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ABSTRACT 

A lower hemi-continuous correspondence with open and convex values in Rn must have open lower sections. This well- 
known fact has been used to establish the existence of continuous selections, maximal elements, and fixed points of 
correspondences in various economic applications. Since there is an increasing number of economic models that use 
correspondences in an infinite-dimensional setting, it is important to know whether or not the above fact remains valid 
in such applications. The aim of this paper is to show that the above fact no longer holds when Rn is replaced with an 
infinite-dimensional space. This is accomplished by using the standard orthonormal base in a Hilbert space H to con-
struct two correspondences with values in H equipped with the weak topology. The first correspondence is lower 
hemi-continuous with open and convex values but does not have open lower sections. The second is a lower 
hemi-continuous correspondence that fails to have an open graph despite having open and convex upper and lower sec-
tions. These counter-examples demonstrate that in an infinite-dimensional setting, it is no longer possible to rely on the 
geometric properties of a lower hemi-continuous map (the convexity of its sections) to establish the topological proper-
ties (open lower sections, open graph) needed in many economic applications. 
 
Keywords: Lower Hemi-Continuity; Open Lower Sections; Open Graph; Value Function; Maximal Element; Nash 

Equilibrium; Weak Topology 

1. Introduction 

Correspondences with open lower sections play an im-
portant role in general equilibrium analysis and in game 
theory. In general, the lower sections of a lower hemi- 
continuous (lhc) correspondence need not be open. How- 
ever, for an lhc correspondence with upper sections that 
are open and convex in Rn, we have the following result 
(Proposition 11.70 in [1], Theorem 5.9 in [2]): 

Theorem 1. Let  be a correspondence from a 
Hausdorff space X to Rn. If  is lower hemi-continuous 
with upper sections (values) that are convex and open in 

 then S has open lower sections. 

S

nR

S

,nR
When  has convex lower and upper sec-

tions, the above theorem implies that  is lhc with 
open upper sections, if and only if , the inverse of 

, is lhc with open upper sections. 

: mS R 
S

1S 

S
Theorem 1 has several applications in economics. For 

example, the statement “since    0 0intg x x 
 

 and 
 is continuous, it follows that   0 intg x x   in 

some neighborhood of 0x ” appears in the proof of a 
well-known theorem regarding the differentiability of the 
value function (Theorem 4.11, page 85 in [3]) (the set 

 int x  denotes the interior of  x ). The justifica-

tion of this claim relies on Theorem 1; the correspon-
dence   has a range in Rn, and it is continuous with a 
convex graph. This implies that the correspondence 

 intx x   is lhc with open and convex upper sec-
tions, and the statement quoted from [3] follows immedi-
ately.1 

For more on the application of Theorem 1 in estab-
lishing the differentiability of value functions, see [5] and 
Kim [6]. Theorem 1 has also been used to establish the 
existence of continuous selections, fixed points of best 
reply functions, and to establish the existence of equilib-
ria for non-ordered preferences in abstract economies 
[7-10]. It is straightforward to show that Theorem 1 does 
not hold if the convexity requirement on the upper sec-
tions of S is dropped. It is also relatively easy to demon-
strate that this theorem does not hold, if the upper sec-
tions of S are convex but are not open in Rn (see page 

1It is interesting to note that Aliprantis, Camera, and Ruscitti (page 454 
in [4]) claimed that the statement we quoted from Theorem 4.11 in [3] 
was is not substantiated, which was one of the factors that motivated 
their search for an alternative approach for establishing the differenti-
ability of value functions. Note also that when  is continuous with 
convex sections, the conditions  and 


x0 0inty    1

0 0intx y  , 

discussed at length in [4], are in fact equivalent. 
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237 in [11] and page 9 in [12]). Keeping all the other 
assumptions the same, does the above theorem hold if Rn 
is replaced with an arbitrary locally convex (infinite- 
dimensional) space? (for examples of economic applica-
tions involving correspondences with values that are not 
in Rn see [13-20]). As far as we know, there has not been 
a satisfactory answer to this question. In fact, in his book 
Mathematical Methods for Economists, Moore (page 273 
in [1]) states “it may well be that Holly’s proposition 
[Theorem 1] can be generalized to the extent of substi-
tuting an arbitrary locally convex Hausdorff space in 
place of Rn, although I am not sure whether or not this 
conjecture is correct”. In this note, we show that the an-
swer to our question is no, and that the above conjecture 
is incorrect. 

2. Two Counter-Examples 

Recall that a correspondence  is lhc at some 
point 

:S X Y
x X
 x

, if for every open set V  in Y such that 
V S   , there exists an open neighborhood  of W
x  such that  V S x    for all x W  When X  
is first countable, this definition is equivalent to the fol-
lowing: for any open set V  in Y such  xV S   , 
and for any sequence m ,x x

 x
 there exists 0m  such 

that mV S    for all 0  Let  be the 
space of square summable sequences in R. This is a sepa-
rable Hilbert space with an inner product that we shall 
denote by 

.m m 2

,  . Let n  be the standard or-
thonormal base in  (the vector n  has 1 in the nth 
position and zeros everywhere else). Let A be the collec-  

e n , 1, 
e2

tion  and let Let  1n ne  0 0 .A A  X  be the unit  

ball  1 0B  in  equipped with the weak topology (i.e. 
W is open in X, if and only if 

2
 1 0W W B 

2
2

 for some 
set W' that is weakly open in ). Note that A0 is the 
closure of A in the weak topology of . Therefore, X\A 
is not open in X but X\A0 is. Finally, let Y be the space 

 equipped with the weak topology. The space Y is an 
infinite-dimensional locally convex Hausdorff topologi-
cal vector space. Since the unit ball in a separable re-
flexive Banach space is metrizable in the weak topology 
(Theorem 3.16 in [21]), X is metrizable even though Y is 
not. 

2

Lemma 1. For every  let ,ne A

 , 1 .  n nC y Y e y  

z
The set  is dense in Y. 1n n

Proof. For every  let n  except for the 
nth component, which is set to be equal to 2 (anything 
bigger than 1 will work). For every  

C
,z Y z 

n 1, , 2n ne z ,  
and hence  Moreover, for every   .n nz C 2 ,x
lim , , ,n nx z x z

e

 and therefore zn converges weakly 
to z.  

Lemma 2. Let  be defined as in Lemma 1. Let 

 be a correspondence defined as follows: 

nc

:S X Y

x

 
 when 

  otherwise.
n nC x

S x
Y


 


 

Then, S is lower hemi-continuous with upper sections 
that are open and convex in Y. 

Proof. By the definition of the weak topology, for 
every  the set 2 ,  | , 1y Y x y   is open in the 
weak topology. Hence, it is clear that for any  2 ,x
 S x  is convex and open in Y. Let 0\x X A

 x
 and let 

V be an open set in Y such that V S .   Since 

0\X A  is open in X , there exists a neighborhood  of 
x such that 0  and 

W
\W X A     ,S xV S x V      

for all .x W  Hence, S is lhc at x Now let 
0ne  be 

some element in A, and let 
0n nx e  in X, and without 

loss of generality assume that xn is not the constant se-
quence  There exists m0 such that for all 0  

0

0ne
\m

,m m
x X A
e e

e

. Otherwise, we can obtain a subsequence 

kn of n  such that 
0kn n  weakly, contradicting the 

fact that n  has a unique weak limit (the sequence 0) 
given the fact that X is Hausdorff. Now this implies that 

e e

 mS x Y  for all 0  Hence, S is lhc at 
0n , and 

therefore it is lhc at any point in A. We still need to show 
that S is lhc at 

.mm 

x

e

0.  Assume S is not lhc at zero. Then, 
there exists an open set V in Y such that  0V S V     
and there exists n in X such that 0x   nxV S   
for all n. This sequence has to be a subset of A (i.e. a sub-
sequence of n ) since  for any e   YS x \x X A . 
Without loss of generality, simply assume n nx e  for 
all n. Let .Vz  By Lemma 1, there exists a sequence 

 n nz S e  such n  converges weakly to z, and there-
fore 

z
 neV S   for some n, a contradiction. Hence, 

S is lhc at zero. 
Proposition 1. Let S be defined as in Lemma 2. Then, 

S is lower hemi-continuous with upper sections that are 
open and in convex in Y, and yet S does not have open 
lower sections. 

Proof. By Lemma 2, S is lower hemi-continuous with 
upper sections that are open and in convex in Y. More-
over,  0 \X1S  ,A  which is not an open set in X. 

The closed graph theorem for correspondences asserts 
that a closed-valued correspondence with a compact 
range is upper hemi-continuous, if and only if it has a 
closed graph (Proposition 17.11 in [22]). This result, par-
ticularly when combined with Kakutani’s fixed point 
theorem, has important applications in economics. It is 
then natural to ask if there exists an “open graph” theo-
rem, i.e. a theorem asserting that a lower hemi-continu-
ous correspondence with open and convex values is 
lower hemi-continuous, if and only if it has an open 
graph.2 The fact that this statement does in fact hold 
when the range of S is Rn was proved Zhou who used this 
2The question regarding the existence of an “open graph” theorem was 
raised first by Bergstrom, Park, and Rader [23]. 
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result to establish the existence of equilbria in various 
qualitative games. 

Theorem 2. (Proposition 2 in [24]). Let S be a corre-
spondence from a Hausdorff space X to Rn. If S is lower 
hemi-continuous with open and convex upper sections in 
Rn, then S has an open graph. 

The setting of Proposition 1 can be slightly modified 
to show that when S has an infinite dimensional range, 
Theorem 2 may not hold, even under the additional as-
sumption that S has open lower sections (Bergstrom, 
Parks, and Rader in [23] provided an example of a cor-
respondence with open upper and lower sections but 
whose graph was is not open, In their example, however, 
the correspondence has non-convex upper section).  

Proposition 2. Let X and Y be defined as before. Let 
 be defined by  :S X Y

   , 1S x y Y x y   .  

Then S is lhc with open and convex upper and lower 
sections in Rn, yet the graph of S is not open. 

Proof. Clearly, S has open and convex upper and 
lower sections (in X and Y respectively). Assume S has 
an open graph in ,X Y  which means that set 

 gph , , 1 .S x y X Y x y      

is open in .X Y  This implies that the set 

  , , 1C x y X Y x y    .  

is closed in ,X Y  The sequence   ,n ne e  is con-
tained in  yet  the limit of this sequence in 
the product topology on 

,C 0, 0 ,
,X Y is not. This contradicts 

the fact that  is closed. Therefore the graph of S is not 
open. 

C

Similar counter-examples based on Propositions 1 and 
2 can be constructed if  is replaced with any Hilbert 
space H and Y is taken to be H equipped with the weak 
topology (for economic applications where the underly-
ing space is equipped with the weak topology, see [13] 
and [18]). 

2

3. Conclusions 

For a lower hemi-continuous correspondence S with val-
ues in a finite dimensional Euclidean space, the convex-
ity of the upper and lower sections has very strong topo-
logical implications (Theorems 1 and 2) that can used to 
obtain existence results for maximal elements, fixed 
points, continuous selections, and Nash equilibria. How-
ever, there is an increasing number of economic applica-
tions that involve correspondences with values in infi-
nite-dimensional spaces. Some of these applications con-
sist of dynamic choice models over an infinite horizon 
[14]. Other applications consist of general equilibrium 
models that allow for infinite variation within the com-

modities of the economy. This includes variations in the 
physical attributes of the goods, time of delivery, and the 
state of the world when delivery takes place [12,13, 
15-18,20,25]. Given the increasing interest in such ap-
plications, it is important to know whether or not the 
topological implications of the convexity of the upper 
and lower sections of S, valid when the range of S is Rn, 
still hold when the range of S is an arbitrary locally con-
vex topological space. Propositions 1 and 2 in this note 
demonstrate that there is no hope of obtaining general 
results similar to Theorems 1 and 2, if Rn is replaced with 
an infinite-dimensional space. One approach to deal with 
this unfortunate fact is to impose additional assumptions 
on S–1. However, such assumptions often lack a clear 
economic interpretation, and they are more difficult to 
verify than simply assuming that S has open and convex 
upper sections. It is important to keep in mind that the 
counter-examples of this note only show that a particular 
method (Theorems 1 and 2) fails to establish the exis-
tence of certain elements of interest (maximal elements, 
continuous selection, fixed points, Nash equilibria) in 
infinite dimensional settings. These counter-examples do 
not rule out the possibility that other methods might suc-
ceed. Therefore, in applications involving infinite-di- 
mensional spaces, finding sufficient conditions for the 
existence of maximal elements, continuous selections, 
fixed points, and Nash equilibria that can be imposed on 
S (rather than on S–1), and that can be easily interpreted 
and verified, continues to be a topic worthy of further 
investigation. 
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