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ABSTRACT 

In this paper, a simple transformation is proposed for the fixed effects logit model, which constructs some valid moment 
conditions including the first-order condition for one of the conditional MLE proposed by Chamberlain (1980) [1]. 
Some Monte Carlo experiments are carried out for the GMM estimator based on the transformation. In addition, the 
average elasticity of the logit probability with respect to the exponential function of explanatory variable is proposed in 
the framework of the fixed effects logit model, which is computable without the fixed effects. 
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1. Introduction 

Chamberlain (1980) [1] proposes the useful and estab- 
lished estimator for the fixed effects logit model in panel 
data.1 This estimator is referred to as the conditional logit 
estimator, which maximizes the likelihood function 
composed of the probabilities of the (binary) dependent 
variables conditional on the fixed effects, the (real-val- 
ued) explanatory variables, and the intertemporal sums of 
the dependent variables. The conditional logit estimator 
is consistent for the situation of small number of time 
periods and large cross-sectional size, since its condi- 
tional likelihood function rules out the fixed effects and 
accordingly circumvents the incidental parameters prob- 
lems pointed out by Neyman and Scott (1948) [2].2 

This paper advocates another method of consistently 
estimating the fixed effects logit model for the situation 
of small number of time periods and large cross-sectional 
size.3 The procedure of the method is as follows: First, a 
hyperbolic transformation is applied to the fixed effects 
logit model with the aim of eliminating the fixed effects. 
Next, the GMM (generalized method of moments) esti- 
mator proposed by Hansen (1982) [20] is constructed by 
using the moment conditions based on the hyperbolic 
transformation. It will be seen that these moment condi- 
tions include one type of the first-order conditions of the 

likelihood for the conditional logit estimator. Then, the 
preferable small sample property of the GMM estimator 
using the moment conditions based on the hyperbolic 
transformation is shown by some Monte Carlo experi- 
ments. 

In addition, this paper presents the calculation formula 
of the average elasticity of the logit probability with re- 
spect to the exponential function of explanatory variable 
for the fixed effects logit model. The average marginal 
effect is not obtained due to the incidental parameters 
problems for the case of the fixed effects logit model 
with time dimension being strictly fixed, while it seems 
that no appropriate index measuring the effect of the 
change of explanatory variable is developed, in author’s 
best knowledge. Since the average elasticity is able to be 
calculated using the consistent estimator of the parameter 
of interest and the average of binary dependent variables 
without relation to the fixed effects, it can be said that it 
is a revolutionary index for the fixed effects logit model. 

3It seems that the mainstream of late is the development of the bias-
adjusted estimators, which is available in nonlinear panel data models 
and aims at the reduction of time-series finite sample bias (i.e. the 
approximately unbiased estimation of the incidental parameters as well 
as the parameters of interest, leading to obtaining the approximate 
marginal effects). Various approaches are proposed in line with the 
bias-adjustment: Hahn and Newey (2004) [8], Cox and Reid (1987) [9], 
Lancaster (2002) [10], Arellano (2003) [11], Arellano and Bonhomme 
(2009) [12], Carro (2007) [13], Fernández-Val (2009) [14], Severini 
(1998) [15], Pace and Salvan (2006) [16], Bester and Hansen (2009) 
[17], etc. Some of the approaches are reviewed in Arellano and Hahn 
(2007) [18] and Hsiao (2010) [19]. However, author’s policy is to 
conduct the consistent estimation for the case of small time dimension 
and therefore this paper is not bent upon the bias-adjusted estimators. 

1The rootstock of this estimator is Rasch (1960) [3], (1961) [4]. 
2Additionally, Honoré and Kyriazidou (2000) [5] propose an estimator 
for the fixed effects logit model with the lagged dependent variable (as 
for details, see also pp. 211-216 in Hsiao, 2003 [6]). Further, Thomas 
(2006) [7] proposes two estimators for the fixed effects logit model 
with heterogeneous linear trends. 
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The rest of the paper is as follows: Section 2 presents 
the implicit form of the fixed effects logit model, the mo- 
ment conditions based on the hyperbolic transformation, 
and the GMM estimator. Section 3 illustrates the link 
between the conditional maximum likelihood estimator 
(CMLE) mentioned in the first paragraph in this section 
and the GMM estimator for the case of two periods. Sec- 
tion 4 reports some Monte Carlo results for the GMM 
estimator. Section 5 presents the average elasticity in the 
framework of the fixed effects logit model. Section 6 
concludes. 

2. Fixed Effects Logit Model, Hyperbolic 
Transformation and GMM Estimator 

In this section, the (static) fixed effects logit model is 
implicitly defined where the error term is of additive 
form.4 The hyperbolic transformation, which eliminates 
the fixed effects and then based on which the moment 
conditions is constructed for estimating the model con- 
sistently, is the fruits of the model defined implicitly. The 
GMM estimator is defined by using the moment condi- 
tions constructed. Throughout this paper, the subscripts 

 and  denote the individual and time period respec- 
tively, while  and T  are number of individuals and 
number of time periods respectively. Since the short 
panel is supposed, it is assumed that  and T  is 
fixed. In addition, it is assumed that the variables in the 
model are independent among individuals. 

i t
N



it 1, ,T 

 

N

The fixed effects logit model is able to be written in 
the implicit form as follows: 

it ity p v  , for t ,            (2.1) 

   exp 1 exp

for 1, ,

it i itp w

t T

   

 

,i itw 

y w

  (2.2) 

where the observable variables it  and it  are the 
binary dependent variable and the real-valued explana- 
tory variable respectively, while the unobservable vari- 
ables i  and it  are the individual fixed effect and the 
disturbance respectively.5 Equations (2.1) say that it  
take one with probability it , while it is seen from 
Equations (2.2) that the probability is the logistic cumu- 
lative distribution function of i it

v
y

p

w  . Allowing for 
the serially uncorrelated disturbances, the uncorrelated-
ness between the disturbances and the fixed effect and 
the strictly exogenous explanatory variables, the assump-
tions on the disturbances are specified as 

1E , , 0T
it i iv v w    1, ,t T 

 1
1 , 1

t
i i i tv v v   2, ,t T  0

iv

t
i

, , 

, for ,   (2.3) 

where  for ,  is de- 

fined as the empty set for convenience and  
 , ,Tw w w 

y 1, ,t T 

1i i iT . The assumptions (2.3) can be derived 
from the assumption underlying the fixed effects logit 
model, which is that it  for  are mutually 
independent conditional on i  and w .6 T i

From now on, based on the fixed effects logit model 
composed of (2.1) and (2.2) with (2.3), the moment con- 
ditions for estimating the parameter of interest   con- 
sistently are constructed by using a hyperbolic transfor- 
mation, as stated below. Taking notice of the fact that 

  tanh 2 2 1i it itw p                  (2.4) 

and using the formula that 

 
         

tanh

tanh tanh 1 tanh tanh

a b

a b a b



  

a b

  (2.5) 

with  and  being any real numbers, it follows that 

 
   , 1 , 1 , 1

tanh 2

2

it

it i t it i t it i t

w

p p p p p p



  



   
,       (2.6) 

  is the first differencing operator, such as where 

, 1it it i tw w w   itp , 1it i tp p . Since  and  are written 
as 

1E , ,t T
it it i i ip y v w                    (2.7)  

and 

1
, 1 , 1 , 1E , ,t T

it i t it i t i i i it i tp p y y v w p v
        (2.8) 

respectively by using (2.1) and (2.3), plugging (2.7) and 
(2.8) into (2.6) gives 


   

1 2
, 1

1
, 1 , 1

1 2
, 1

E , , E , ,

2 E , , tanh 2

E , , E , , .

t T t T
it i i i i t i i i

t T
it i t i i i it i t it

t T t T
it i i i i t i i i

y v w y v w

y y v w p v w

y v w y v w

 

 

 

 



 

 


      

    

      

 

(2.9) 

Equations (2.7) and (2.8) are obtained by plugging 
(2.1) into 1E , ,t T

it i i iy v w  and    
1

, 1E , ,t T
it i t i i i

 y v w
 y 

 2 , ,t Tv w

1t

 and then applying (2.3) to them.  

Taking the expectation conditional on i i i  for 
both sides of (2.9) and then applying law of iterated ex- 
ectation and (2.3) dated p , it follows that          

6If the underlying assumption holds, the following relationship is ob-

tained:   

4The regression form defined implicitly is also used by Blundell et al.
(2002) [21] for count panel data. 
5It is generally assumed that the individual effect i  is correlated 
with the explanatory variables  for each . itw i

1, , ,t T T

it i i i it i i it f y y w f y w p    , where f  

 1

1 , 1, ,t

i i i ty y y
 

 is the 

conditional probability density function and . Ac-

cordingly, it follows that 1E , , E ,t T T

it i i i it i i ity y w y w p         

it it itv y p

. As 

for details, see p. 23 in Cameron and Trivedi (2005) [22]. Taking notice 
of (2.1) and the fact that   , the assumptions (2.3) are ob-

tained. 
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      2
, 1 , 1 , 1E tanh 2 2it i t it it i t it i t iy y w y y y y v 
  , , 0 .t T

i iw
       

 n
y y n  2

ity y

              (2.10) 

 

Since it it  for any positive integer value  
due to the property of binary variable (and accordingly 

it  and 2

, 1 , 1i t i ty y 

 

), Equation (2.10) re-
sults in 

 
2E , , 0t T

i i ih v w  

     

it   2, ,T, for t  

 

,                          (2.11) 

 

where 

  2
nh 2it itw y  tait ith y  

0y y  1y y 

.       (2.12) 

The transformation (2.12) is referred to as “the hyper- 
bolic tangent differencing transformation” for the fixed 
effects logit model in this paper and hereafter abbrevi- 
ated to “the HTD transformation”.7 It should be noted 
that as seen from (2.11) and (2.12), observations for 
which , 1it i t  and , 1it i t  make no di- 
rect contribution to obtaining the estimates of   based 
on the moment conditions (2.11), since  ith   is in- 
variably zero for these observations. 

The conditional moment conditions (2.11) give the fol- 
lowing  vector of unconditional moment condi- 
tions: 

1m

0
 

     2i i iTh h h

 E i iz h 
    ,           (2.13) 

where         is the  1 1T  

   2i i iTz  
  

  1T m

 

vector and  is the 

2

T

tt
m m


 

 

matrix with . The (transposed) blocks 

 2 , ,t T
it t i i iz f v w 2, ,t T 

1m

, for ,     (2.14) 

  vector-valued functions of i , i
2tv are the t   and 

i  at time t , where t  is number of instruments for 
time . By using the empirical counterpart of (2.13): 

Tw m
t

 

diagz z 

     1
1

N

N i ii
g N z h 


 

m m

          (2.15) 

  inverse of optimal weighting matrix: and the 

          1 1 11
ˆ ˆ ˆ1

N

N i i i ii
N z h h z  



  
ˆ

,   (2.16) 

where 1  is any initial consistent estimator for  , the 
GMM estimator is constructed as follows: 

       
1

1
ˆ ˆarg minGMM N N Ng g


  

  ,   (2.17) 

 1/2
0ĜMMNwhere  

         
1

1

0 0 0 0N 0,
d

N D D  


         

 converges in distribution to the 

normal distribution as follows: 

 

1/2
ĜMM                      (2.18) 

 

with 0  being the true value of   . Taking notice of the 
assumption that the variables are independent among 
individuals and adding the assumption that the variables 
are identically distributed among individuals,  0

0

, 
which is the (asymptotic) variance-covariance matrix of 

the moment conditions (2.13), can be written by using 
  as follows: 

        0 0 0E i i i iz h h z     ,     (2.19)   

1̂

where it should be noted that (2.16) is the empirical 
counterpart of (2.19) if 

7If the much weaker assumptions   is replaced by 0  and  

    1/2
0 0N 0,

d

NN g    . Further, the first derivative  

of (2.13) with respect to   for 0  is as follows: 

     
0

0 E i iD z h
 

  


        

2
1y

.     (2.20) 

It is conceivable that the discussions for the GMM es- 
timator based on the HTD transformation could be per- 
mitted to be conducted on the basis of numbers of obser- 
vations for which  it  N

 2
1ity

 instead of , on the 
grounds that observations except for those for which 
   make no direct contribution to estimating  . 

1t

i 1E , , 0t

it i iv v w      for 

1, ,t T 

 
 are used instead of (2.3), the moment conditions 

2E , , 0t t

it i i ih v w      for t  can be obtained instead o2, ,T  f 

(2.11), where  and  is defined as the empty set 

for convenience. It should be noted that under the assumptions 

 1, ,t

i i itw w w  w , 1i T 

1E ,t t

it i iv v w T1, 0    1, ,t  i  for , the (consistent) CMLE pro-

posed by Chamberlain (1980) [1] is no longer obtained for . The 

implication of 

3T 
1 1E , ,t t

it i i iv v w    0 ity

w

y

itw

 is that although the decision 

wields no influence over the explanatory variable , 1i t  just behind its 
decision, it can make some sort of influences on the explanatory vari-
ables after , while that of (2.3) is that the decision it have no 
influence on the explanatory variables after its decision. In addition, it 
is regrettable that at this stage, author is unable to construct the valid 
moment conditions when  is endogenous. This would be a task for 
the future. 

1t
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In this case,    2
1 1

T

tt
M T M


N

   is expediently  

used instead of  in this section, where tM  is num-
ber of observations for which  2

1ity 

1t 

 h

 at time t . 

3. Link between CMLE and GMM 
Estimator 

The discussion here is conducted for the case of two pe- 
riods (i.e.  and t ). It is shown in this section that 
the GMM estimator opting for an instrument is identical 
to the CMLE in this case. 

First, the GMM estimator is presented. With  

i it  h   and 2z z w  i it it  (both of which 
are scalars), Equation (2.13) turns to 

    0itw h   E 2it .           (3.1) 

The moment condition (3.1) says that 2w it  is used 
as the instrument for the HTD transformation  hit  . 
The GMM estimator for   is the just-identified one 
when using only the moment condition (3.1) for the two 
periods. This is denoted by  hereafter. *

ĜMM
 hThe first derivative of it   with respect to   and 

the square of ith   are respectively calculated as fol- 
lows: 

     2 2itw 2( ) 2 sechit it ith y w        (3.2) 

and 

       
  

       2 ,

it

it it

w y

w h

2 2

22

2 2

2 tanh 2

tanh 2

sech 2 2 tanh

it it it

it it

it it

h y

w y

y w

 



  



   2n
y n

ity

   

  

    

(3.3) 

where the relationship that it it  if  is 
even and it it  if  is odd is used since  
is binary. Using (2.19), (2.20), (3.2), and (3.3), 

y 
 n

y y   n
 0


 

and  0D   for (3.1) are respectively calculated as fol- 
lows: 

      

       

2

0 2 ,itw

 
 
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2*
0 0

2 2 2

E 2
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it it
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y w

   


  

    (3.4) 

where     2
0itw  0 0E tanh 2it itw h    is used,  

which is obtained from (2.11), and 

      
       

0

0 2 .itw

 





   
  

   * *
0 0D

*
0

2 2 2
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1 4 E sech

it it

it it

D w h

y w

   

   

   (3.5) 

Looking at (3.4) and (3.5), it can be seen that 

   

*
ĜMM

.            (3.6) 

In addition, the relationship (2.18) is also applicable to 
the just-identified estimator (see pp. 486-487 in Hayashi, 

2000, [23]). Therefore, it follows from (2.18) and (3.6) 
that the following relationship holds for : 

     1/2 * *
0 0

ˆ N 0, 1
d

GMMN D     .    (3.7) 

Lee (2002, pp. 84-87) [24] elucidates the equality con- 
ceptually identical to (3.6) in the context of the CMLE to 
be hereafter described. In addition, Bonhomme (2012) 
[25] demonstrates that the conditional moment restriction 
which he proposes for the fixed effects logit model can 
give birth to the unconditional moment condition iden- 
tical to (3.1). 

Next, the conventional CMLE proposed by Chamber- 
lain (1980) [1] is presented for the two periods as fol- 
lows: 

*ˆ arg maxCML L


  

   1

N

iti
L l

,                  (3.8) 




  . Referring to Wooldridge  where 
(2002, pp. 490-492) [26], the logarithm of probability 
composing the conditional log-likelihood function for the 
two-periods fixed effects logit model is written as fol- 
lows, with     π exp 1 expit it itw w     

   
: 

       ln π 1 ln 1 πit it it it it itl         

1it

, (3.9) 

where   if t, 1 1i t iy y  0it and   
1

 otherwise, 
while it , 1 0i ty    if   and  and it1ity  0   if 

, 1i t 1y   and it 0y  . In (3.9), it  π   stands for the 
probability with which it  takes one given , 1i ty w  , it , 

i

w
  and , 1i t it 1y y   π, while 1 it 

ity , 1i tw
 stands for the 

probability with which  takes zero given  , , itw

i  and , 1i t it 1y y 
 L

. 
The first-order condition of   is 

   1
0

N

iti
L l   


               (3.10) 

with 

 
       1 π 1 π .

it

it it it it it it

l

w

 

    

 

    

 L

  (3.11) 

It is corroborated from (3.10) with (3.11) that the 
first-order condition of   divided by  is the 
empirical counterpart of the moment condition (3.1) for 
the GMM estimator. The second-order derivative of 

N

 L   with respect to   is written as 

 
      

2 2

2

1
π 1 π .

N

it it it iti

L

w

 

  


 

   
     (3.12) 

Taking notice of the fact that  
      2sech 2 4π 1 πw it it it    , it is evident that 

if   is replaced by 0 , (3.12) divided by  is the 
empirical counterpart of (3.5) and accordingly identical 
to 

N

 *
0

*
ĈML

 from (3.6). Therefore, the following rela- 
tionship holds for  : 
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     *
0 01 D 1/2 *ˆ N 0,

d

CMLN    .    (3.13)  ,  , 

Judging from the above, it is ascertained that for the 
two periods the conventional CMLE for the fixed effects 
logit model is identical to the GMM estimator selecting 

2w it

To make doubly sure, the integration of  
 as the instrument for the HTD transformation. 

   2it itw h   with respect to   is conducted: 

   

      osh 2 ,itw C 



      

C
   2

ln 2C y

2

2 d

2 ln c

it it

it it it

w h

w y y

 
(3.14) 

where  is the constant of integration. With  

it  for (3.14), the logarithm of prob- 
ability (3.9), which composes the conditional log-likeli- 
hood function for the two-periods fixed effects logit 
model, is compactly rewritten as 

 

 
      n 2cosh 2itw

2
2 l

it

it it it

l

w y y



  

 l

    
  (3.15) 

The exponential of it   in (3.15), which is equiva-
lent to (3.9), represents the probability density when the 
restriction it  is imposed. In this case, number 
of observations for which it  is used instead of 

 in this section and therefore CML

 2
1 

 2
1y 

*ˆ

y

N  , which is equiva-
lent to , could be interpreted as being the asymp-
totically efficient estimator. This is because the Cramér- 
Rao inequality is applicable in this case. 

*
ĜMM

Incidentally, Abrevaya (1997) [27] shows that for the 
fixed effects logit model, a scale-adjusted ordinary maxi- 
mum likelihood estimator is equivalent to the CMLE for 
the case of two periods. 

4. Monte Carlo 

In this section, some Monte Carlo experiments are con- 
ducted to investigate the small sample performance of 
the GMM estimator for the fixed effects logit model de- 
scribed in Section 2. The experiments are implemented 
by using an econometric software TSP version 4.5 (see 
Hall and Cummins, 2006, [28]). 

The data generating process (DGP) is as follows: 

1 if

0 otherwise
it itp u

  

ity


 


, 

 exp 1 expit i itp w    i itw 

 ~ U 0,1itu

, 1t i itw w

, 

, 

it i    

 

, 

     1/22
1 11 1 1 1 iwi i      

 2~ N 0,i

, 

  ; 

In the DGP, values are set to the parameters 
2 2 , 

 2~ N 0,it   . 

  and   . The experiments are carried out with  
the cross-sectional sizes ,  and 1000 , the 
numbers of time periods T ,  and , and the 
number of replications 

100N  500
4 8 25

1000TR  . 
In the experiments, the GMM estimator based on the 

HTD transformation selects it  as the instruments for 
the transformation 

w
 hit  . That is, the GMM(HTD) 

estimator uses the vector of moment conditions (2.13) 
with it itz w  , which is able to be written piecewise as 
follows: 

 E 0it itw h     2, ,t T , for .8      (4.1) 

As a control, another GMM estimator is used, which 
employs the following moment conditions disregarding 
the unobservable heterogeneity: 

 E 0it itw      1, ,T , for t .        (4.2) 

where       exp 1 expw w    it it it . The GMM 
(LgtLev) estimator (i.e. the level GMM estimator for the 
logit model) for   is inconsistent due to the ignorance 
of the fixed effects. 

The Monte Carlo results are exhibited in Table 1. The  
settings of values of the parameters for the explanatory 
variables it  are the same as those used by Blundell et 
al. (2002) [21] for count panel data model. The small 
sample property of the GMM(HTD) estimator can be 
said to be preferable and their bias and rmse (root mean 
squared error) decrease as the cross-sectional size  in- 
creases, which is the reflection of the consistency. In con- 
trast, the sizable downward bias and rmse for the (incon-
sistent) GMM(LgtLev) estimator remain at virtually con- 
stant levels when  increases. As is seen from com- 
parisons among Simulations (a4), (a8) and (a25), among 
Simulations (b4), (b8) and (b25), and Simulations (c4), 
(c8) and (c25) for the GMM(HTD) estimator, the small 
sample performance of the GMM(HTD) estimator is better 
off as the number of time periods increases, reflecting the 
substantive increase of sample size. Furthermore, com- 
parisons among Simulations (a4), (b4) and (c4), among 
Simulations (a8), (b8) and (c8), and among Simulations 
(a25), (b25) and (c25) for the GMM(HTD) estimator raise 
the possibility that more persistent series of the explana- 
tory variables might bring about more deteriorated small 
ample performance of the GMM(HTD) estimator.9 

w

N

N

s     
8Since the moment conditions (4.1) are valid even under the assump-

tions 1 1E , , 0t t

it i i iv v w     1, ,t T  for , the usage of the GMM

(HTD) estimator using the moment conditions (4.1) is generally more 
conservative than that of the CMLE proposed by Chamberlain (1980) 
[1] (see footnote 7 in section 2). The CMLE is inconsistent under the

assumptions 1 1E , , 0t t

it i i iv v w     1, ,t T  3 for  and T . 
9This possibility is also pointed out in the framework of ordinary and 
count panel data models. For example, see Blundell and Bond (1998) 
[29] and Blundell et al. (2002) [21]. 
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Table 1. Monte Carlo results for the fixed effects logit model. 

  N = 100  N = 500  N = 1000  

  bias rmse bias rmse bias rmse 

Simulation (a4): T = 4       

GMM(HTD) δ 0.08 0.29 0.02 0.11 0.01 0.08 

GMM(LgtLev) δ –0.50 0.53 –0.50 0.50 –0.50 0.50 

Simulation (a8): T = 8       

GMM(HTD) δ 0.06 0.19 0.02 0.08 0.01 0.05 

GMM(LgtLev) δ –0.50 0.52 –0.50 0.51 –0.50 0.50 

Simulation (a25): T = 25       

GMM(HTD) δ 0.06 0.12 0.02 0.05 0.01 0.03 

GMM(LgtLev) δ –0.50 0.51 –0.50 0.50 –0.50 0.50 

        

Simulation (b4): T = 4       

GMM(HTD) δ 0.18 0.94 0.04 0.37 0.02 0.26 

GMM(LgtLev) δ –1.01 1.09 –1.00 1.01 –1.00 1.01 

Simulation (b8): T = 8       

GMM(HTD) δ 0.10 0.58 0.03 0.25 0.02 0.17 

GMM(LgtLev) δ –1.00 1.08 –1.01 1.02 –1.01 1.01 

Simulation (b25): T = 25       

GMM(HTD) δ 0.12 0.35 0.03 0.14 0.01 0.09 

GMM(LgtLev) δ –1.01 1.06 –1.00 1.01 –1.00 1.00 

        

Simulation (c4): T = 4       

GMM(HTD) δ 0.24 1.63 0.05 0.65 0.02 0.46 

GMM(LgtLev) δ –1.02 1.16 –1.00 1.02 –1.00 1.01 

Simulation (c8): T = 8       

GMM(HTD) δ 0.09 1.04 0.02 0.43 0.02 0.31 

GMM(LgtLev) δ –1.00 1.16 –1.01 1.03 –1.01 1.02 

Simulation (c25): T = 25       

GMM(HTD) δ 0.12 0.59 0.04 0.24 0.01 0.16 

GMM(LgtLev) δ –1.02 1.15 –1.00 1.02 –0.99 1.00 

Notes: 1) The parameter settings in the DGP are as follows: Simulations (a4), (a8) and (a25): ; ; ; ; . Simulations 
(b4), (b8) and (b25): ; ; ; ;  . Simulations (c4), (c8) and (c25): 

0.5  0.5 
1

0.1  2

 0.5 2 0.5 
0.5 2 0.05 1  0.9  0  2

  ; ; ; ;  ; 2) 
No non-convergence is found in all replications; 3) In each of the GMM estimations, the initial consistent estimate is obtained by using the inverse of 
cross-sectional average of the products between the instruments matrix as the non-optimal weighting matrix; 4) The values of the Monte Carlo statistics are 
obtained using the true values of 

0.95    0 2

  0.5 2 0.015 

  as the starting values in the optimization for each replication. The values of the statistics obtained using the true values are 
ot much different from those obtained using two different types of the starting values. n

 
5. Average Elasticity consistent estimator for   described in previous sec- 

tions and the average of it . The average elasticity of 
the logit probability with respect to the exponential func- 
tion of explanatory variable (which is calculated without  

y
For the fixed effects logit model composed of (2.1) and 
(2.2), the new index is constructed by using both the  
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relation to the fixed effects) is an appropriate index in the 
framework of the fixed effects logit model with time di- 
mension being strictly fixed, where no (consistent) aver- 
age marginal effect is available.10 In this section, the as- 
sumption that the variables are identically distributed 
among individuals is unfastened.11 

With it it , the elasticity of the probability 

it  with respect to the positive-valued variable W  
(with 

 expW w
itp

i  being held constant) is defined as follows: 

    1 itp p 

1, ,t T 

N 
it

W
it it it it itp W W    , 

for  
.                (5.1) 

Under the assumption that , the overall aver- 
age elasticity of it  with respect to W  is calculated 
with the following formula: 

p

 ˆ 1A Ay  

ˆ

W ,              (5.2) 

where   is the consistent estimator for   such that  
ˆplimN    and 1 1y T N 

1 1

T N

A itt i
y

  
p

.  Since  

it  is the probability and  E 0v it  (and accordingly 
variances of  are finite), it can be seen that itv

 1plim W
N A A   

1 1T N 


limA N

, if  

 1 1
E

T N

itt i
p

  

itp

   (which is referred  

to as the average logit probability in this paper).12  
In addition, the cross-section average elasticity for a 

specific time period and the group average elasticity for a 
group (e.g. a gender) are able to be calculated as follows, 
respectively: The formula calculating the cross-section 
average of  with respect to  for period t  is itW

 ˆ 1W
t ty   ,               (5.3) 

where 1
1

N

t iti
y N y


 

G

, while that calculating the group 

average elasticity for group  in population is 

 ˆ 1G Gy  W ,               (5.4) 

where   11
1 1

GT N G
G G jtt j

y T N y


 
   j

G GN
G G

 with subscript   

denoting the member of group ,  being number 
of individual units belonging to group , and jt  be- 
ing the binary dependent variable for the individual  

appertaining to group  at period t . 

y

G

j

6. Conclusion 

This paper proposed the hyperbolic tangent differencing 
(HTD) transformation for the fixed effects logit model, 
with the intention of ruling out the fixed effects. The 
consistent GMM estimator was constructed by using the 
HTD transformation. The equivalence of the GMM esti- 
mator opting for an instrument and the CMLE proposed 
by Chamberlain (1980) [1] was revealed for the case of 
two periods. Then, the Monte Carlo experiments indi- 
cated the desirable small sample property of the GMM 
estimator based on the HTD transformation. In addition, 
the average elasticity of the logit probability with respect 
to the exponential function of explanatory variable was 
proposed, which is an appropriate index from the point of 
view that it is able to be calculated without the fixed ef- 
fects. Both of the simple estimator and index will facili- 
tate empirical researchers exploring the binary choice 
panel data model. 
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