \(r_p = 0.1 \). We see that the deviation of \(e_1 \) is negative and the diagonal entry is positive. Carry out a pivoting \(e_1 \leftrightarrow h_1 \) to have Table 10.

From Table 10 we see that the last three deviations are positive. Therefore the minimal risk portfolio for \(r_p = 0.1 \) is \((x_1, x_2, x_3) = (0, 0.6667, 0.3333) \), and \(\lambda_1 = -0.2811 \) and \(\lambda_2 = 4.5556 \). The variance risk of this portfolio is

\[
\lambda_1 + \lambda_2 r_p = -0.2811 + 4.5556 \times 0.1 = 0.1744.
\]

4.2. Portfolio of Upper Bounded Assets

For institutional investors some asset such as a stock is not allowed greater than a limited ratio of the total capital. In this situation the model with upper bounded variables is required. Let \(u_i \) be the upper bound for asset \(x_i \) that satisfies \(u_1 + \cdots + u_n \geq 1 \) and \(0 < u_i \leq 1 \) for \(i = 1, \cdots, n \). This problem is formulated as

\[
\begin{align*}
\min & \quad \frac{1}{2} x^T H x \\
\text{s.t.} & \quad x_1 + x_2 + x_3 = 1, \\
& \quad 0.05 x_1 + 0.11 x_2 + 0.08 x_3 = r_p, \\
& \quad x_1, x_2, x_3 \geq 0, \\
& \quad x_i \leq u_i \quad \text{for } i = 1, \cdots, n.
\end{align*}
\]

Table 6. Initial table for \(r_p = 0.07 \).

<table>
<thead>
<tr>
<th>(e_1)</th>
<th>(e_2)</th>
<th>(e_3)</th>
<th>(e_4)</th>
<th>(e_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1)</td>
<td>0.54</td>
<td>0.11</td>
<td>0.09</td>
<td>-1*</td>
</tr>
<tr>
<td>(h_2)</td>
<td>0.11</td>
<td>0.32</td>
<td>0.02</td>
<td>-1</td>
</tr>
<tr>
<td>(h_3)</td>
<td>0.09</td>
<td>0.02</td>
<td>0.21</td>
<td>-1</td>
</tr>
<tr>
<td>(e)</td>
<td>1*</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(r)</td>
<td>0.05</td>
<td>0.11</td>
<td>0.08</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 7. Result of first double pivoting.

<table>
<thead>
<tr>
<th>(e_1)</th>
<th>(e_2)</th>
<th>(e_3)</th>
<th>(h_1)</th>
<th>(e_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_4)</td>
<td>0.54</td>
<td>-0.43</td>
<td>-0.45</td>
<td>-1</td>
</tr>
<tr>
<td>(h_2)</td>
<td>-0.43</td>
<td>0.64</td>
<td>0.36</td>
<td>1</td>
</tr>
<tr>
<td>(h_3)</td>
<td>-0.45</td>
<td>0.36</td>
<td>0.57</td>
<td>1</td>
</tr>
<tr>
<td>(e_1)</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(r)</td>
<td>0.05</td>
<td>0.06*</td>
<td>0.03</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 8. Result of second double pivoting.

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>r</th>
<th>e3</th>
<th>h1</th>
<th>h2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e4</td>
<td>1.7011</td>
<td>-16.0556</td>
<td>-0.2683</td>
<td>-1.8333</td>
<td>0.8333</td>
</tr>
<tr>
<td>e5</td>
<td>-16.0556</td>
<td>177.7778</td>
<td>0.6667</td>
<td>16.6667</td>
<td>-16.6667</td>
</tr>
<tr>
<td>h3</td>
<td>-0.2683</td>
<td>0.6667</td>
<td>0.37</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>e1</td>
<td>1.8333</td>
<td>-16.6667</td>
<td>-0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e2</td>
<td>-0.8333</td>
<td>16.6667</td>
<td>-0.5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 9. Result of first principal pivoting.

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>r</th>
<th>h3</th>
<th>h1</th>
<th>h2</th>
<th>r_p = 0.07</th>
<th>r_p = 0.08</th>
<th>r_p = 0.09</th>
<th>r_p = 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>e4</td>
<td>1.5065</td>
<td>-15.5721</td>
<td>-0.7252</td>
<td>-1.4707</td>
<td>1.1959</td>
<td>0.4165</td>
<td>0.2607</td>
<td>0.1050</td>
<td>-0.0507</td>
</tr>
<tr>
<td>e5</td>
<td>-15.5721</td>
<td>176.5766</td>
<td>1.8018</td>
<td>15.7658</td>
<td>-17.5676</td>
<td>-3.2117</td>
<td>-1.4459</td>
<td>0.3198</td>
<td>2.0856</td>
</tr>
<tr>
<td>e3</td>
<td>0.7252</td>
<td>-1.8018</td>
<td>0.37</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>-0.2217</td>
<td></td>
</tr>
<tr>
<td>e1</td>
<td>1.4707</td>
<td>-15.7658</td>
<td>-0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6667</td>
</tr>
<tr>
<td>e2</td>
<td>-1.1959</td>
<td>17.5676</td>
<td>-1.3514</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3333</td>
<td></td>
</tr>
</tbody>
</table>

Table 10. Result of principal pivoting for r_p = 0.1.

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>r</th>
<th>h3</th>
<th>h1</th>
<th>h2</th>
<th>e1</th>
<th>e2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e4</td>
<td>4.7078</td>
<td>-49.8889</td>
<td>-3.6667</td>
<td>-2.1767</td>
<td>2.6667</td>
<td>-0.2811</td>
<td></td>
</tr>
<tr>
<td>e5</td>
<td>-49.8889</td>
<td>544.4445</td>
<td>33.3333</td>
<td>23.3333</td>
<td>-33.3333</td>
<td>4.5556</td>
<td></td>
</tr>
<tr>
<td>e3</td>
<td>3.6667</td>
<td>-33.3333</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0.3333</td>
<td></td>
</tr>
<tr>
<td>h1</td>
<td>-2.1767</td>
<td>23.3333</td>
<td>2</td>
<td>1.48</td>
<td>-1</td>
<td>0.1567</td>
<td></td>
</tr>
<tr>
<td>e2</td>
<td>-2.6667</td>
<td>33.3333</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.6667</td>
<td></td>
</tr>
</tbody>
</table>

\[
\min \frac{1}{2} x^T H x \\
\text{s.t. } r_x x_1 + \cdots + r_n x_n = r_p, \quad (4.3) \\
x_1 + \cdots + x_n = 1, \\
0 \leq x_i \leq u_i, i = 1, \ldots, n.
\]

where \(r_{min} \leq r_p \leq r_{max} \) to ensure the feasibility. The minimal value of \(r_p \) is obtained as follows. Suppose that \(r_1 \leq r_2 \leq \cdots \leq r_n \). Distribute 1 to \(x_1, x_2, \ldots, x_n \) sequentially such that \(x_1 = u_1, x_2 = u_2, \ldots, x_{k-1} = u_{k-1}, x_k = v \) where \(u_1 + u_2 + \cdots + u_{k-1} + v = 1 \) and \(0 < v \leq u_k \). Then

\[
r_{min} = r_1 u_1 + r_2 u_2 + \cdots + r_{k-1} u_{k-1} + r_k v.
\]

Similarly, we can obtain the maximal value \(r_{max} \) of \(r_p \). The algorithm for (4.3) is as follows.

Algorithm 4.2. Computational steps for (4.3).

Step 1. Initial step, see step 1 of Algorithm 4.1.

Step 2. Preprocessing, see step 2 of Algorithm 4.1.

Step 3. Main iterations.

1) If all the deviations of non-basic vectors except for \(e_{n+1} \) and \(e_{n+2} \) are non-negative, the current basic solution is optimal for (4.3), stop. Otherwise

2) Select a non-basic vector with negative deviation to enter the basis. If this vector is not listed in the table, conduct a vector substitution. If the diagonal entry in that row is positive, carry out a pivoting on that entry, return to 1); otherwise carry out a pivoting on the most positive entry in that row and then carry out a pivoting on the symmetric entry, return to 1).

Example 2. In Example 1, each asset is not allowed to exceed 50%. Solve a minimal risk portfolio with \(r_p = 0.09 \).

Solution. The initial form is given by Table 11.

As done for Example 1, carrying out 4 pivoting operations \(e \leftrightarrow e_1, h_4 \leftrightarrow e_4, r \leftrightarrow e_5, h_3 \leftrightarrow e_5 \), and then carrying out a principal pivoting \(h_3 \leftrightarrow e_5 \), we have Table 12 where the columns of \(e \) and \(r \) and the rows of \(e_4 \) and \(e_5 \) are deleted.

We see that the third asset 0.5631 is greater than 0.5. Therefore we let \(-e_3\) enter the basis. But \(-e_3\) is not listed
Table 11. Initial table for $r_p = 0.09$.

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>0.54</td>
<td>0.11</td>
<td>0.09</td>
<td>−1</td>
<td>−0.05</td>
</tr>
<tr>
<td>h_2</td>
<td>0.11</td>
<td>0.32</td>
<td>0.02</td>
<td>−1</td>
<td>−0.11</td>
</tr>
<tr>
<td>h_3</td>
<td>0.09</td>
<td>0.02</td>
<td>0.21</td>
<td>−1</td>
<td>−0.08</td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r</td>
<td>0.05</td>
<td>0.11</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 12. Result of 5 pivoting operations.

<table>
<thead>
<tr>
<th></th>
<th>h_3</th>
<th>h_1</th>
<th>h_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>2.7027</td>
<td>−1.3514</td>
<td>−1.3514</td>
</tr>
<tr>
<td>e_2</td>
<td>−1.3514</td>
<td>0.6757</td>
<td>0.6757</td>
</tr>
<tr>
<td>e_3</td>
<td>−1.3514</td>
<td>0.6757</td>
<td>0.6757</td>
</tr>
</tbody>
</table>

Table 13. Result of vector substitution for e_3.

<table>
<thead>
<tr>
<th></th>
<th>h_3</th>
<th>h_1</th>
<th>h_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-e_1$</td>
<td>2.7027*</td>
<td>1.3514</td>
<td>1.3514</td>
</tr>
<tr>
<td>e_1</td>
<td>1.3514</td>
<td>0.6757</td>
<td>0.6757</td>
</tr>
<tr>
<td>e_2</td>
<td>1.3514</td>
<td>0.6757</td>
<td>0.6757</td>
</tr>
</tbody>
</table>

Table 14. Final table.

<table>
<thead>
<tr>
<th></th>
<th>h_3</th>
<th>h_1</th>
<th>h_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-e_1$</td>
<td>0.37</td>
<td>−0.5</td>
<td>−0.5</td>
</tr>
<tr>
<td>e_1</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e_2</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

5. Conclusions

In this paper we proposed a series of pivoting-based algorithms for solving the following problems:

- the system of linear inequalities;
- convex quadratic programming;
- mean-variance portfolio selection problems.

These algorithms are concise for understanding and efficient for computing as shown by the numerical examples and computer experiments for 1072 stocks. We also proved the convergence of the smallest index rule for convex QP therefore for mean-variance portfolio optimization for the first time.

6. References