Major Hepatic Resection in Hepatic Hydatidosis*

Ibrahim Abdelkader Salama1#, Mohammed Abdallah Aboushady1, Osama Hegazy Abdelsalam1, Sherif Mohamed Saleh1, Hany Abdel Mageed Shoreem1, Mohammed Houseni2, El-Amir Mahmoud Amir3

1Department of Hepatobiliary Surgery, National Liver Institute, Menophyia University, Shiben Elkom, Egypt
2Department of Radiology National Liver Institute, Menophyia University, Shiben Elkom, Egypt
3Department of Parasitology National Liver Institute, Menophyia University, Shiben Elkom, Egypt

Email: #ibrahim_salama@hotmail.com

Received October 14, 2012; revised November 15, 2012; accepted November 23, 2012

ABSTRACT

Background: Echinococcal disease is still a serious problem in certain parts of the world, with liver as the most affected organ. Surgery remains the mainstay of treatment of hydatidosis, but the optimal surgical procedure remains unsettled.

Objective: Safety and efficacy of major hepatic resection in multiple and giant hepatic hydatidosis.

Patients & Methods: 63 patients had hepatic hydatidosis associated with spleen, lung, and suprarenal hydatidosis were managed by major hepatic resection between April 2005 to April 2011. 43 (68%) males and 20 (32%) females, age range 8 - 56 years. Cysts were found in the liver only in 51 (81%) patients, liver with spleen in 5 (8%), liver, spleen with lung in 2 (3.1%), liver and lung in 4 (6.3%), liver and suprarenal in one patient (1.6%).

Results: Multiple cysts were found in 38 (60%) and solitary cyst in 25 (40%) with Cysts diameter ≤5 cm in 22 (35%), 5 - 10 cm in 16 (25%), and 10 - 38 in 25 (40%). Right hepatectomy in 24 (38%), right trisectionectomy in 2 (3.2%), right hepatectomy with Segment III in 4 (6.3%), right hepatectomy with Segment I in 2 (3.2%), left hepatectomy in 12 (19%), left lateral sectionectomy in 6 (9.5%), left hepatectomy with Segment VI in 3 (4.8%), left lateral sectionectomy with right posterior sectionectomy in 2 (3.2%), right hepatectomy with splenectomy in 7 (11%) and right hepatectomy with right suprarenal in one (1.6%) patient were performed. Hospital stay was 4.2 (3 - 13 days) There was one mortality and 12 (19%) morbidities. No recurrence on follow up period (8 - 60 months) was observed.

Conclusion: Radical procedure is safe and effective option for hepatic hydatidosis and should be performed when the entire lobe is diffusely involved by huge or multiple hydatidosis with little healthy liver tissue.

Keywords: Echinococcosis; Hepatic Hydatidosis; Hepatic Resection; Mortality; Morbidity

1. Introduction

Hydatid disease has been known since the time of Hippocrates and is described as “Liver full of water”. The disease is endemic in the Mediterranean region, South America, The Far East, Middle East, and Eastern Europe. However, it is observed more frequently in nonendemic countries being to increasing global travel [1].

Hydatid disease is a zoonosis caused mainly by Echinococcus granulosus, and less frequently by E. multilocularis and E. oligarthrus [2].

The location of the hydatid cysts is mainly hepatic (75%), pulmonary (15%) and only (10%) of the cysts occur in other parts of the body [3]. Most patients with hydatid cyst of the liver have no symptoms, and its presence becomes evident when the liver is found to be enlarged or a cystic lesion is noted when the liver is imaged for other reasons. Large cysts may be painful; however, symptoms may result from a number of complications [3]. In addition, the known complications of the hydatid disease (Rupture, Suppuration and Calcification) and multiplicity of cysts are other common surgical problems [4,5].

Routine laboratory investigations are of little help in diagnosis, and serological tests for hydatidosis are positive in approximately 80% of patients [6]. Ultrasonographic examination and computed tomography (CT) are very useful in diagnosis and classification of the cysts [7, 8].

Surgery remains the mainstay of treatment for hydatid disease and aims to eliminate the parasite promote the rapid disappearance of any residual cavity and prevent complications and recurrence [9-11]. Giant hydatid cyst is life threatening but rare. It has potentially lethal complications, such as anaphylactic shock due to perforation; thus early diagnosis and definitive treatment is life sav-
ing [12].

When the mortality and morbidity of hepatic resection were high, cystic lesions of the liver were treated conservatively by repeated needle aspiration, fenestration, marsupialization, or deroofing [13,14]. However, hepatic resection has become a safe and effective procedure in the last two decades not only for the malignant, but also for the benign, hepatic lesions [15,16]. Radical surgical removal of the hydatid cystic lesion remains the mainstay of treatment with a high success rate [17].

In this study we report our experience with major hepatic resection in Giant and multiple hepatic hydatid cysts, regarding the technique, postoperative morbidity, safety, effectiveness, and recurrence during follow up period.

2. Patients and Methods

This study was conducted at Department of Hepatobiliary Surgery, National Liver institute, Menophyia University, Shiben Elkom, Egypt with the approval of scientific and ethical committees during the period from April 2005 to April 2011. Total 63 patients diagnosed with hydatid disease in the liver, some of them had associated hydatid disease in the other organs of the body.

Diagnosis was made by history, clinical examination, indirect haemagglutination inhibition test (Laboratoires Fumouze-division Diagnostics, Paris, France) and enzyme linked immunosorbant assay test for hydatid IgG (Euroimmun Labordiagnostica, Germany), Abdominal ultrasound/CT, chest, brain CT and MRI in some cases to diagnose associated cysts in the other parts of the body.

The pathognomonic characteristics and ultrasonographic signs of hydatid liver disease have all been included in Gharbi’s classification [18] (Table 1).

All patients were treated with Albendazole (10 mg/kg) 2 weeks before operation, and the medication continued for 2 months postoperatively.

Magnetic Resonance Cholangiopancreatography (MRCP) or Endoscopic Retrograde Cholangiopancreatography (ERCP) were used preoperatively for patients with jaundice, history of cholangitis, dilation of biliary ducts, existence of debris in the bile ducts, or elevation of serum liver transaminases.

Six patients (9.5%) referred from other hospital after treated with percutaneous aspiration and then experienced recurrence. Two of them had sign of infection (high fever, leucocytosis, and jaundice) and were operated upon urgently.

2.1. Surgical Approach

The types of hepatic resection depend on the size and location of the hydatid cyst of the liver. The abdomen was opened by bilateral subcostal incision with midline extension. After routine abdominal exploration, the liver was mobilized and four pieces of gauze soaked in 20% hypertonic sodium chloride were introduced into the abdominal cavity and placed around the cyst to prevent the spread and leakage of the hydatid fluid. The intraoperative ultrasound was used to detect the exact site of the cyst or cysts in the liver, and its relation with hepatic vasculature (portal veins, hepatic arteries, and hepatic veins). The peripheral and superficial subcapsular cysts were deactivated by 20% hypertonic saline solution after aspiration of the hydatid fluid and the saline was left inside the cyst for about 10 minutes to kill the scolices, to prevent accidental spillage of the cyst content and the puncture site was covered with hypertonic saline solution-soaked gauzes.

The liver resection started by dissection of the hilum of the liver and isolation of the right portal triad or left portal triad depending on the site of the liver resection (right or left respectively). In right hepatectomy, the right side hepatic ligament was dissected and the right hepatic vein was isolated and encircled by tape, left side hepatic ligament dissected and middle and left hepatic veins also encircled in the left hepatectomy. Parenchymal dissection was achieved in our cases by Harmonic Scalpel (Harmonic Scalpel, Ethicon EndoSurgery, Cincinnati, Ohio) and Cuvatron Ultrasonic Surgical Aspirator (CUSA) (CUSA, Valley Lab Inc., Boulder, CO). After complete resection the haemostasis was achieved and any minute bile ductules were ligated.

Concomitant splenectomy was performed in 7 cases (11%) where the spleen is the site of hydatid cyst associated with the liver. Right adrenalec- tomy was performed with right hepatectomy in one case (1.6%) as the hydatid cyst infected the right adrenal gland. The abdomen was closed with drains. Lung hydatid cyst was associated in 6 patients (9.5%), 5 cases treated by lung resection 2 weeks prior to the liver resection, while one patient who had calcified hydatid in the lung was treated conservatively and followed up.

Early postoperative morbidity and hospital course were noted. Postoperative follow up after resection with ultrasonography was performed as follows: 1st postoperative day and before removal of the drains. All patients were followed up by clinical examination, serological

<table>
<thead>
<tr>
<th>Types of cyst</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Pure (clear) fluid collection (the cyst is similar to the simple liver cyst)</td>
</tr>
<tr>
<td>Type II</td>
<td>Fluid collection with a split wall (water lily sign)</td>
</tr>
<tr>
<td>Type III</td>
<td>Fluid collection with multiple septa/and/or daughter cyst (honey comb sign)</td>
</tr>
<tr>
<td>Type IV</td>
<td>Heterogeneous cyst contents with high internal echoes</td>
</tr>
<tr>
<td>Type V</td>
<td>Cyst with reflecting calcified thick wall</td>
</tr>
</tbody>
</table>
test, ultrasonography of the abdomen, CT in particular cases, and liver functions. Manifestations such as reappearance of the liver cysts at the site of previously treated cyst or the appearance of new extrahepatic disease resulting from procedure-related spillage were considered as local recurrence.

2.2. Statistical Analysis

Statistical analysis was performed using the student t test for postoperative hospital stay and χ² test for morbidity. P value ≤ 0.05 was considered significant.

3. Results

Forty-three (68%) out of sixty-three patients were males and twenty (32%) were females, with Age range from 8 - 56 years.

Seventeen patients (27%) had history of exposure to sheep and/or dogs, 12 patients (19%) had history of residence abroad (5 patients in Iraq, and 7 patients in Libya). However, no history of exposure or residence abroad was observed in 34 patients (54%).

The most common symptom was pain in the right upper quadrant in 32 patients (50.5%), abdominal mass in the right upper quadrant in 15 patients (24%), jaundice in 6 patients (9.5%), jaundice and fever in 2 patients (3.5%) who were presented by acute abdomen operated upon urgently. However, 8 asymptomatic patients (12.5%) discovered the mass incidentally during routine radiology for other causes.

Cysts were found in the liver only in 51 patients (81%) (Figure 1), liver and spleen in 5 patients (8%) (Figure 2), liver and lung in 4 patients (6.3%) (Figure 3), liver, lung and spleen in 2 patients (3.1%) and liver with right suprarenal hydatid cyst in one patient (1.6%).

Cysts were found in the right lobe of the liver in 34 patients (54%), in the left lobe in 18 patients (28.5%) and in both lobes in 11 patients (17.5%).

Thirty-eight patients (60%) had multiple hydatid cysts (19 patients in right lobe, 8 patients in left lobe and 11 patients in both lobes) and 25 patients (40%) had solitary huge cyst (15 patients in right lobe and 10 patients in left lobe) (Figure 4).

The diameter of the cysts was 5 cm or less in 22 patients (35%), 5 - 10 cm in 16 patients (25%) and larger than 10 cm reach 38 cm in 25 patients (40%). Six patients (9.5%) had infected cysts (Table 2).

3.1. Types of Liver Resection

The hepatic resections were performed in those patients carrying the hydatid disease depended on the site and location of the lesion. Formal right hepatectomy was carried out in 24 patients (38%), right trisectionectomy...
Figure 3. CT of the chest showing hydatid cyst of the lung (A) lower lobe of the right lung; (B) Middle zone of the right.

Table 2. Morphological features and localization of hydatid cysts.

<table>
<thead>
<tr>
<th>Site of organ</th>
<th>No. of patients = 63%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver only</td>
<td>51 (81%)</td>
</tr>
<tr>
<td>Liver + spleen</td>
<td>5 (8%)</td>
</tr>
<tr>
<td>Liver + lung</td>
<td>4 (6.3%)</td>
</tr>
<tr>
<td>Liver + spleen + lung</td>
<td>2 (3.1%)</td>
</tr>
<tr>
<td>Liver + right suprarenal</td>
<td>1 (1.6%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location of the cysts in the liver</th>
<th>No. of patients = 63%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right lobe</td>
<td>34 (54%)</td>
</tr>
<tr>
<td>Left lobe</td>
<td>18 (28.5%)</td>
</tr>
<tr>
<td>Both lobes</td>
<td>11 (17.5%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of the cysts</th>
<th>No. of patients = 63%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple cysts</td>
<td>38 (60%)</td>
</tr>
<tr>
<td>Solitary cyst</td>
<td>25 (40%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean diameter of the cysts (cm)</th>
<th>No. of patients = 63%</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤5</td>
<td>22 (35%)</td>
</tr>
<tr>
<td>5 - 10</td>
<td>16 (25%)</td>
</tr>
<tr>
<td>>10 to 38 cm</td>
<td>25 (40%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gharbi morphological type of the cysts</th>
<th>No. of patients = 63%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>6 (9.5%)</td>
</tr>
<tr>
<td>Type II</td>
<td>7 (11%)</td>
</tr>
<tr>
<td>Type III</td>
<td>39 (62%)</td>
</tr>
<tr>
<td>Type IV</td>
<td>8 (12.5%)</td>
</tr>
<tr>
<td>Type V</td>
<td>3 (5%)</td>
</tr>
</tbody>
</table>

was carried out in 2 patients (3.2%) in whom the hydatid cysts were multiple occupying the right lobe and segment IV. Right hepatectomy and nonanatomical resection in left lobe were carried out in 6 patients (9.5%); 4 patients (6.3%) segment III resection and in 2 patients (3.2%) segment I resection were done in addition to right hepatectomy. Formal left hepatectomies only were carried out in 12 patients (19%) and associated with segment VI in 3 patients (4.8%). Left lateral sectionectomy only carried out only in 6 patients (9.5%) and associated with right posterior sectionectomy in 2 patients (3.2%).

Concomitant splenectomies with right hepatectomy were carried out in 7 cases (11%) while right adrenalectomy and right hepatectomy were carried out in 1 patient (1.6%), (Table 3). In this series there were associated lung hydatid diseases in 6 patients (9.5%), 5 patients had lung resection two weeks before the hepatectomy and one patient who had small calcified hydatid was treated conservatively and followed up.

3.2. There Were No Associated Brain Lesions in This Series

Two patients operated upon urgently as they were referred from other hospital with picture of acute abdomen (fever, jaundice and high white cell count) after percutaneous aspiration of multiple cysts in the right lobe. The
Table 3. Types of major hepatic resection in hydatid disease.

<table>
<thead>
<tr>
<th>Type of hepatic resection</th>
<th>No. of patients = 63%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right hepatectomy</td>
<td>24 (38%)</td>
</tr>
<tr>
<td>Right trisectionectomy</td>
<td>2 (3.2%)</td>
</tr>
<tr>
<td>Right hepatectomy + segment III resection</td>
<td>4 (6.3%)</td>
</tr>
<tr>
<td>Right hepatectomy + Segment I resection</td>
<td>2 (3.2%)</td>
</tr>
<tr>
<td>Left hepatectomy</td>
<td>12 (19%)</td>
</tr>
<tr>
<td>Left lateral sectionectomy</td>
<td>6 (9.5%)</td>
</tr>
<tr>
<td>Left hepatectomy + Segment VI resection</td>
<td>3 (4.8%)</td>
</tr>
<tr>
<td>Left lateral sectionectomy + RT.pos.sectionectomy</td>
<td>2 (3.2%)</td>
</tr>
<tr>
<td>Right hepatectomy + Splenectomy</td>
<td>7 (11%)</td>
</tr>
<tr>
<td>Right hepatectomy + right adrenalectomy</td>
<td>1 (1.6%)</td>
</tr>
</tbody>
</table>

First patient was 8-year-old girl. On exploration there were multiple right lobe cysts with puncture in 2 cysts. After sterilization and wash out of the abdomen, the right hepatectomy was done. The second patient was 56 years old female. On exploration, there were multiple infected cysts in the right lobe. The right hepatectomy and exploration of the common bile duct and T-tube drainage were done.

Six patients (9.5%) had biliary communications diagnosed by ERCP with migration of daughter cysts in CBD in 2 cases in which the preoperative sphinctertomy and retrieval of the daughter cysts from the CBD were successfully achieved. (Figure 5) All those patients underwent choledochotomy followed by irrigation of the ductus choledochus and insertion of T-Tube.

3.3. Morbidity and Mortality

There was one mortality in our study, female patient presented with acute abdomen due to rupture hydatid cysts after percutaneous aspiration in another hospital, and she died on the thirteenth day postoperatively due to severe biliary sepsis which leads to multiorgan failure (MOF). Postoperative complications occurred in 12 patients (19%), wound infection developed in 6 patients (9.5%) treated by meticulous wound care, subphrenic collection in 2 patients (3.2%) treated by percutaneous drainage and pigtail insertion, biliary fistula occurred in 2 patients (3.2%) one treated by aspiration and pigtail drainage and the other treated by papillotomy and insertion of biliary stent. One patient (1.6%) who had lung atelectasis was treated by vigorous respirator exercise & antibiotic according to culture and sensitivity. One patient (1.6%) developed incisional hernia after two years postoperatively and was repaired with mesh.

The mean length of hospital stay was 4.2 (range 3 - 13 days).

3.4. Follow Up

The patients were followed up by clinical examination, ultrasonography after I, 3 months postoperatively then every 6 months in first 2 year then annually. In some cases CT was performed for follow up. During the follow up period which ranged from 8 - 60 months, there was no evidence of recurrence based on ultrasound and CT images.

4. Discussion

In spite of the efforts to control echinococcosis in many parts of the world, the disease is still frequent in endemic areas; the true incidence of this disease is difficult to estimate, as it is usually asymptomatic in most patients [19].

The disease continues to exert a heavy burden on human health in a number of countries, including Egypt and reemerges as a major public health issue, with potentially life-threatening complications [20].

The infection should be suspected in patients who live in rural areas and who present with abdominal pain and hepatomegaly or a palpable hepatic mass [21].

Approximately 50% - 70% of the cysts are localized in the liver. The right lobe is affected in 85% of patients, and in one quarter to one third of cases is multiple [22].
The detection of cysts had increased with the advent and routine use of ultrasonography which, in addition to the diagnosis, provides information about the cyst wall, fluid content and surrounding liver tissues. CT is carried out to further delineate the anatomy and rule out proximity of vital structures [23].

Hepatic hydatid cysts are usually single, uncomplicated and located in the right lobe of the liver. A large series of retrospective multicenteric studies for hydatid cyst of the liver indicated that the most frequent clinical patterns were uncomplicated cysts (82%); remaining present with complicated cysts [24].

In this study, 12.5% of patients were asymptomatic while 50.5% of patients had pain, and 24% of patients presented by pressure manifestation. In this series, 3.5% of patients were presented by complication (rupture) due to iatrogenic injuries to the cyst following percutaneous aspiration of the liver hydatid cyst.

The diagnosis of hydatid disease in this study was based primarily upon characteristic feature on U/S and or CT imaging. These features are described in the literatures, [2] with a diagnostic sensitivity of 94% - 96% and 100% respectively, in many reports [25]. The sensitivities of these techniques in this study were 96% and 100%, respectively.

It has been reported that magnetic resonance imaging (MRI) is very useful in the diagnosis of hydatid disease particularly in the absence of characteristic appearance on U/S or CT imaging and when serologic tests are negative [26]. However, this modality was used in this study in some cases to diagnose the hydatid cyst in the other organs of the body.

Endoscopic retrograde cholangiopancreatography (ERCP) plays an important role in the diagnosis and management particularly in patients with obstructive jaundice or history of jaundice, recurrent cholangitis, or in patients with recurrent hydatid disease. It was done in 11 patients in this study (8 with jaundice and 3 with history of jaundice) and revealed cistobiliary communication in 6 patients with migration of daughter cysts in biliary tree in 2 patients. These results are consistent with most of the reports which indicates that ERCP and related therapeutic maneuvers are safe and valuable in the management of patients with hepatic hydatid disease [27,28].

Medical treatment with Benzimidazole derivatives remains disappointing [29]. A multicenter study conducted by the World Health Organization has suggested that the medical treatment should be restricted to inoperable cases or to the prevention of postoperative recurrence [29].

In this series, albendazole was given in a dose of 10 mg/kg daily for 2 weeks preoperatively and for 8 weeks after the procedure. This regimen was based on the assumption that at time of surgery any escaping scolices would be maximally exposed to effective tissue and circulating levels of the drug.

Biliary communications are reportedly common in hydatid disease with variable frequencies between 3.5% [30] and 19% [31]. Therefore, meticulous attention should be paid to their preoperative detection. Patients who have jaundice or a history of cholangitis, elevated liver enzymes, and dilatation or debris in major bile ducts should be assessed for main bile duct contamination. [10] If the bile ducts are evaluated with ERCP before surgery, it is not necessary to perform main duct exploration. Kayaalp and co-workers have shown that hydatid cysts lying around the hilum of the liver had a higher biliary communication rate (48%) than did peripherally located cysts (27%) [32]. It is still controversial whether a T-tube or biliary enteric anastomosis is advantageous after a duct exploration. Alper and colleagues have shown that cholecodochoduodenostomy reduces mortality and morbidity rates when compared to the use of a T-tube for drainage [33]. However, Erbir and co-workers compared T-tube drainage with cholecodochoduodenostomy for mortality and morbidity rates, hospitalization time, and infection rate and showed superiority of the T-tube [34]. In this study, ERCP was done in 11 cases (8 had jaundice & 3 had history of jaundice). In 2 patients ERCP was diagnostic and therapeutic as sphincterotomy & retrieval of daughter cysts from CBD was successfully achieved. In those patients, T-tube drainage was the treatment of choice.

Surgical methods to obliterate the cyst cavity can be separated as conservative (simple drainage, unroofing, and omentoplasty) or radical procedure (partial cystectomy, pericystectomy and hepatic resections). All these procedures have their own proponents. A tailored approach is required in each patient due to variation in size, multiplicity, location and associated complication. Some authors advocate radical procedures, mainly pericystectomy & hepatic resection [35].

It is widely accepted that radicality of the intervention increases the operative risk, but lowers the likelihood of a relapse and vice versa [36].

Conservative methods are recommended in difficult cases. Some authors believe that radical procedures are time-consuming with increasing blood loss and unjustifiable for a benign disease [37].

Advances in liver surgery have occurred over last two decades, hepatectomy has evolved from a rough, hastily and bloody procedure to a refined, deliberate, and relatively bloodless operation. The preoperative assessment for liver resection from anesthetics point view has advanced with advent of surgical tools (CUSA, Harmonic Scalpel, and Organ beam coagulation) and technique of rendering the hepatic resection become a safe procedure. Intraoperative ultrasound locates the exact size and location of lesion in the liver especially deep seated lesion in
hepatic parenchyma and its relation with hepatic vascu-
lature. All those improvements permit the performance
degree of precise resections and avoid complications related
to inaccurate dissection of the liver parenchyma [38].

In this study, radical surgery was employed in the pa-
tients with multiple hydatid cysts or huge hydatid cyst,
occupying the entire lobe of the liver, applying major hepatic resection for hydatid disease of the liver which
has advantage to do hepatic resection without opening the
cyst cavity and therefore avoiding the problems of
spillage and cavity management.

Considering the recurrence rates after operation for
liver hydatid cysts, it ranges from 8% - 20% [39] espe-
cially in endemic areas. Multiple operations may be nec-
essary during the course of this benign disease, thus
radical operations (hepatectomy) should be performed
from the start.

In this study, the multiple cysts of the liver hydatid
disease constitute 60% of the cases. It is advantage to
treat the multiple hydatid cysts in one stage, so the
hepatectomy can remove all cysts, especially if the cysts
are deeply inaccessible position in liver parenchyma. In
huge liver hydatid cyst which constitutes 40% of the
cases, it is better to resect the whole liver lobe occupied
by the hydatid cyst without opening the cyst for fear of
rupture.

In co-existing liver and pulmonary parasites, the lung
cysts should be operated either first, because of the
greater tendency to rupture and infection, or simultane-
ously (in cysts of the dome of the liver and right lung),
bilateral lung cysts have to be resected in two stages.

In this study, 6 lung cysts were associated with liver
hydatid cysts, 5 treated by lung resection 2 weeks before
the liver resection, and the other one was small calcified
cyst treated conservatively with follow up.

Concomitant splenectomy was carried out in 7 cases
with liver resection and right suprarenal was resected
with right hepatectomy.

From the literature, it appears that two common prob-
lems of major concern following surgery for hepatic hy-
datid disease are biliary fistula and recurrence.

Postoperative biliary leak or fistula has been reported
in a rate of 6% - 47%, [24,35,40] as a consequence of
small, undetected communications between the cyst and
the bile duct. Such communications have been reported
to occur in 10% - 80% of cases [40].

When conservative procedures are used, the poorly
vasculatized pericyst left in situ may disguise biliary
communications in the residual cavity. On the contrary,
with radical procedure either in the form of liver resec-
tion or pericystectomy, the biliary pedicles are more eas-
ily identified and safely ligated in the healthy liver pa-
renchyma.

Demirici and coworkers [41] observed a 3.5% rate of
postoperative biliary fistula in 87 patients treated with
radical procedures vs 27.5% in 173 patients treated by
conservative procedures. Magistrelli and coworkers [42]
observed a higher incidence of biliary leak following
conservative rather than radical procedures (14.1% vs
6.2%). In this study, biliary fistula occurred in 2 patients
(3.5%) post right hepatectomy treated conservatively
with aspiration and papillotomy and stent.

Recurrence after primary treatment of hepatic hydatid
disease is an important issue, with reported rates ranging
from 1.1% to 25% [24,35,43].

Failure to detect pre-existing intrahepatic small cysts
during initial operation is the main cause of recurrence.
This is now overcome by the use of high resolution im-
ageing diagnostic modalities (U/S and CT) and use of in-
traoperative ultrasonography. Better understanding of the
mechanism of daughter cyst formation as illustrated by
Magistrelli has brought attention a new factor implicated
in local disease recurrence [42]. Undetected and subse-
quently untreated exogenous daughter cysts located out-
side the pericyst may cause local recurrence if a conser-
vative procedure is adopted for the treatment of the main
cyst.

In Assadourian [44] series, found 23% of exogenous
daughter cysts. In Magistrelli [42] series, 19% was noted
in 64 patients. In this study we did not find any exoge-
nous cysts as the radical procedures are expected to bet-
ter control local recurrence of the disease. Moreover, it
will eliminate the factor of spillage of hydatid cysts con-
tents, since evacuation of the cyst can be safely omitted
in most cases.

Magistrelli and coworkers [42] reported 16% of local
recurrence in patients who underwent conservative pro-
cedures and 2% in 62 patients who underwent radical
procedures. In this study, there was no recurrence with a
long term follow up period ranging from 8 to 60 months
by clinical examination, ultrasonography and CT follow
up.

Overall postoperative mortality ranges between 0% to
7.5% [45-47] in early period. In this study we had one
postoperative mortality (1.6%) from sepsis of biliary
system due to cystobiliary communication which ends to
multiorgans failure (MOF).

Morbidity after treatment of hydatid disease of the
liver was observed in 12% - 26% of cases [46].

Diziri et al [47] found an overall complication rate of
33% in their multicentric, prospective, randomized trial.
Yorganci and Sayek [35] have reported an even higher
complications rate of 40% which, in their explanation,
was due to the presence of a number of complicated
cases in their series.

In this study overall postoperative morbidity after ma-
ior hepatic resection for liver hydatid cyst was 19% which
is similar to the other authors’ reports.
In conclusion, the major hepatic resection which is a radical procedure is a safe and effective option for treatment of liver hydatidosis and should be performed whenever possible when the entire segment or lobe is diffusely involved by one huge or multiple sized cysts with little healthy liver tissue left.

REFERENCES

