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Abstract 
Evaluation of the impact of herbicides on maize was done through multi- 
spectral and multi-modal imaging and multi-spectral fluorescence imaging 
combined with statistical methods. Spectra containing 13 wavelengths ranging 
from 375 nm to 940 nm were derived from multi-spectral images in transmis-
sion, reflection and scattering mode and fluorescence images obtained using 
high-pass filters (F450 nm, F500 nm, F550 nm, F600 nm, F650 nm) on control 
maize samples and maize samples treated with Herbextra herbicide were used. 
The appearance of the spectra allowed us to characterize the effect of the her-
bicide on the maize pigment concentration. The fluorescence images allowed 
us to track the fate of absorbed energy and through PLS-DA and SVM-DA to 
discriminate the two leaf categories with very low error rates for the test, i.e. 
4.9% and 2% respectively. The results of this technique can be used in the 
context of precision agriculture. 
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1. Introduction 

Maize (Zea mays) is an annual tropical herb plant of the grass family. It is a 
highly prized cereal for its many qualities and applications [1]. It adapts to all 
climates and latitudes. It is now present on five continents, through several va-
rieties [2]. All over the world, breeders, to feed their animals, prefer maize in re-
lation to any other food [3]. The success of maize is also due to its use for human 
food. It is an important cereal because it is the most dominating crop for biogas 
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production [2]. It is a source of income for some school dropouts converted to 
farmers. In Côte d’Ivoire the annual production is about 764,000 t for the year 
2016 according to [4]. This important cereal is prone to problems (water stress, 
overdose of herbicides and disease attacks, etc.). According to [5] at the level of 
the agricultural industry, the control of the state of health and the detection of 
the diseases in the plants are critical for a sustainable agriculture. The large-scale 
use of herbicides in maize production will attract our attention in this work. 

Indeed the discovery of herbicides has been a relief for humanity in general 
but for the peasants in particular, allowing them to increase their area of exploi-
tation. However, repeated use of herbicides has resulted in herbaceous species 
resistant to these products, leading to overdosage and to mixtures of products 
which do not often have the same active substance. Herbicides are biologically 
active and therefore intentionally toxic to target organisms. Because of their ha-
zardous nature, the unintended contact of these substances with undesignated 
targets may cause serious problems for these targets [6] [7]. People are one of 
these involuntary targets because they are the applicators of these substances and 
also, consumers of food resources contaminated by residues of these products. 
Several scientific studies show the dangerous effects of herbicides on the health 
of populations [8] [9] [10]. 

Thus understanding the action of these products on photosynthetic constitu-
ents could help to combat the overdosage of these products. Several methods ex-
ist for monitoring the health of plants [5] [11] [12] and are based on the interac-
tion between light and matter. Multi-spectral imaging [13] [14] [15] and fluo-
rescence [16] [17] [18] have also shown their ability to monitor the health of 
plants and to discriminate against certain diseases. We combine these two tech-
niques to discriminate two types of maize plant (healthy and treated with herbi-
cide plants) to predict the physiological state of a new database and especially to 
understand the impact of the herbicide on the physiology of the plant. To sup-
port this classification two statistical techniques are used: Partial least squares 
discriminant analysis (PLS-DA) is a linear classification technique based on the 
methods of regression by least square and the properties of discriminations [19]. 
It is a technique that has been used in several research domains [20] [21] for the 
classification of data. The support vector machines (SVM) [22] [23] are based on 
a Lagrangian optimization method under linear inequalities constraints. They 
represent a supervised learning technique like neural networks. The original aim 
of SVM is to discriminate complex regions in a robust binary framework or clas-
sification. Developed in 1995 by Vladimir Vapnik, SVM have quickly become 
one of the references in data processing [19] [24]. 

2. Materials and Methods 
2.1. Plant Material and Experimental Design  

The experiment was carried out in the laboratory of instrumentation image and 
spectroscopy at the Institut National Polytechnique Houphouët-Boigny (INP- 
HB, Yamoussoukro, Cote d’Ivoire). In a greenhouse, seeds of corn were sown in 
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pots containing a sterilized soil. Each pot contained three corn seeds. At the 
four-leaf stage, a portion of the maize plants were treated with HERBEXTRA (2, 
4-D amine salt 720 g/l, SL), a selective herbicide acting on a large number of 
weeds. This herbicide is class III and harmful according to the FAO/WHO clas-
sification. 

2.2. Preparation of Herbicide Dose 

The treatment solution was prepared following the manufacturer’s instructions. 
Thus 8 ml of the 2,4-D amine salt 720 g/l were taken and mixed with 2 l of water 
in a high pressure sprayer. After homogenization of this mixture, the treatment 
is carried out on part of the young maize plants. The leaves of the plants treated 
with the herbicide and the leaves of the untreated plants (healthy leaves) are col-
lected for measurements. 

2.3. Optical Instrumentation 
2.3.1. Multi-Spectral Microscope I 
The multi-spectral and multimodal microscope is a microscope constructed 
from a commercial microscope (Brunel Metallurgical microscope, model SP80), 
in which all conventional sources were replaced by LEDs [25] [26] [27]. The 
mechanical eyepieces have also been replaced by a monochrome camera CMOS 
12-bit (2592 × 1944, Guppy-503B, Vision Allied Technology, with a sensor of 
MT9P031 micron/Aptina) with pixels of size 2.2 μm × 2.2 μm, used for image 
acquisition. The system acquires 13 images per mode of the same scene using an 
acquisition card (NI-DAQ) connected to a computer, which allows to control 
the intensity of the LEDs. 

2.3.2. Multi-Spectral Microscope II 
1) Hardware 
The new motorized microscope consists of following components (Figure 1): 
a) Camera 
Indeed, the used enclosed digital Lumenera lt225M, camera has a pixel size of 

5.5 × 5.5 μm. It has a high resolution 2/3 CMOSIS CMV2000 sensor with a fully  
 

 
Figure 1. Scheme of the experimental device. 
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electronic global shutter. It uses the USB 3.0 technology with selectable 8 or 
12-bit pixel data. That means it is very fast. The full resolution that can be 
reached is 1088 × 2048 with 2.2 MP. The maximum frame rate is 170 fps (frames 
per second). The camera has an exposure time range from 0 to 4 s. 

b) Objective 
In order to increase the size of viewed objects, we used a plan objective which 

is OLYMPUS NIKON NEOFLUAR 40/0.7. The use of this kind of objective is 
recommended when we need to see objects with more details is. But that objec-
tive undergoes chromatic aberration that makes the distance of found best-in- 
focus image related to a wavelength. 

c) Laser and Data Acquisition Card (DAQ) 
The sample is illuminated by lasers of wavelength 405 nm in transmission and 

650 nm in reflection. Each wavelength can be used in transmission and also in 
reflection at any moment without modifying the system. A beam splitter is used 
between the objective and the camera. Its goal is to divide the beam put in reflec-
tion into two half parts: the first is obtained when the laser beam changes its di-
rection after meeting the beam splitter so it interacts with the sample and the 
second half part is lost. Each output of lasers controllers meets optical densities 
whose goal is to reduce the power of used lasers. The lasers are controlled by a 
data acquisition card (DAQ) from National Instruments (USB 6008). Fibers are 
used in each mode to conduct the light from the source to the sample. Finally, a 
diffuser is used in order to homogenize the light coming from both lasers 
sources to the sample. The use of this component is helpful to reduce the speckle 
from lasers but move it can improve the level of speckle killing [28]. That expe-
riment will not be discussed in this work. 

d) Servo-controllers 
The moving of the sample in X, Y and Z directions is done using three motors 

from THORLABS. Those motors are controlled using TDC001 servo-controllers. 
They have a shaft-distance of 25 mm (0 to 25 mm) with a minimum step of 0.5 
µm. Servo-controllers used are very compact footprints with 2.4 × 2.4 × 1.8. 
They can control motors from 12 to 15 v up to 2.5 w. 

All components quoted above are combined together to build a very compact 
microscope equipped with two different modes: transmission and reflection. The 
built microscope is very flexible and easy to handle. It is also possible to use this 
system for fluorescence measurements. To achieve it, we put between the camera 
and the objective five high-pass-filters namely, 450 nm, 500 nm, 550 nm, 600 
nm, 650 nm. 

B) Software 
After that, easy software is designed to monitor the entire motorized micro-

scope using MATLAB r2014a. With this software, it is possible to get the best-in- 
focus image, control the lasers and also the camera.  

2.4. Data Analysis 
2.4.1. Multi-Spectral and Multi-Modal Imaging 
The images analyzed account for the spatial dimension and the spectral space 
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represents the spectral dimension, i.e. a three dimensional space. From these 
microscopic images, we try to evaluate the action of the herbicide on the pig-
ment concentration of maize leaves. In the image space, each object is characte-
rized by a distribution of the intensity of the pixels. The objects are observed ac-
cording to 13 wavelengths which are the variables. The average of the pixels is 
carried out according to each wavelength and a representation of the intensity as 
a function of the wavelengths is made subsequently to follow the behavior of 
each category of plant leaf. 

2.4.2. Multi-Spectral Fluorescence Imaging 
With an excitation source at 405 nm, we used five high-pass filters for each sam-
ple. Since the number of filters is greater than 3, we face a problem of multidi-
mensional statistics. Fluorescence is the remission of part of the energy absorbed 
by chlorophyll molecules that initiate photosynthesis reactions. It is therefore in 
competition with the energy used in the mechanisms of regulation of photosyn-
thesis. We monitor the intensity of the fluorescence as a function of the filters in 
order to understand the fate of the light intensity absorbed. Since the intensity of 
fluorescence is different at the two groups of leaves and also according to the fil-
ters, a model for the distinction of the leaves is required. Partial Least Squares 
Discriminant Analysis (PLS-DA), a linear classification method [19] derived 
from the PLS regression algorithm is used to discriminate samples through 
scores and latent variables coefficients. This technique consists in searching for 
latent variables (linear combination of the starting variables) having a strong 
covariance with the dependent variables [29] [30]. The variability of the database 
is carried by these latent variables in descending order. Thus, the first latent va-
riable carries the maximum of information while the second carries the variance 
not expressed by the first and so on. Our database is composed of two groups, 
coded as [1 0] and [0 1] for classes 1 (healthy leaves) and 2 (leaves with Herbex-
tra). The value 1 indicates the belonging of the samples to the group and 0 oth-
erwise. The belonging of an element to a group is determined by a threshold, 
determined for this group by the Bayes theorem [19] [31]. Before calibrating the 
model, the obtained fluorescence images are processed using the histogram. The 
boxplot is used as a pretreatment method to detect the presence of outliers. 
SVM-DA, an extensive margin separation method [22] [23] [32] known as a 
nonlinear classification method [33] was used to support the discrimination 
proposed by the first method. The database used for this work was randomly di-
vided into two groups: one group for training and another for testing. The dis-
tribution of these data is summarized in Table 1. For the validation of the models  
 
Table 1. Details of samples used for classification. 

Data set Healthy leaves Leaves with herbextra Total 

Train (calibration set) 82 80 162 

Test 41 40 81 

Total 123 120 243 
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proposed by these two statistical methods, parameters such as sensitivity, speci-
ficity, error ratio and accuracy are proposed by Ballabio et al. and Shrestha et al. 
These are defined as follows: 

( )Sensitivity = TP
T

SN
P FN+

                      (1) 

( )Specificity = TN
T

SP
N FP+

                      (2) 

( )Classification error rate er 1
2

SP SN
= −

+
               (3) 

correctly classified samples 100%
Total samples

Accuracy ×=              (4) 

where TP (true positive) is the number of samples correctly classified in their 
respective group, FN is false negative samples, TN is the true negative and FP is 
false positive. Sensitivity is the ability of the model to correctly identify samples 
group, whereas the specificity is the capacity to reject the samples of others 
group.  

3. Results and Discussion 
3.1. Results  
3.1.1. Multi Spectral Data  
We imaged 40 leaves of maize (20 healthy leaves and 20 leaves treated with Her-
bextra) with multi-spectral microscope I. The microscopic images allow us to 
distinguish the modes of transmission, reflection and scattering (Figure 2). Ob-
servation of these images reveals a difference between the healthy leaves and the 
leaves with the herbicide.  

The difference between these two types of leaves is observed at the biochemi-
cal level. Indeed, whatever the mode, one sees a structural disorganization and 
deformation of the elements inside the leaves treated with the herbicides. This  
 

 
Figure 2. Images of healthy maize leaves (a), maize leaves treated with Herbexra (b) taken 
for the three angular modes (a1, b1 for transmission), (a2, b2 for reflection) and (a3, b3 
for scattering). 
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structural difference of the healthy and treated leaves is revealed by the optical 
properties across the spectrum of these leaves (Figure 3). Both leaves have a 
light transmission, reflection and scattering variation in terms of intensities from 
ultraviolet to near infrared according to 13 wavelengths used. 

3.1.2. Fluorescence Data 
The multi-functional microscope II allowed us to acquire fluorescence images of 
maize leaves with a set of filters F450, F500, F550, F600, F650 (Figure 4). Thus, 
each sample of leaves is represented by five images. Here we present the image of 
those leaves for F650, from day one up to day four. We see again a deformation 
of some elements in the leaves image with herbextra. However, a simple visual 
analysis does not allow us to distinguish completely our different samples. Two 
statistical methods are used to classify our database. 

1) PLS-DA 
Before establishing the model some parameters must be determined. This is  

 

 
Figure 3. Spectra of the three phenomena: transmission (a), reflection (b), scattering (c). 
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Figure 4. Fluorescence image of healthy maize leaf (a) and maize treated with Herbextra 
(b) with F650: Day one up to Day four. 
 
the case for the number of latent variables (LV). In our work we use four LV be-
cause the error is relatively small (0.018) (Figure 5) and these four LV express 
99.81% of the variability of our database with 98.83% for the first two. The coef-
ficients of the latent variables allow us to see the influence of the starting va-
riables on the new variables (not displayed). After modeling the classification of 
a new database allows us to judge the reliability of the model (Figure 6). Thus all 
treated leaves are well classified. Only a few healthy leaves are misclassified. The 
performance of the model is presented in Table 2. 

In Figure 6, the threshold according to the Bayes Theorem is set at −0.038 for 
the healthy leaves (left) and 0.038 for the leaves with herbicide (right). 

3) SVM-DA 
Since our problem in this study is not linearly separable, we used the Gaussian  
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Figure 5. Choice of the number of latent variables. 
 

 
Figure 6. Prediction results of test set for maize leaf by PLS-DA. 

 
Table 2. Classification error rate, accuracy, sensitivity and specificity for the two models. 

 PLS-DA SVM-DA 

Data set 
Error rate 

(er) 
Accuracy 

Sensitivity 
(Sn) 

Specificity 
(Sp) 

Error rate 
(er) 

Accuracy 
Sensitivity 

(Sn) 
Specificity 

(Sp) 

Train 3% 97% 1.00 0.94 0% 100% 1.00 1.00 

Validation 2.4% 97.6% 1.00 0.95 1.8% 98% 1.00 0.96 

Test 4.9% 95% 1.00 0.91 2% 98% 0.95 1.00 

 
function as a kernel function for data separation. The parameters of this func-
tion are chosen optimally, i.e. the choice is based on the minimization of the 
misclassification error. Thus the kernel width is maintained at 0.96 and the cost 
or constraint factor is set to 100. The model contains 44 support vectors used to 
determine the separation lines of the two groups. The model is very stable in the 
classification of the two groups of samples with relatively low error percentages 
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(Table 2). Figure 7 shows the distance of each sample at the boundary of its 
group for training and testing. Our SVM-DA classifies the data with a very low 
classification error rate. 

3.2. Discussion 

The spectral signatures of our samples are all the same in each mode. However, 
in terms of intensity, in transmission the maize leaf with the herbicide transmits 
more light than the healthy corn leaf and that over the entire spectrum of the 
visible (400 nm - 700 nm). The interaction between the molecules of herbicide 
and the biochemical constituents of leaf generated the modification of the form 
of these constituents, creating a deformation of these at the microscopic level. 
These modifications show that plants produce some compounds to fight again 
external elements. This struggle for life is the base of deformation and change in 
optical properties. So this high transmission therefore demonstrates a weakness 
of the photosynthetic apparatus in the leaves with the herbicide linked to a low 
concentration of chlorophyll (Chl). Some studies show that stress can lead to a 
decrease in chlorophyll [34]. This decline in the level of chlorophyll (primary 
pigment) allows certain secondary pigments (carotenoids, anthocyanin) [35] to 
appear even during the growth phase of the plants. This is characterized by yel-
lowing and wilting of these leaves. The healthy leaves exhibit a lower transmis-
sion spectrum between 400 nm and 500 nm and at 660 nm the absorption zone 
of photosynthetic pigments (Chl a, Chl b and carotenoids) [36], allowing them 
to synthesize their organic matter necessary for their development. At the level 
of the reflection mode, it is observed that the control maize has reflection inten-
sity higher than the leaves with herbextra between 500 nm and 600 nm but at 
660 nm and in the near IR and IR there is an inversion of evolution of the inten-
sities. This change of situation reveals a chlorophyll anemia of the leaf which is 
manifested by a growth of the reflectance spectrum. 

Healthy corn leaves diffuse less light than leaves treated with the herbicide at  
 

 
Figure 7. Distance from each sample to the group boundary for training and testing. 
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590 nm and between 700 nm - 940 nm bound to the biochemical content of 
these leaves. The diffusion of the leaves is related to the variation of refractive 
index at the level of the leaf (air, water, etc.) [37]. This index variation translated 
by a high diffusion spectrum at 590 nm and 700 nm to 940 nm for the leaves 
under treatment may be related to the presence of the 2,4-D molecules in the 
mesophilic tissue creating additional layers at the base of the disorganization of 
the pigment concentration of the leaves. It may also be related to the geometry of 
the leaf, the physicochemical and optical properties (transmission, absorption, 
and reflection) [13]. 

Also, after the excitation phase of the leaf any non-transmitted or reflected 
energy is absorbed. Plants use this absorbed energy to make their organic matter 
through photosynthesis. The intensities of the fluorescence images show here 
that much of the energy absorbed by leaves treated with the herbicide is emitted 
in the form of fluorescence (chlorophyll fluorescence). Plant resistance responses 
to exterior attack commonly involve the accumulation of specific compounds 
with either signaling or antimicrobial properties. The latter can include structur-
al modifications [18]. Among these compounds, some have fluorescence prop-
erty and provide a way to reveal stress symptom. In fact Herbextra is the major 
part of stress caused by herbicides, blocking the passage of the electron from the 
primary quinone (QA) to the secondary quinone, which maintains the special 
chlorophylls (P680) in a state where they can’t receive energy (closed centers) 
[38] from photosynthetic antennas, thus increasing the emission of absorbed 
energy in the form of heat and fluorescence [35] [36] [38]. This high dissipation 
of the absorbed energy in the form of fluorescence is revealed in the F600 and 
F650 filters with the leaves treated with Herbextra. These filters being close to 
the absorption and reabsorption zone of chlorophyll a and this fluorescence in-
tensity confirm the inability of chl a, to reabsorb the energy [17]. This low reab-
sorption for the leaves with the herbicide confirms the low level of chlorophyll. 
The combination of filters allows us to follow the intensity of the fluorescence 
images and to understand the speed of transport of the absorbed energy towards 
the photosynthetic antennas (PSII, PSI). The fluorescence intensity at the level of 
the healthy leaves is low due to the attenuation of the fluorescence by the photo-
synthesis (quenching). The high pigment concentration thus allows an efficient 
transport of the energy towards the photosystems. This pigmentary proximity is 
reduced here at the level of the maize plants under herbicidal treatment. An 
overdose of herbicide can then contribute to the placing of undesirable and 
harmful gene in the fruits consumed by the consumers. The distinction made 
between these two types of leaves is supported by the results of the established 
models. Indeed the two models reveal a perfect distinction between the two 
samples with relatively low error rates. The results from these models show the 
potential of multi-spectral fluorescence imaging as a means of discriminating 
leaves that do not have the same health status. 

4. Conclusion 

Our approach in this work allowed us to see that the combination of multi- 



A. K. Kouakou et al. 
 

22 

spectral and multimodal imaging and fluorescence imaging is an effective asset 
in the diagnosis of the use of herbicides on plants. These two methods allowed 
us to see on the one hand the spectral behavior of the plants under treatment of 
herbextra and the effect of the latter on the amount of chlorophyll in the plants 
through the transmission, reflection and diffusion spectra. On the other hand, 
the fluorescence imaging allowed us to follow the fate of the energy absorbed by 
the plant and the rate of transmission of this energy to the reaction center. This 
transmission rate could thus be an important asset in the diagnosis of a stress 
situation in the plant. The models show the potential of VSM-DA and PLS-DA 
in data discrimination. One of the perspectives of this work will be to study the 
impact of water stress on herbicide treated plants due to the disturbance of rain-
fall due to climate change. 
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