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Abstract 
Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the 
number of actual on-line or even on-site industrial applications seems to be very limited. In the 
present paper, the attempts to produce on-line predictions of the chemical oxygen demand (COD) 
in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was 
perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, 
roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as 
successful. This result was obtained by using partial least squares model regression, interpolated 
reference values for calibration purposes, and by evenly distributing the calibration data in the 
concentration space. This work may also represent the first industrial application of on-line COD 
measurements in wastewater using NIR spectroscopy. 
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1. Introduction 
Wastewater flows are characterized by constantly changing flow rates and composition [1]. Industrial produc-
tion of pulp and paper generates considerable amounts of wastewater, where the contaminants may be characte-
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rized using for instance the chemical oxygen demand (COD) [2]. Activated sludge treatment of this type of 
wastewater from chemical pulp mills can reduce the COD by 25% - 65%, however addition of nitrogen and 
phosphorous may be needed in order to avoid that these elements limit the biological degradation of organic 
compounds [3]. In order to perform this addition efficiently, on-line information about the organic load in the 
activated sludge stage is essential.  

One potential method of gaining on-line information of the organic load is to use near infrared (NIR) spec-
troscopy combined with quantitative models based on multivariate methods. Although NIR spectroscopy can be 
seen as an extremely powerful tool for industrial quality control and process monitoring [4], only a limited 
number of publications describing the use of NIR spectroscopy in wastewater applications are readily found. It 
is probably fair to say that there is no clear trend or typical wastewater application of NIR spectroscopy. The 
studies found represent quite diverse applications, for instance, quantitative measurements of oil, urea and solids 
[5], glycerol [6], and methanol and glycerol simultaneously [7] in wastewater from a biodiesel fuel production 
plant. As another example, in one of the few in-situ applications found [8], principal component analysis (PCA) 
was used instead of quantitative modelling to monitor an activated sludge plant.  

However, in most treatment plants, COD is probably the most important measure, which is also reflected in 
the number of publications that describe the use of NIR spectroscopy for COD measurements. These include 
off-line measurements of only COD [9]-[11], as well as COD in combination with other parameters off-line [12] 
[13], and in-situ [14] [15]. It is an interesting observation that although the reported accuracies vary significantly 
in these publications, the measurement error divided by the concentration interval studied is in many cases close 
to 1/10. However, [15] reports on a relative error above 50% for the NIR COD measurement. This present study 
then complements the work already done by others by presenting a fully automated on-line and on-site mea-
surement of COD in industrial wastewater, evaluated during an undisrupted measurement period of one month. 

2. Materials and Methods 
The spectra were collected with a Red Eye® Online sensor for suspensions and fluids (Pulp Eye AB, P. O. Box 
70, 89,122 Örnsköldsvik, Sweden). The sampling system (also constructed by Pulp Eye AB), or measurement 
head, consisted of a filter unit followed by a flow through cell coupled with optical fibres and equipped with an 
automated back flush system using tap water and activated in between every measurement. The sampling system 
was mounted on a bypass loop of the main pipe. For every third spectrum, a new reference spectrum was col-
lected of the tap water. Each spectrum consisted of 50 averaged scans, and the path length of the flow through 
cell was 1 mm. The spectra were made up by 256 wavelengths recorded between 1018 and 2032 nm at an aver-
age data resolution of 4 nm. The spectra were collected on-line at 10 minutes intervals for a period of 29 days. 

During weekdays, laboratory COD reference measurements were generally performed twice a day on-site. In 
total 4099 spectra were collected and for 36 of these COD reference measurements were performed. The cali-
bration models were calculated using the PLS Toolbox v. 7.0.1 (Eigenvector Research, Inc. 3905 West Eagle 
rock Drive Wenatchee, WA 98801, USA), together with MATLAB R2011b (The Math Works AB, Kista, Swe-
den) where all matrix calculations were also performed. The calibration methods used were partial least squares 
(PLS) regression and principal component regression (PCR). The performance of the models was assessed by, 
among other things, the root mean square error of calibration (RMSEC), the root mean square error of cross 
validation (RMSECV), and the root mean square error of prediction (RMSEP). A description of the regression 
methods and the definition of the performance parameters can be found in [16]. The main units of the wastewa-
ter treatment facility were a pre-sedimentation basin, an aerated activated sludge basin, and a post-sedimentation 
basin. The measurements were made on the wastewater leaving the pre-sedimentation basin.  

3. Results and Discussion 
Initially the measurement was performed with a transflectance probe mounted in the bypass loop. However, the 
probe was clogged within hours and therefore replaced with the flow through cell with an automated back flush 
system. This reduced the problems with clogging and fouling significantly, but at the same time reduced the po-
tential information about suspended solids to a minimum. In order to carry out the investigation with a minimal 
intrusion on the daily activities in the facility, it was also decided that any quantitative calibration will have to 
rely on reference data obtained from the measurements routineously carried out by the plant operators. As will 
be discussed, this trivial experimental design posed some limitations when trying to create an accurate calibra-
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tion model. It was therefore clear from the beginning that it would be a challenging task to establish a reliable 
calibration model for the intended application. With a PCR model built on the 36 spectra corresponding to the 
reference measurements and using mean centering as spectral pre-processing, 89% of the spectral variance and 
only 0.04% of the COD variance were explained by the first PC. The corresponding numbers for the second PC 
were 11% and 3.7%. Thus, 2 PCs explained essentially all of the spectral variance and almost nothing of the 
COD variance. The situation was very much the same in the PLS space, with spectral/COD variance explained 
by the first PLS component at 46/2.7% and 54/1.5% by the second. In other words, the relationship between 
spectral and COD variance was very weak in this data. One reason for this was that the spectra from the end of 
the time series displayed extreme absorbance values, apparently due to fouling of the windows of the flow 
through cell.   

New PCR and PLS models were therefore built on the 22 first spectra corresponding to reference measure-
ments. In this case a second order derivative (Savitzky-Golay) based on a 9 point third order polynomial was 
applied to minimize baseline effects. This spectral pre-treatment was followed by auto scaling instead of mean 
centering in an effort to enhance minor variance in the spectra potentially relatable to the COD concentration. 
This pre-processing was also used in all later models. The two models are summarized in Table 1. With this re-
duced data set, the PLS model explained a very reasonable amount of the COD variance (76%) when using 7 
PLS components. Although both PCR and PLS were now able to explain significant amounts of the COD va-
riance, it was clear that modelling should be performed using PLS rather than PCR. However, Table 1 also 
shows that the coefficient of determination is still close to 0 for both PCR and PLS in cross validation. Predic-
tions made with this PLS model on the full data set are shown in Figure 1. 

According to Figure 1, the PLS model is capable of predicting only a noisy average COD concentration. The 
visually noticeable increase in the noise level after approximately 2600 spectra was assumed to be a result of 
fouling of the flow through cell windows. Therefore only the first 2644 spectra were considered in the later cal-
culations and modelling. This cut resulted in 24 spectra with corresponding reference values. Figure 2 shows 
every twentieth of the first 100 spectra collected. Based on this figure the wavelengths above 1840 nm were 
discharged. The remaining spectral information reveals very little of obvious interest by visual assessment. A 
new PLS model was regressed on the 24 spectra corresponding to reference values. This gave an RMSEC of 65 
mg/l, an RMSECV of 222 mg/l, and a coefficient of determination in cross validation of 0.21. Thus some im- 

 
Table 1. PCR and PLS models regressed on the first 22 spectra corresponding to reference measurements in 
the time series.                                                                               

 PCR PLS 

RMSEC [mg/l] 176 122 

RMSECV [mg/l] 276 280 

R2 (calibration) 0.50 0.76 

R2 (cross validation) 0.13 0.19 

 Cumulative variance by component # 

 PCR PLS 

 Spectral COD Spectral COD 

1 96.24 15.80 96.18 16.55 

2 99.05 26.38 98.97 30.63 

3 99.70 33.68 99.67 38.50 

4 99.86 37.12 99.83 46.10 

5 99.96 43.78 99.94 50.23 

6 99.97 44.68 99.97 66.17 

7 99.98 49.60 99.98 75.83 
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Figure 1. Predictions on the full data set using a PLS model 
based on the first 22 spectra corresponding to reference mea-
surements.                                           

 

 
Figure 2. Absorbance spectra from the beginning of the on- 
line collected time series. The higher wavelengths (above 
1840 nm) were deemed useless and only very broad bands are 
visible in the rest of the spectra.                           

 
provements compared to the PLS model previously accounted for was obtained, but the model was still only 
able to fit the regression data and showed no capacity for cross validation. 

Due to the need for additional reference data, “synthetic” reference values were assigned to all the 2644 spec-
tra by means of interpolation between the actual reference values. Here linear interpolation was used based on 
the simple fact that no information on the behavior of the COD concentration between the reference measure-
ment points was available. A new PLS model based on all the 2644 spectra was thereafter regressed. For this 
model, an RMSEC of 75 mg/l, an RMSECV of 77 mg/l, and a coefficient of determination in cross validation of 
0.86 were obtained by using 10 PLS components. It should be noted that the performance of the model is related 
to mainly the interpolated reference values, and should therefore be interpreted with some caution. Figure 3 
shows the predictions with this model as a time series, and it can be suggested that the measurement seem rea-
sonable at the same time as the noise level is still considerable. These results were seen as promising, although 
cross validation using venetian blinds split on this type of data was assumed to produce overoptimistic valida-
tion results. The next step was therefore to split the available data into a model regression set and a fully external 
validation data set. 

Since the use of interpolated reference values resulted in an abundance of data for regression and validation, 
the data set was simply split in half using the first 1322 spectra for model regression and the remaining spectra 
for model validation. This gave a model that in calibration and cross validation performed very similarly to the 
model described above. However, on the external validation data set the RMSEP was as high as 168 mg/l and  
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Figure 3. Predictions on the first 2644 spectra with a PLS 
model based on the same data set using interpolated COD 
values as reference values.                                

 
the coefficient of determination only 0.36. Switching the regression set for the validation set and vice versa did 
not improve the validation performance. One reason for this could have been the gradual fouling of the windows 
of the flow through cell. However, what is evident from Figure 3 is that it is impossible to select a single conti-
nuous time series for regression and validation and at the same time cover the same COD spans in both data sets. 
A regression data set was therefore extracted from the 2644 spectra studied by selecting the first 322 spectra and 
spectrum 1897 to 2644 as regression data. In Figure 3 this corresponds to the range covering the first 4 refer-
ence measurement points and the range from the lowest reference point to the end of the time series. 

This new split gave a model with an RMSEP of 144 mg/l and a coefficient of determination of 0.43. Consi-
dering the fact that these performance parameters were based on the interpolated reference values, no further at-
tempt was made to optimize these. Instead the focus was set on finding a model that could predict the high and 
low COD concentrations well, rather than being accurate around the average concentration. This was attempted 
by reweighting the information in the model regression data set. The data was split into 20 concentration inter-
vals (matlab: hist). In this split, 5 intervals contained 125 spectra or more, and 6 intervals contained 12 or less. 
The data was thereafter reweighted by reducing the maximal number of spectra in each interval to 20. This was 
done by generating a random sequence of indices to remove within each concentration interval (matlab: rand-
perm). In this way the number of spectra in the calibration data set was reduced from 1070 to 334. 

After reweighting the regression data the data set was further refined by a stepwise removal of spectra with 
high absolute cross validation residuals (a model was regressed, high residual samples removed, and a new 
model regressed, etc.). This further reduced the calibration data to 274 spectra. For this model an RMSEP of 182 
mg/l and a coefficient of determination of 0.35 were obtained. Based on these parameters, the reduction of the 
calibration data set apparently deteriorated the model performance. However, these values were obtained for the 
interpolated reference values instead of real reference values, and the objective was to obtain a model that pre-
dicted changes rather than average concentrations. To evaluate how this objective was met the standard devia-
tion of the predictions of the validation data before and after the reduction of the calibration data set was com-
puted. The standard deviation for the predictions with the model regressed on the original regression data set 
was determined to 176 mg/l and the corresponding value for the reduced data set was 224 mg/l. Thus, according 
to this somewhat unconventional performance parameter, the reduction or refinement of the calibration data set 
resulted in an improved model. 

The predictions by this last model of the regression and validation data are shown in Figure 4. The predic-
tions of the validation data were perceived as reasonable, although still impaired by a relatively high noise level. 
However, since this was a time series measurement, noise reduction is not confined to the spectral level only. 
Filtering the model predictions is also a straightforward method. Figure 4 therefore also contains filtered predic-
tions, obtained from a second order digital Butterworth filter as described in [17]. The ratio of the cut-off fre-
quency to the sampling frequency was determined by minimizing the square sum of errors between filtered pre-
dictions and (real) reference values in the second half of the regression data. According to Figure 4 it is evident  



J. Dahlbacka et al. 
 

 
24 

 
Figure 4. Predictions of the first 2644 spectra with a PLS 
model based on a separate model regression data set, extracted 
from the beginning and the end of the time series, and reduced 
by equalling the spread in the concentration and removing the 
spectra with high cross validation residuals. A second order 
Butterworth digital filter was used to obtain the filtered pre- 
dictions.                                            

 
that this filter reduced the noise level very significantly, but at the same time a phase shift was introduced. 
Whether or not this phase shift is of importance can be debated, but on the validation data, and computed on 
spectra corresponding to actual reference measurements, an RMSEP of 201 mg/l and an coefficient of determi-
nation of 0.35 were obtained for the raw model predictions and the corresponding values after the filtering were 
149 mg/l and 0.65 respectively. Based on Figure 4 it could also perhaps be argued that a large portion of this 
RMSEP could be contributed to time shifts between the reference and the on-line measurements.  

4. Conclusion 
The starting point for this attempt to create a quantitative model for the COD concentration in wastewater from a 
pulp and paper mill was basically a data set of 36 spectra and their corresponding reference measurements. On 
this data, essentially no relation between the COD concentration and the spectral features could be established, 
at least when only mean centering was used as spectral pre-processing. By using more advanced pre-processing 
options and removing the highest wavelengths, a relation could be modelled within the calibration data, but 
cross validation results were still not very promising. However, by increasing the amount of calibration data 
available by means of interpolated reference values, also the cross validation results started to look promising. 
The use of interpolated reference values in calibration, in combination with reweighting and refining the calibra-
tion data set, resulted in a model with very reasonable validation results. By further adding a filter to the predic-
tions, a very appealing time series behavior was obtained. Unfortunately, if this behavior depicts the true 
changes in the COD concentration, much more frequent samplings would have been necessary in order to fully 
validate this. However, since this was an industrial installation and not a study performed in a laboratory, ob-
taining additional measurements is very difficult. On the other hand, the validation was still made against 14 
reference measurements and this should not be an alarmingly low number.   
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