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ABSTRACT 

Computational Intelligence (CI) holds the key to the development of smart grid to overcome the challenges of planning 
and optimization through accurate prediction of Renewable Energy Sources (RES). This paper presents an architectural 
framework for the construction of hybrid intelligent predictor for solar power. This research investigates the applicabil- 
ity of heterogeneous regression algorithms for 6 hour ahead solar power availability forecasting using historical data 
from Rockhampton, Australia. Real life solar radiation data is collected across six years with hourly resolution from 
2005 to 2010. We observe that the hybrid prediction method is suitable for a reliable smart grid energy management. 
Prediction reliability of the proposed hybrid prediction method is carried out in terms of prediction error performance 
based on statistical and graphical methods. The experimental results show that the proposed hybrid method achieved 
acceptable prediction accuracy. This potential hybrid model is applicable as a local predictor for any proposed hybrid 
method in real life application for 6 hours in advance prediction to ensure constant solar power supply in the smart grid 
operation. 
 
Keywords: Computational Intelligence; Heterogeneous Regressions Algorithms; Performance Evaluation; Hybrid 

Method; Mean Absolute Scaled Error (MASE). 

1. Introduction 

Large scale penetration of solar power in the electricity 
grid provides numerous challenges to the grid operator, 
mainly due to the intermittency of sun. Since the power 
produced by a photovoltaic (PV) depends decisively on 
the unpredictability of the sun, unexpected variations of a 
PV output may increase operating costs for the electricity 
system as well as set potential threats to the reliability of 
electricity supply [1]. One of the main concerns of a grid 
operator is to predict changes of the solar power pro- 
duction, in order to schedule the reserve capacity and to 
administer the grid operations [2-6]. However, the pre- 
diction accuracy level of the existing methods for solar 
power prediction is not up to the mark; therefore, accu- 
rate solar power forecasting methods become very signi- 
ficant. Next to transmission system operators (TSOs), the 
prediction methods are required by various end-users as 
energy traders and energy service providers (ESPs), in- 
dependent power producers (IPPs), etc. The accurate pre- 
diction methods are essential to provide inputs for dif- 
ferent functions such as economic scheduling, energy tra- 
ding and security assessment. 

Many researches focus on providing a forecasting 
method in order to predict solar power production with  

expected accuracy. Depending on their input, these 
methods can be classified as physical or statistical ap- 
proaches or jointly approach. The physical models use 
physical considerations, as meteorological (numerical 
weather predictions) and topological information, and 
technical characteristics of the PV (power curve, photo 
conversion efficiency and correction factor for photo 
conversion efficiency). Their intention is to get the most 
likely approximation of the local solar radiation and then 
use Model Output Statistics (MOS) to diminish the re- 
maining error. Statistical models utilize descriptive va- 
riables and online measurements, typically employing re- 
cursive techniques, like recursive least squares or arti- 
ficial neural networks. Moreover, physical models have 
to be used and statistical models may use Numerical 
Weather Prediction (NWP) models [7-11]. According to 
the literature review, an hourly irradiance producer [12] 
as well as based on a whole day [13] was invented by 
Gordon and Reddy. Knight et al. [14] demonstrated 
methods to generate irradiance data based on hour is 
known as GEN which involves the contribution of the 
month based standard irradiance data to produce hour 
based irradiance figures [14]. The hypothesis that simu- 
lations run with those produced data for a distinct one 
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year time would provide fairly parallel outcomes to those 
gained from simulations determined by numerous years 
of calculated data was proved by Knight et al. [14]. Syn- 
thetically produced hourly varying solar radiation data 
and the temperature was employed as input data for the 
simulation program by Morgan [15].  

To facilitate successful exploration for the best model, 
reliable techniques are required for combining different 
regression algorithms, creating ensembles, model testing 
etc. It is called meta-learning or ensemble learning re- 
search [16]. Since every inductive learning algorithm 
makes use of some biases, it performs well in some do- 
mains where its biases are suitable while it behaves poor- 
ly in other domains. One algorithm cannot be superior, in 
terms of generalization performance to another one among 
all the domains [17-18]. One approach to conquer this 
dilemma is to make a decision when a method may be 
appropriate for a given problem by selecting the best 
regression model according to cross validation [19]. A 
second, more accepted approach is to combine the ca- 
pabilities of two or more regression methods [20]. To 
date, comparatively few researches have addressed en- 
sembles for regression [20-22]. The success of the tech- 
niques that combine regression models comes from their 
ability to diminish the bias error as well as the variance 
error [23]. The bias is an assessment of how closely the 
model’s average prediction, measured over all possible 
training sets of fixed size. Variance is a measure of how 
the models’ predictions will differ from the average pre- 
diction of over all possible training sets of fixed size. 
Most of ensemble or hybrid methods described so far use 
models of one single class, e.g. neural networks [24] or 
regression trees [21] to predict renewable energy. En- 
semble learning consists of two problems; ensemble ge- 
neration: how the base models are generated and en- 
semble integration: how the base models’ predictions 
incorporated to get better performance. Ensemble gene- 
ration can be differentiated as homogeneous if each base 
learning model employs the identical learning algorithm 
or heterogeneous if the base models can be developed 
from a variety of learning algorithms. There has been 
much empirical work on ensemble learning for regres- 
sion in the perspective of neural networks, however there 
has been fewer research carried out in terms of using he- 
terogeneous ensemble techniques to improve the per- 
formance. 

In this paper, a novel hybrid method for solar power 
prediction is proposed that can be used to estimate PV 
solar power with improved prediction accuracy. Here, the 
term “hybridization” is anchored in the top most three 
selected heterogeneous regression algorithm based local 
predictors and a global predictor. The proposed method 
focuses on one of the two decisive problems of ensemble 
learning namely heterogeneous ensemble generation for 

solar power prediction. Figure 1 outlines the sequential 
structure of the proposed hybrid method of solar power 
prediction. For the time being this particular paper deals 
with the first two steps; presenting ensemble generation 
strategy and preliminary prediction performance of the 
local predictors based on the selected top most three re- 
gression algorithms.  

Overview of the proposed hybrid prediction method is 
presented in Section 2. The data used in the experiment is 
described in Section 3. The experiment design for the en- 
semble generation, estimating and comparing the strengths 
of preliminary selected regression algorithms with 10 
folds cross-validation and training and testing error esti- 
mator method are depicted in Section 4. Six hours ahead 
individual predictions performed by the initially selected 
regression algorithms and the accuracy of the prediction 
performances are validated with both the scale dependent 
and scale free error measurement metrics in Section 5. 
The detail theory about regression algorithms are pre- 
sented in Section 6. Independent samples t-tests are car- 
ried out to evaluate the individual mean prediction per- 
formance of the preliminary selected regression algo- 
rithms as well as the pair wise comparisons for mean 
predicted values of those algorithms in Sections 7 and 8 
respectively. Finally, the paper concludes with the con- 
cluding remarks and recommendations. 

2. Description of the Hybrid Method for  
Solar Power Prediction 

First of all, the ensemble generation is performed from a 
pool of regression algorithms. For this purpose the three 
top most regression algorithms to act as the local pre- 
dictors are selected based on experimental results. Next, 
feature selection is carried out. The feature selection 
aspect is fairly significant for the reason that with the 
same training data it may happen that individual regres- 
sion algorithm can perform better with different feature 
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Figure 1. Outline of the proposed hybrid method. 

Copyright © 2013 SciRes.                                                                                SGRE 



Hybrid Prediction Method for Solar Power Using Different Computational Intelligence Algorithms 

Copyright © 2013 SciRes.                                                                                SGRE 

78 

sub sets [25]. The aim is to reduce the error of individual 
local predictors. The preliminary prediction using the 
selected three regression algorithms with feature selec- 
tion is executed then. The structure of the proposed hy- 
brid method for solar power prediction is shown in Fig-
ure 2 where  = Regression algorithm for local or 
base predictor.  

iRA

In brief, the working mechanism of the proposed hy- 
brid prediction method for solar power prediction can be 
stated in the following way. Raw set of data comprises 
stage one of data. Regression algorithm based local pre- 
dictors operate in this stage. Stage two data are the pre- 
liminary predictions from the local predictors. 

A further learning procedure takes place by means of  
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Figure 2. Structure of the hybrid method for solar power prediction.  
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placing level two data as input to produce the ultimate 
prediction. For this stage a regression algorithm is em- 
ployed for finding out the way to integrate the outcomes 
from the foundation regression modules. One of the key 
conditions to successfully develop this hybrid prediction 
method is to collect recent, reliable, accurate and long 
term historical weather data of the particular location 
selected for the experiments. The following section con- 
tinues with the description and analysis of the raw data 
used for this research. 

3. Data Collection 

Historical solar data are a key element in solar power 
prediction systems. Rockhampton, a sub tropical city in 
Australia was chosen for the experiment of the proposed 
heterogeneous regression algorithms based hybrid me- 
thod. The selected station is “Rockhampton Aero”, hav- 
ing latitude of −23.38 and longitude of 150.48. The re- 
cent data were collected from Commonwealth Scientific 
and Industrial Research Organization (CSIRO), Australia. 
In Figure 3 Renewable Energy Certificates (RECs) zones 
within Australia is shown where Rockhampton is identi- 
fied within the most important zone [26]. Data was also 
collected from the Australian Bureau of Meteorology 
(BOM), the National Aeronautics and Space Administra- 
tion (NASA), the National Oceanic and Atmospheric 
Administration (NOAA). Free data is available from Na- 
tional Renewable Energy Laboratory (NREL) and NASA. 
These are excellent for multi-year averages but perform 
poorly for hourly and daily measurements. After rigorous 
study the data provided by CSIRO was finally selected as 
the raw data is available in hourly resolution which is a 
significant aspect of the data set. Hourly raw data were 
gathered for a period of 2005 to 2010. Table 1 represents 
the attributes of the used data set as well as statistical 
properties of those attributes. The next sections will il- 
lustrate the procedure of base models generation i.e. en- 
semble generation. 

4. Experiment Design 

Ten popular regression algorithms namely Linear Re- 
gression (LR), Radial Basis Function (RBF), Support 
Vector Machine (SVM), Multilayer Perceptron (MLP), 
Pace Regression (PR), Simple Linear Regression (SLR), 
Least Median Square (LMS), Additive Regression (AR), 
Locally Weighted Learning (LWL) and IBK Regression 
have been used to find out ensemble generation. A uni- 
fied platform is used with WEKA release 3.7.3 for all of 
the experiments. The WEKA is a Java based data mining 
tool [27] which is an efficient data pre-processing tool 
that encompasses a comprehensive set of learning algo- 
rithms with graphical user interface as well as command 
prompt. The accuracy of the model is justified by cross- 

validation method and training-testing method. 

4.1. K Fold Cross-Validation Error Estimator 

Cross-validation, at times called rotation estimation is a 
method for assessing how the results of a statistical ana- 
lysis will generalize to an independent data set. In  
a data set n  is uniformly at random partitioned into  
folds of similar size 
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Figure 3. Renewable Energy Certificates (RECs) zones 
within Australia. 
 
Table 1. Attributes of the raw data set and the correspond- 
ing statistics. 

 Min. Max. Mean Std Dev

Air Temperature (˚C) −5.8 40.1 20.47 6.99 

Wind Speed (Km/h) 0 27.1 6.99 4.78 

Wind Direction (˚C) 0 359 158.91 103.66

Relative Humidity (%) 0 100 55.11 24.26 

Rainfall (mm) 0 30.4 0.07 0.69 

VWSP Wind Speed (Km/h) 0 24.83 5.77 4.38 

VWDIR Wind Direction (˚) 0 360 169.91 109.84

Max. Wind Gust (Km/h) 0 106 20.45 11.33 

Evaporation (mm) −1.36 1.36 0.31 0.28 

Abs. Barometer (hPa) 921 1020 966.59 12.09 

Solar Radiation (W/m2) 1 1660 300.75 325.17
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which relies on the training set Sn and the division . In 
Table 2 the results of applying 10 folds cross-validation 
method on initially selected regression algorithms are de- 
monstrated. The above results clearly show that in terms 
of the mean absolute error (MAE) the most accurate one 
is the MLP regression algorithm. Next to the MLP, SVM 
is in the second best position and LMS regression algo- 
rithm is in the third best position. 

P

4.2. Training and Testing Error Estimator 

In this error estimator method, a common rule of thumb 
is to use 70% of the data set for training and 30% for 
testing. In Table 3 the results of applying training and 
testing error estimator method on initially selected re- 
gression algorithms are illustrated. 

Based on the experimental outcome the MLP is the 
number one choice, SVM is in the second best position 
and LMS regression algorithm is in the third best posi- 
tion. Both of the 10 folds cross-validation and training 
and testing method suggests the top most three algori-  
 
Table 2. Results of applying 10 folds cross validation me- 
thod on the data set. 

 CC RMSE MAE RRSE RAE

LR 0.89 150.14 66.35 46.30 27.44

RBF 0.13 321.58 240.09 99.16 99.30

SVM 0.88 164.18 46.58 50.63 19.26

MLP 0.99 14.813 9.74 4.57 4.03 

PR 0.89 150.14 66.31 46.30 27.42

SLR 0.87 158.56 83.15 48.89 34.39

LMS 0.88 165.15 47.94 50.92 19.83

AR 0.94 108.94 80.99 33.59 33.50

LWL 0.81 190.26 146.09 58.67 60.42

10-Fold 
Cross  

Validation 

IBK 0.93 124.41 90.86 38.36 37.58 

 
Table 3. Results of applying training and testing method on 
the data set. 

 CC RMSE MAE RRSE RAE

LR 0.88 150.84 66.91 47.21 27.75

RBF 0.12 317.38 239.64 99.34 99.40

SVM 0.87 165.56 47.19 51.82 19.58

MLP 0.99 6.90 11.73 5.29 4.87

PR 0.88 150.88 66.65 47.22 27.65

SLR 0.87 159.22 82.74 49.83 34.32

LMS 0.87 164.69 48.69 51.55 20.19

AR 0.93 114.90 83.97 35.96 34.83

LWL 0.80 190.39 146.48 59.59 60.76

Training 
(70%) and 

Testing 
(30%) 

IBK 0.92 128.82 94.23 40.32 39.09

thms for this task are MLP, SVM and LMS in descend- 
ing order. Next, six hours ahead individual predictions 
performed by the initially selected regression algori- 
thms and the accuracy of the prediction performances are 
validated with both the scale dependent and scale free 
error measurement metrics. 

5. Using Preliminary Short Term Prediction  
with Base Regression Algorithms 

The six hours ahead solar radiation prediction with the 
potential regression algorithms were performed to com- 
pare the errors of the individual prediction to select three 
decisive regression algorithms for the ensemble genera- 
tion. In Table 4, the summary of six hours in advance 
prediction error for different regression algorithms with 
both the scale dependent and scale free prediction accu- 
racy validation metrics are presented. 

Prediction Accuracy Validation Metrics 

In general, there are four types of prediction-error me- 
trics [29]. Those are: scale dependent metrics as for 
example MAE; metrics related to percentage of error 
such as mean absolute percentage error (MAPE); metrics 
regarding relative error which computes the ratio of error 
between a selected and a novel approach; and finally 
scale free error measurements that is not dependent to 
scale of the data and can be used to compare forecast sys- 
tems on a distinct series and also to compare forecast ac- 
curacy between series such as MASE.  

From the individual prediction results the regression 
algorithms are ranked. According to [30], MAE is strongly 
suggested for error measurement. Hence, the ranking is 
done based on the MAE of those regression algorithms’ 
predictions. 

Accuracy of the preliminary experimental results of 
distinct base predictor was also analyzed according to 
MASE [29]. MASE is scale free, less sensitive to outlier; 
and less variable to small samples. MASE is suitable for 
uncertain demand series as it never produces infinite or  
 
Table 4. Six hours ahead prediction errors of different re- 
gression algorithms. 

Six Hours Ahead Prediction Error Summary 

 CC MAE MAPE RMSE RMSPE MASE RANK

LMS 0.96 77.19 17.65 107.94 29.19 0.63 1 

MLP 0.99 91.02 20.17 119.73 31.62 0.74 2 

SVM 0.96 126.88 21.72 135.15 24.01 1.03 3 

LR 0.96 148.41 24.07 155.82 25.12 1.21 4 

LWL −0.15 213.33 46.86 271.22 72.39 1.73 5 

IBK 0.88 275.00 47.90 290.18 53.66 2.24 6 

AR 0.93 298.45 48.21 306.03 49.05 2.43 7 
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undefined results. It indicates that the forecast with the 
smallest MASE would be counted the most accurate 
among all other alternatives [29]. Equation (2) states the 
formula to calculate MASE. 

In Equations (2) and (3),  = number of instances, 

i  = actual values and i  = predicted outputs. In Fig- 
ure 4 the prediction performance of the preliminary se- 
lected regression algorithms in terms of various error va- 
lidation metrics used are portrayed. 

n
a p

  1
2

1 1
n

i i
i

MAE
MASE

n a a 



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          (2) Based on MAE and MASE the top most three regres- 
sion algorithms for ensemble generation are LMS, MLP 
and SVM. In Figures 5-7 the comparison between the 
actual and predicted values of these three regression al- 
gorithms are graphically presented respectively. 1

1
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n
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i

MAE p a
n 

           (3) 

 

 

Figure 4. Prediction performance of the regression algorithms with A: MAE, B: MAPE, C: RMSE, D: RMSPE, E: MASE 
and F: CC error validation metrics. 

 

 

Figure 5. Prediction performance of the LMS regression algorithm. 
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Figure 6. Prediction performance of the MLP regression algorithm. 
 

 

Figure 7. Prediction performance of the SVM regression algorithm. 
 
6. Selected Regression Algorithms for  

Ensemble Generation 

6.1. Support Vector Machine (SVM) 

The Support Vector (SV) algorithm is a nonlinear gener- 
alization of the “Generalized Portrait” algorithm devel- 
oped in Russia in the sixties [31]. One of the artificial 
intelligence based renewable energy forecasting methods 
described in the literature [32,33], which involves the so- 
called Support Vector Machines. Such models are less 
rigid in terms of architecture than Artificial Neural Net- 
works (ANNs) and may allow one to save even more 
modeling efforts when designing prediction models. 
While other statistical models are estimated following the 
empirical risk minimization principle, i.e. the minimiza- 
tion of loss function over the learning set and the check- 
ing of the generalization ability with some criteria, the 
SVM theory is based on the structural risk minimization 
principle, which consists on directly minimizing an upper 
bound on the generalization error, and thus on future 
points [34]. There is today a large interest in applying 
SVMs for several purposes including renewable energy 
forecasting [35-39]. 

6.2. Least Median Square (LMS) 

Strong and fast regression methods are necessary that are 
able to cope with the various challenges involved in the 
successful implementation of smart grid. LMS is one of 
the potential factors which can be used to serve the 

purpose of the successful implementation of smart grid 
[40]. 

The least median square is basically consists of ad- 
justing the parameters of a model function to best fit a 
data set. Rousseeuw’s LMS linear regression estimator 
[41] is amongst the best known and most extensively 
used robust estimators. The LMS estimator is defined 
formally as follows. Consider a set  
of  points in , where . 
A parameter vector 

 1 2, , , nP p p p 
 ,1 ,2 , 1 ,, , , ,i i d i dx x xn R i ip x

 d1 2, , ,      that best fits the 
data by the linear model is likely to be computed. 

, ,1 1 ,2 2 , 1 1i d i i i d d d ix x x x r               (4) 

for all i  where  are the (unknown) errors, 
or residuals. 

1 2, , , nr r r

6.3. Multilayer Perception (MLP) 

MLP which is one of the types of ANNs have been used 
in diverse applications as well as in renewable energy 
problems. ANNs have been used by various authors in 
the field of solar energy; for modeling and design of a 
solar steam generating plant, for the estimation of a 
parabolic trough collector intercept factor and local con- 
centration ratio and for the modeling and performance 
prediction of solar water heating systems. They have also 
been used for the estimation of heating loads of buildings, 
for the prediction of air flow in a naturally ventilated test 
room and for the prediction of the energy consumption of 
a passive solar building [42]. 
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In all those models multiple hidden layer architecture 
has been used. Errors reported in these models are well 
within acceptable limits, which clearly suggest that 
ANNs can be used for modeling in other fields of re- 
newable energy production and use. Research works us- 
ing ANNs in the field of renewable energy as well as in 
other energy systems are found in the literature review. 
This includes the use of ANNs in solar radiation and 
wind speed prediction, photovoltaic systems, building 
services systems and load forecasting and prediction 
[42].  

In general MLP can have numerous hidden layers 
(Figure 8), however according to Hornik; a neural net- 
work with single hidden layer is capable to estimate a 
function of any complexity [43]. If a MLP with one hid- 
den layer is considered, tanh as an activation function 
and a linear output unit, the equation unfolding the net- 
work structure can be expressed as: 

1 1

tanh
q p

k ok jk ij i
j i

O V V Woj W X
 


 

 
  

         (5) 

where  is the output of the  output unit, kO thk jkV  
and oj  are the network weights,  is the number of 
network inputs, and  is the number of hidden units. 
Throughout the training progression, weights are altered 
in such a way that the difference between the obtained 
outputs k  and the desired outputs k  is minimized, 
which is typically done by minimizing the following er- 
ror function: 

W

O

p
q

d

 2

, ,
1 1

r n

e k e k
k e

E d O
 

               (6) 

where  is the number of network outputs and  is 
the number of training examples. The minimization of 
the error function is usually done by gradient descent me- 
thods, which have been comprehensively investigated in 
the field of optimization theory [44]. 

r n

7. Statistical Test 

T-test is employed to verify the algorithm accuracy per- 

formances in the experiments. In this paper the inde- 
pendent samples T-Tests are carried out in order to jus- 
tify whether any significant difference exists between the  
actual and predicted values achieved by the selected 
three regression algorithms. These tests are done in order 
ensure the potentiality of those selected heterogeneous 
regression algorithms for the suggested hybrid method. 
The t-test is executed with the SPSS package-PASW 
Statistics 18. 

7.1. T-Test to Compare the Mean Actual and  
Predicted Values of LMS 

For the least median square (LMS) regression algorithm, 
an equal variances  test failed to reveal a statistically 
reliable difference between the mean number of the ac- 
tual and predicted values of solar radiation with actual 

t

 639.167M 
716.357M

,  and predicted data  
(

77.405s 1
 , 104.778s  ), , two tailed 

significance value 
 10 0.918t 

0.380p  , significance level  
0.05  . The decision rule is given by: if p  , then 

reject the obtained result. In this instance, 0.380 is not 
less than or equal to 0.05 and fail to reject the obtained 
result. That implies that the test failed to observe any 
significant difference between the actual and predicted 
values performed by LMS on average. In Table 5 the 
group statistics with Mean (M), Standard Deviation (S) 
and Standard Error Mean for the actual and predicted 
values of LMS is represented. In Table 6 the independ- 
ent samples t-test results for the actual and predicted 
values of LMS is illustrated. 

In the same way t-test to compare the mean actual and 
predicted values of MLP and t-test to compare the  
 

Table 5. Group statistics of LMS. 

Group Statistics 

Group N Mean Std. Deviation Std. Error Mean

Actual 6 639.17 177.41 72.43 
Data

Predicted 6 716.36 104.78 42.78 

 
Table 6. Independent samples t-test results for LMS. 

Independent Samples Test 

Levene’s Test for  
Equality of Variances

T-Test for Equality of Means 

95% Confidence 
Interval of the  

Difference 

 

F Sig. t df Sig. (2-Tailed)
Mean  

Difference
Std. Error 
Difference 

Lower Upper 

Equal Variances 
Assumed 

1.17 0.31 −0.92 10 0.38 −77.19 84.11 −264.61 110.23

Data 
Equal Variances Not 

Assumed 
  −0.92 8.11 0.39 −77.19 84.11 −270.70 116.32
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actual and predicted values of SVM are performed and 
the corresponding results are discussed in the results and 
discussions section of this paper. 

Observing all the above mentioned results, it is failed 
to observe any significant difference between the actual 
and predicted values performed by LMS regression algo- 
rithm on average. Therefore, the test failed to reject the 
obtained result for LMS regression algorithm. 

7.2. T-Test to Compare the Mean Predicted  
Values between LMS and MLP 

For the LMS and MLP regression algorithm, an equal 
variances t test failed to reveal a statistically reliable dif-
ference between the mean number of predicted values of 
solar radiation with LMS ( , ) 
and MLP ( ), ,  

716.357M 
262.128s 

0.180p 

104.778s 
 10 1.442550.216,M  t

two tailed significance value , significance 
level 0.05  . The decision rule is given by: if p  , 
then reject the obtained result. In this instance, 0.180 is 
not less than or equal to 0.05 and fail to reject the ob- 
tained result. That implies that the test failed to observe 
any significant difference between the predicted values 
performed by the pair LMS: MLP on average. In Table 7 
the group statistics with M, s and Standard Error Mean 
for the predicted values of LMS: MLP is represented. 

In Table 8 the independent samples t-test results for 
the predicted values of LMS: MLP is illustrated. In the 
same way t-test to compare the mean predicted values 
between LMS and SVM and t-test to compare the pre- 
dicted values between MLP and SVM are performed and 
the corresponding results are discussed in the results and 
discussions section of this paper. All the above men- 
tioned results in Table 8 failed to observe any significant  
 

Input 
Layer 

First Hidden 
Layer 

Second Hidden 
Layer 

Output 
Response

Output 

Layer  

Figure 8. Architecture of a MLP with two hidden layers. 
 

Table 7. Group statistics of the pair LMS and MLP. 

Group Statistics 

Group N Mean Std. Deviation Std. Error Mean

Actual 6 716.36 104.78 42.78 
Data 

Predicted 6 550.22 262.13 107.01 

difference between the predicted values performed by the 
pair LMS: MLP on average. Therefore, the test failed to 
reject the obtained results for the pair LMS: MLP regres- 
sion algorithm. 

8. Results and Discussions 

The ensemble generation through empirically selected 
heterogeneous regression algorithms are presented in this 
paper. Those potential regression algorithms were ap- 
plied as local predictors of the proposed hybrid method 
for six hour in advance prediction of solar power. Several 
performance criteria found in the solar power prediction 
method literature as: the training time, the modeling time 
and the prediction error. As the training process was in 
offline mode, the first two criteria were not considered to 
be relevant for this paper. In this context, the prediction 
performance was evaluated only in term of prediction 
error, defined as the difference between the actual and 
the forecasted values and based on statistical and graphi- 
cal approaches. T-tests were performed as statistical error 
test criteria. For the individual performance of LMS, 
MLP and SVM regression algorithm, an equal variances 
t-test failed to reveal a statistically reliable difference be- 
tween the mean number of actual and predicted values of 
solar radiation with actual and predicted data. In Table 5 
the group statistics with M, s and Standard Error Mean 
for LMS was presented. In Table 6 the independent sam- 
ples t-test results for LMS was illustrated. To compare 
the mean predicted values between the LMS: MLP, LMS: 
SVM and MLP: SVM regression algorithm, an equal 
variances t test failed to reveal a statistically reliable dif- 
ference between the mean number of predicted values of 
solar radiation with LMS and MLP; with MLP and SVM. 
But for the instance of the pair LMS: SVM trivial differ- 
ence between the predicted values is observed. Therefore, 
the obtained result is rejected. But this inconsistency can 
be eliminated by the proper selection of the kernel func- 
tion and the optimal parameters of SVM for this purpose. 
In Table 7 the group statistics with M, s and Standard 
Error Mean for the predicted values of LMS: MLP was 
represented. In Table 8 the independent samples t-test 
results for the mean predicted values of LMS: MLP was 
illustrated. All the results found from the t-tests clearly 
indicate that the heterogeneous regression algorithms 
selected for the suggested hybrid method are more accu- 
rate and prospective. In Figure 5, the prediction per- 
formance of the preliminary selected regression algo- 
rithms in terms of various error validation metrics used 
are presented graphically. While the 2-D error prediction 
form (Figures 5-7) for the three proposed regression 
algorithm based predictors were presented as graphical 
error performance. In Table 4, referring to the MAE and 
MASE criteria, it is observed that LMS, MLP and SVM 

ave the lowest prediction error. Therefore, these three  h 

Copyright © 2013 SciRes.                                                                                SGRE 



Hybrid Prediction Method for Solar Power Using Different Computational Intelligence Algorithms 85

  
Table 8. Independent samples t-test results for the pair LMS and MLP. 

Independent Samples Test 

Levene’s Test for Equality 
of Variances 

t-test for Equality of Means 

95% Confidence Interval 
of the Difference 

 

F Sig. t df Sig. (2-Tailed)
Mean  

Difference
Std. Error 
Difference 

Lower Upper 

Equal Variances 
Assumed 

1.17 0.31 −0.92 10 0.38 −77.19 84.11 −264.61 110.23

Data 
Equal Variances 

Not Assumed 
  −0.92 8.11 0.39 −77.19 84.11 −270.70 116.32

 
regression algorithms are empirically proved to be poten- 
tial for the proposed hybrid prediction method. 

9. Conclusion 

In this paper, based on heterogeneous regression algo- 
rithms a novel hybrid method for solar power prediction 
that can be used to estimate PV solar power with im- 
proved prediction accuracy is presented. The hybridiza- 
tion aspect is anchored in the top most selected hetero- 
geneous regression algorithm based local predictors as 
well as a global predictor. One of the two decisive prob- 
lems of ensemble learning namely heterogeneous ensem- 
ble generation for solar power prediction is mainly fo- 
cused in this research. There are scopes to further im- 
prove the prediction accuracy of the selected individual 
regression algorithms namely LMS, MLP and SVM. As 
a consequence, the next step will be the efficient utiliza- 
tion of the feature selection aspect on the used data set to 
reduce the generalized error of those regression algo- 
rithms. Further tuning can be achieved through the pa- 
rameter restructuring of those regression algorithms to 
make them as accurate and diverse as possible as well as 
to formulate the proposed hybrid method more effective. 
Finally, another regression algorithm or learning algo- 
rithm will be found out empirically to nonlinearly com- 
bine or integrate the individual predictions supplied from 
the improved local predictors. Further application of the 
proposed ensemble will include distributed intelligent 
management system for the cost optimization of a smart 
grid. 
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