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ABSTRACT 

It is known that a correspondence from a topological space to a Euclidean space, with open and convex upper sections, 
has an open graph if and only if it is lower hemicontinuous. We refer to this result as the open graph theorem. We pro-
vide a new and simple proof of the open graph theorem. We also show that the open graph theorem leads to novel re-
sults on the existence of constant selections and fixed points for correspondences with non-compact and non-convex 
domain. Finally, we present an economic application of our results to a principal-agent model. 
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1. Introduction 

The closed graph theorem for correspondences asserts 
that a closed-valued correspondence with a compact 
Hausdorff range is upper hemicontinuous if and only if it 
has a closed graph. This result, especially when com- 
bined with Kakutani’s fixed point theorem, has many 
well-known applications in economics. A companion 
theorem, which perhaps is less-known, is the “open 
graph theorem” for correspondences established by Zhou 
[1]: a correspondence S from an arbitrary topological 
space to , with open and convex values, is lower 
hemicontinuous if and only if it has an open graph. Zhou 
and other authors have already used the open graph 
theorem to show the existence of fixed points for a 
correspondence , when X is convex and 
compact. These results have then been exploited to estab- 
lish the existence of equilibria in abstract economies (see, 
e.g., Theorem 7 in Zhou [1]). 

n

:S X X

In this paper we first provide a new proof of the open 
graph theorem. Unlike the original proof of Zhou, which 
is based on the geometric properties of the unit ball in 

, our proof relies on basic separation properties of 
convex sets. We underscore that our proof hinges on a 
lemma which is relevant for dynamic programming 
applications. Moreover, such a lemma also enables us to 
strengthen a theorem on correspondences reported in 
Moore [2]. 

n

Then, we demonstrate that the open graph theorem can 
be employed to obtain a new and simple result on the 
existence of fixed points and constant selections for a  

correspondence S whose domain X is simply a connected 
subset of . Note that we assume neither convexity 
nor compactness of X. Next, we prove, as a corollary, a 
quite surprising property of continuous correspondences 
defined on connected topological spaces. In a nutshell, 
under additional assumptions such correspondences must 
be constant. Finally, we develop an economic application 
of our corollary that concerns contract theory. 

n

The lay-out of the paper is as follows: In Section 2 we 
remind the reader the open graph theorem and we offer a 
new proof. To this end, we first prove an instrumental 
lemma which is interesting in its own right. In Section 3 
we show how the open graph theorem leads to the exi- 
stence of constant selections and fixed points. As a coro- 
llary, in Section 4 we provide sufficient conditions for 
constant correspondences. In Subsection 4.1 we discuss 
an economic application of our result about constant 
correspondences. Specifically, we focus on an abstract 
but fairly general principal-agent model. 

2. The Open Graph Theorem 

The concepts concerning correspondences, used hereafter, 
should already be familiar. At any rate, we refer the rea- 
der to Aliprantis et al. [3], or Border [4]. In Section 4.1 
we shall make use of the following result, reported in 
Moore [2] as Proposition 11.70. 

Proposition 2.1. Let X be a topological space, and 
suppose that  is a lower hemicontinuous 
correspondence with convex values. Then, the correspon- 

: nS X 
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dence  defined by  : nS X 

   S x intS x  

has open lower sections.1 
The following theorem is due to Zhou ([1], Proposition 

2). 
Theorem 2.1. (The open graph theorem): Let X be a 

topological space, and suppose that  is a 
correspondence with convex and open upper sections. 
Then, S is lower hemicontinuous if and only if it has an 
open graph. 

: nS X 

Next we offer a novel proof of Theorem 2.1. Our proof 
hinges upon the following Lemma. 

Lemma 2.1. Let  be a lower hemiconti- 
nuous correspondence, where X is an arbitrary topolo- 
gical space. Suppose that S is convex-valued, and for 
some 

: nS X 

x X ,  intS x  is non-empty. Then, for any 
compact set  K intS x , there exists a neighborhood 
 V x  of x  such that  K S x  for all  x V x . 
Proof. Suppose, by way of contradiction, that the 

claim is false. Then, there is a compact set K, with 
 K intS x  for some x X , a net  x  in X such 

that x x  , and a net  y  such that y K   but 
 y S x   for each  . By a standard result on 

separation of convex sets, the vectors y  can be se- 
parated from the sets  S x . That is, there exists a net 
 π  such that  

π , 0y y     

for any  y S x   ( ,   denotes the inner product in 
). Without loss of generality, we can assume that n

π 1   and that 0  where π π  0π 1  (the proof 
works for any converging subnet of π ). Now, since the 
net  y  lies in K, assume without loss of generality 
that 0 . Since y y K    K intS x , there exists 

> 0  such that  0B y  ( )S x , where  is the 
closed ball of radius 

 0B y 
  around . Now let 0y

0z y π   . For any  y S x  , we have that  

π ,liminf z y  


          (2.1) 

This is because  

0

0

π , π , π

π ,

z y y y

y y

     

 





   

  




 

and 0π , π ,liminf liminfy y y y          0 . 

On the other hand, , where 0 0 00z z  = πz y  . 
Therefore,  0 0 . By lower hemiconti- 
nuity of S, there exists 

( )z B y S x 
ŷ , with  ŷ S x   for 

each  , such that . Thus,  0ŷ z 

ˆπ , 0lim z y  


   

which contradicts (2.1).  
We remark that in the special case in which X is finite- 

dimensional, a proof of Lemma 2.1 can be derived from 
Proposition 4.15 and Theorem 5.9 in Rockafellar and 
Wets [5].2 

Remark 2.1. When the compact set K is a singleton, 
Lemma 2.1 implies the following property of S: If 

 y intS x , then there exists a neighborhood  V x  of 
x  such that  y S x  for all  x V x . In a finite- 
dimensional setting, this property has been exploited by 
Stokey et al. [6] and Kim [7], without proof, to establish 
the differentiability of the value function in dynamic 
programming. In Benveniste and Scheinkman [8], this 
property follows at once from the assumptions on the 
technology set and the initial behavior of the optimal 
path. Aliprantis et al. [9] basically assume it. 

We are now ready to present a new proof of Theorem 
2.1. In what follows, gphs denotes the graph of corre- 
spondence S. 

Proof of Theorem 2.1. If gphs is open, then S has 
open lower sections, and therefore S is lower hemiconti- 
nuous (Lemma 17.12 in Aliprantis and Border [3]). Now 
let ( , )x y gphS . Then ( )y S x , and since S has open 
upper sections, by Lemma 2.1 there exist open neigh- 
borhoods  and , of x and y respectively, 
such that W y

( )V x
( )

( )W y
)(xS   for all ( )x V x . Therefore 

( ) ( )x W y gphV S 
n

, and thus gphs is open in 
X  .  

Remark 2.2. We stress that the above Proposition 2.1 
is reported in Moore [2] without proof. However, notice 
that using Lemma 2.1 above it is easy to show that , 
defined in Proposition 2.1, is lower hemicontinuous. 
Thus, by Theorem 2.1,  has open graph. Because 
open graph implies open lower sections, we obtain a 
result stronger than Moore’s. 

S

S

3. Existence of Fixed Points and Constant 
Selections 

We now use the open graph theorem to establish the exi- 
stence of fixed points for a correspondence , 
where X is simply a connected subset of . The 
following result doesn’t require compactness or con- 
vexity of X. The idea of using connectedness as a sub- 
stitute for convexity was suggested by Horvath [10]. 
However, our result neither implies nor is implied by his 
results. Recall that a topological space X is connected if 
the only clopen (simultaneously closed and open) subsets 
of X are 

:S X X
n

  and X. A subset of a topological space is a 
connected set if it is a connected space with its relative 
topology. The following result is an immediate corollary 
of Theorem 2.1. 

1From here onward, int denotes the interior with respect to the topology 
on . n

2We thank A. Bagh for pointing this out to us. 
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Theorem 3.1. Let X be a connected topological space. 
Assume that  is lower hemicontinuous, 
convex-valued, and with upper sections open in . 
Suppose there exists 

: nS X Y  
n

x X  and ( )y S x  such that 
 1S y  is closed in X. Then, ( )y S x  for all x X . 

In particular, if Y , then  has a fixed 
point. 

X :S X Y

Proof. By assumption, the set  1S y  is closed in X. 
Also, by the open graph theorem  1S y  is open in X.3 
Since  1S y  is both open and closed in X,  1S y  is 
clearly non-empty by assumption, and X is connected, we 
must have that  1X S y , and we are done.  

Remark 3.1. Note that Theorem 3.1 actually estab- 
lishes the existence of a constant selection.4 Note, also, 
that on one hand Theorem 3.1 requires more conditions 
on S than convexity and lower hemicontinuity needed for 
fixed point theorems in . On the other hand, our 
theorem does not impose any compactness or convexity 
assumptions on X. 

n

4. Constant Correspondences 

Theorem 3.1 implies that the full continuity of a corre- 
spondence with open and convex upper section is restri- 
ctive, as the following surprising corollary illustrates. 

Corollary 4.1. Let X be a connected topological space. 
If  is a nonempty-valued continuous corre- 
spondence with convex and open upper sections, then S 
is constant on X. 

: nS X 

Proof. The upper hemicontinuity of S implies that for 
any x X  and any  y S x ,  1S y  is closed in X 
(Lemma 17.4 in [3]). It then follows from Theorem 3.1 
that for any x X  and  y S x ,  y S x  for all 
x X . Hence, S is constant on X.  

Remark 4.1. It should be clear from the above proof 
that Corollary 4.1 still holds true if one replaces upper 
hemicontinuity with the weaker assumption that S has 
closed lower sections. 

Principal-Agent Models 

To illustrate the usefulness of Corollary 4.1, we shall 
outline an application to contract theory. For the main 
concepts and basic results about the principal-agent mo- 
del we refer the reader to Grossman and Hart [11]. 

There is one principal and one risk-averse agent; let 
 be the set of the agent’s feasible actions; let  be 

the set of verifiable performance measures.5 Let 
 be a function that maps any feasible 

action to a (non-atomic) Borel probability measure on 
.  is equipped with the weak* topology. 

Notice that with these primitives the support6 gives rise 
to a well-defined correspondence 



π :

n

n

 n  

 n



  supp   from 
 n  to . Letn  : n  n  be such a corre- 

spondence. Finally, consider the composition  
. := πS  : n 

Following [12], let’s say that the model exhibits shift- 
ing support if the latter changes with the action. With 
shifting support, it is known that basically no hidden 
action problem exists. Furthermore, there are actions 
(which are not least-costly to the agent) that can be 
implemented by the principal at the full-information cost 
(see [11,12]). Therefore, the case of a shifting support is 
in this sense trivial. Thus, to the best of our knowledge, 
in the principal-agent literature a shifting support is 
assumed away. In contrast, here we want to provide su- 
fficient conditions, on the fundamentals of the model, in 
order that the support be independent of the actions. In 
other words, we seek conditions that result in the corre- 
spondence S being constant. To this end, let  

  n :  n   be the correspondence defined by 
   = int 

π

.7 Let S . It will su- 
ffice to show that  is constant. 

:= π :  





n






S

Assumption 4.1.1.   is a connected topological 
space,  is continuous, and π  is a set of Borel 
probability measures with support which is convex and 
that has non-empty interior. Moreover,  has closed 
lower sections. 

S

Proposition 4.1.1. Under Assumption 4.1.1,  is 
constant on A.  

S

Proof. By Theorem 17.14 in [3],  is lower hemi- 
continuous. As the restriction of  to  π

π
:= π

:= π




:

:

 is con- 
vex-valued by assumption, it follows from Proposition 
2.1 above that the restriction of  to  is lower 
hemicontinuous as well. Thus,  is 
lower hemicontinuous. Clearly, it is non-empty-valued 
and has convex and open upper sections. Hence, by 
Corollary 4.1 and Remark 4.1,  is 
constant on .  


S

S


 

 

n

n



5. Conclusion 

In this work we have presented a new proof of the open 
graph theorem. Then we have employed the latter to 
show the existence of fixed points and constant sele- 
ctions for correspondences defined on a connected do- 
main. As a corollary, we have provided sufficient con- 
ditions for a correspondence to be constant. Finally, we 
have developed an economic application of constant 
correspondences that deals with contract theory. Our new 

3Recall that open graph implies open lower sections. 

6We borrow the notion of support from Aliprantis and Border ([3], p. 

 n 441). Also, for any  we denote the support of  by supp

 . 
7We have required the measure to be non-atomic (see above) to rule out 
point mass probability measures. Indeed, the latter measures admit a 
support with empty interior. 

4For economic applications of constant selections, see Horvath [10]. 
5This framework is general for it encompasses multi-tasks and multi-
outcomes models. 
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proof is based on a lemma that utilizes basic separating 
hyperplane theorems and that, therefore, employes stan- 
dard techniques in mainstream economic theory. We 
have argued that from the mathematics standpoint such 
lemma may be of some interest in its own right, and 
moreover it sheds light on some classic proofs of the 
differentiability of the value function in deterministic 
dynamic programming. Our result on the existence of 
fixed points might be useful when compactness and con- 
vexity of the domain is not guaranteed but the corre- 
spondence at hand satisfies specific properties in addition 
to lower hemicontinuity and convexity of its upper se- 
ctions. Whether it can be applied to general equilibrium 
models or in game theory is something that remains to be 
seen. Regarding the significance of our economic appli- 
cation, Proposition 4.1.1 provides “guidelines” to con- 
struct principal-agent models that give rise to a pro- 
bability distribution, over the observable outcomes, with 
support that does not change with the agent’s unobser- 
vable action. One does not have to assume from the 
outset that the support is constant. 
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