Elite Sport and Biological Age

Influence of Extensive or Regular Low to Moderate Exercise on Plasma DHEA-S and Cortisol in Ice-Hockey Players

Benny Johansson1, Lars-Eric Uneståhl2

1Scandinavian International University, Örebro, Sweden
2Örebro University, Örebro, Sweden
Email: info@siu.nu, benny@akloma.com

Received April 21st, 2013; revised May 23rd, 2013; accepted June 22nd, 2013

Copyright © 2013 Benny Johansson, Lars-Eric Uneståhl. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on common comments that elite players in soccer and ice-hockey often looked “older” than non-players of the same age, the authors examined the research literature but found that very few studies had been conducted in the area of elite sport and biological age. We therefore decided to conduct a pilot study comparing professional elite ice hockey players (EP) (22 males, M = 24.7 years) with a cohort of amateur players (AP) similar in age but from a lower competitive level (17 males, M = 25.4 years). Subjective ratings of motivational, attitude and emotional factors were combined with measurements of blood concentrations of DHEA-S, cortisol and the DHEA-S/cortisol ratio. DHEA-S and the DHEA-S/cortisol ratio were significantly higher (p < 0.01) while cortisol was unaffected in the AP compared with the EP group.

Interpretation of the differences in adrenal hormones level indicated a biological age difference of around 10 years, with the EP group being older. Also, significant differences in the subjective ratings were noted with a more positive self-image, goal-image, attitude and emotions noted in the AP-group. As we have earlier demonstrated a decrease in biological age with mental training of these factors, further studies have to determine how much the higher biological age among the EP-group is due to exercise factors, experiential/personal factors or a combination of these and other factors.

Keywords: Competitive Sport; Biological Age; Stress; Adrenal Hormones; Emotional Factors; Lifestyle

Hypothesis

The process of biological aging goes faster in elite athletes compared with athletes from a lower level. If so, the difference in biological age depends on a combination of factors, of which two have been investigated in this study:

1) The frequency and intensity of the physical training (physical stress);
2) How differences in physical and mental stress levels effect psychological and personality dimensions with relations to biological age.

Introduction

Many studies have been conducted to determine the health effects of physical exercise and competitive sport (Blair, Cheng, & Holder, 2001; Kriska, Saremi, Hanson, Bennett, Kobes, Williams, & Knovler, 2003; Pate, Pratt, Blair, Haskell, Haskell, Macera, Bouchard, Buchner, Ettinger, Heath, King, Kriska, Leon, Marcus, Morris, Paffenbarger, Patrick, Pollock, Rippe, Sallis, & Wilmore, 1995; Fogelholm, Kaprio, & Sarna, 1994; Haskell, Lee, Pate, Powell, Blair, Franklin, Macera, Heath, Thompson, & Bauman, 2007), but the “dose-response” as well as type, optimal intensity and duration of exercise for wellbeing and good health remains unclear (Blair, Lamont, & Nichols, 2004; Kesaniemi, Danforth, Jensen, Kopelman, Lefevbre, & Reed, 2001). Statistics of longevity of elite athletes from sport have been difficult to find and the few found show conflicting results (Schnor, 1971; Schnor, 1972; Kujala, Tikkanen, Sarna, Pukkala, Kaprio, & Koskenni, 2001; Kujala, 2005; Paffenbarger, Hyde, Wing, & Hsieh, 1986; Sanchis-Gomar, Olaso-Gonzales, Corella, Gomez-Cabreria, & Vina, 2011). Several studies confirm that physical and cardiorespiratory fitness and healthy life style factors contribute to increased average longevity even at long-term strenuous exercise (Fogelholm, Kaprio, & Sarna, 1994; Sanchis-Gomar, Olaso-Gonzales, Corella, Gomez-Cabreria, & Vina, 2011; Lee, Artero, Sui, & Blair, 2010). One explanation of the contradictory results could be that the relation between health levels and competitive sport levels may be described as an inverted U-form relation, where too little and too much may lower health levels compared with a moderate level.

Physical exercise and the influence of emotional and psychological stress are significant stimuli of the endocrine system. The hypothalamus, pituitary and adrenal glands (HPA-axis) play a central role in the body’s adaptation to stress-related responses (Faredin, Fazekas, Toth, & Juslesz, 1969; Parker, Eugene, Farber, Liffrak, Lai, & Juler, 1985). The typical hormone stressors are of physical, emotional, psychological and infectious nature depending on type, intensity, and duration of the stressor and individual characteristics (Endoh, Kristiansen,
The hormonal response to physical exercise depends on several external factors, e.g. intensity, duration and mode of exercise (Galbo, Hummer, Petersen, Christensen, & Bie, 1977; Sutton, Coleman, Casey, & Lazarus, 1973; Trembaly, Copeland, & Van Helder, 2004). The regulative response of the HPA-axis towards environmental changes and challenges also involves perceptual and cognitive experiences (Endoh, Kristiansen, Casson, Boster, & Hornsby, 1996).

The most important and abundant stress hormone is cortisol (Parker, Eugene, Farber, Lifrak, Lai, & Juler, 1985). The secretion of adrenal cortisol in response to stress activation is in a counteracted manner related to the level of dehydroepiandrosterone sulfate (DHEA-S) (Orentreich, Brind, Rizer, & Vogelmann, 1984). The blood concentration of DHEA-S and its primary analogue dehydroepiandrosterone (DHEA) (Le-ovattana, 2001) reflects the biological conditions of acute and chronic stress (Kroboth, Salek, Pittenge, Fabian, & Frye, 1999; Boudarene, Legros, & Timsit-Berthier, 2002). Falling concentrations have been observed in both mental and psychological stress and physical illness (Boudarene, Legros, & Timsit-Berthier, 2002). The adrenal secretion and blood concentration follows a biphasic time course during lifetime, peaking in the range of 20 - 30 years (Barrett-Conner, Khaw, & Yen, 1986; Baulieu, 1996; Corrigan, 2002). Thereafter, the blood concentration is declining by a small percentage yearly (Baulieu, 1996; Wisniewski, Hilton, Morse, & Svec, 1993).

Extensive physical load during marathon in male athletes demonstrated that DHEA-S and cortisol were significantly increased (Ponjee, De Rooy, & Vader, 1994). During endurance training, DHEA-S increased in a dose-dependent manner at repeated running sessions for two hours. Cortisol was declined at all running sessions except at two hours, where the response was increased. The ratio of DHEA-S to cortisol was greater at rest and shorter running than at longer runs (Tremblay, Copeland, & Van Helder, 2005). Plasma DHEA was reported to increase with exercise, depending on the level of performance and intensity of the exercise (Cumming & Rebar, 1985; Valaido, Pantaleoni, & Valeiro, 1991). During 24 h running in men, DHEA-S was increased over the course of 24 h, while falling level in DHEA-S may be possible using continuous aerobic exercise (Shimizu, Imanishi, Sugimoto, Takeda, Hirata, Andou, Morikawa, Suzuki, Watanabe, Okuta, Kawana, Namikawa, Suzuki, Watanabe, Okada, & Oht, 2011). Even though cortisol was increased, changes in reactive oxygen splices were within normal range and the adaptation for antioxidation was good, indicating low or moderate stress to the body. In marathon runners, lowered cortisol and higher DHEA-S/cortisol ratio correlated with lowered leptin and thus more efficient energy expediture for the best runners (Bobbert, Mai, Brechtel, Schult, Weger, Pfitzfiger, Spranger, & Diederich, 2012). Evaluated from two separate independent studies, the plasma DHEA-S differs by approximately 14% when compared between endurance trained (Tremblay, Copeland, & Van Helder, 2005) and untrained (Naftiger, Bowlin, Jenkins, & Pearson, 1998) men at comparable age (31 years), the extensively trained men being lower at rest. The exercise in the trained men increased the DHEA-S in a dose-response manner with the greatest increase observed during 2 h run, comparable to the normal plasma level in untrained men.

In sportswomen, the ratio of DHEA to cortisol in saliva was increased by more than 30% during a 16 week training program with no difference between highly trained national and moderately trained regional groups. The athletes with the highest performance levels and greatest amount of training showed a less increase in the DHEA/cortisol ratio. In contrast, the corresponding ratio was significantly lower in sedentary women (Filare, Duch, & Lac, 1998). Cortisol did not change with the training over the season and was higher in the elite than in regional women. The training program increased significantly DHEA in all sportswomen.

In non-athletes, increased plasma DHEA-S has been connected with alleviated chronic stress-load (Glaser, Brind, Vogelma, Eisner, Dillbeck, Walace, Chopra, Orentreich, 1992; Arlt, Callies, vann Vlijmen, Koehler, Reincke, Biddingmaier, Huebler, Oettel, Ernst, Schulte, & Alloio, 1999), positive measures of well-being (Cawood, & Bancroft, 1996), continued moderate physical activity (Keiser, Kuipers, de Haan, Beckers, & Habets, 1987; Caciarri, Mazzani, Tassinari, Bergamaschi, Magnani, Zappulla, Nanni, Cobianchi, Ghini, Pini, & Tani, 1990) and repetitive application of stress-reducing and relaxation activities (Glaser, Brind, Vogelma, Eisner, Dillbeck, Wallace, Chopra, & Orentreich, 1992; Johansson, & Unestahl, 2005).

The aim of this study was to compare elite with amateur ice-hockey players on cognitive and emotional issues and on the integrity of the HPA-axis by assessing the level of the adrenal hormones DHEA and cortisol in order to relate this to biological age.

Subjects and Methods

Design

The purpose of this study was to monitor the effect of extensive or low to moderate training for two teams of male ice-hockey players, on blood concentrations of DHEA-S and cortisol, the DHEA-S/cortisol ratio and on experiential areas. Subjective data were collected from the SMAE factor questionnaire (Unestahl & Bundzen, 1996), which measures self-image, goal-Images, attitude and emotions.

One team consisted of highly-trained elite players, playing on national level, while the second team was a low to moderate trained regional ice hockey team. In accordance with previous presented research findings, the blood concentration ratio of DHEA-S/cortisol could serve as a biochemical marker and model for the anabolic/catabolic balance in sportsmen (Adlercreuts, Hakonen, Kuoposalamie, Naveri, Huhtanemi, Tikkanen, Remes, Dessypris, & Karvonoen, 1986) with relation to biological age and to physiological and psychological well-being (Johansson & Unestahl, 2005).

Subjects

A group of 39 healthy male volunteers took part in the study; 22 national and 17 regional ice-hockey players. The Elite Players (EP) had an average age of 24.7 years (19 - 33) and the amateur players (AP) averaged at 25.4 years (17 - 35). The EP group consisted of professional ice-hockey players, whereas the players in the AP group were amateur players with ordinary labour work during daytime. None of the participants were taking medication. Both groups were lead by professional coaches. The study was done during the second part of the winter season. All subjects in the EP group were on daily scheduled individual and team-based extensive training pro-
gram except on match days and remained unchanged during the study. The training program during non-match days, comprised of two daily sessions of two hours each. Long-distance and exhausting continental bus transfers provided the transportation of the professional team players away from home competitions. Two competition games were performed on regular weekly basis during the season.

The players in the AP group followed a low or moderate training and competition program. Scheduled training was performed twice weekly for two hours and a competition game only once a week. Due to the local character and short-distance of transportation at competitions, co-transportation of team players was done by car. The content of the study protocol followed the recommendations of the local committee of human ethics. Each subject was informed of the test procedures and a written consent was obtained before study start.

Subjective Measures

Subjective self-reported measurements were made with the Swedish “SMAK” test, measuring the dimension: Self-image (S), Goal-images and Motivation (M), Attitudes (A) and Emotions (K). The Test was developed by Unestahl in the 1970’s in cooperation with a number of national teams and the Swedish Olympic Teams 1976 and 1980. It has been used in a number of studies since then, among other in our last study about biological age (Johansson & Unestål, 2005). The test has good reliability and validity.

The S-factor (Self-Image) has statements related to Self-confidence as well as Self-esteem. The Goal-Images covers both Goal-level and Motivation. The Attitude scale has statements related to the Optimist—Not Optimist dimension, and also statements about Mental toughness and Resilience. The “E” factor is intended to measure “Internal Success” (transitory feelings of satisfaction, enjoyment, wellbeing and happiness). Changes in the SMAE factors through Mental Training have earlier been related to a number of psychophysiological and neuroimmunological factors (Johansson & Unestål, 2005; Unestahl & Bundzen, 1996; Bundzen, Leissner, Malinin, & Unestahl, 1996; Unestahl, Bundzen, Gavrilova, & Isakov, 2004; Bundzen, Gavrilova, Isakov, & Unestahl, 1998).

Collection of Blood and Analysis of Steroid Hormones

Venous blood samples were collected in the morning in Vacutainer® tubes and 5 ml of blood were drawn for each sample. Blood samples were centrifuged immediately and stored frozen at −20°C until assayed. All plasma samples were analysed in duplicate at an accredited local hospital department of clinical chemistry, according to standard laboratory methods for DHEA-S and cortisol (Beishuizen, Thijs, & Vermes, 2002; Normile, 1998; Labrie, Bélanger, Cusan, Gomez, & Candaz, 1997).

Statistical Analysis

All descriptive quantitative data were reported as mean ± SD. Comparisons between groups were made by unpaired student’s t-test, while a two-tailed p value < 0.05 was considered as statistical significant.

Results

Mean plasma DHEA-S, cortisol and the ratio of DHEA-S/cortisol for the EP and AP groups are given in Figures 1-3, respectively. The plasma concentration of DHEA-S in the EP group was significantly lower (<0.01) compared to the AP-group (Figure 1). The level of plasma cortisol was the same in both groups (Figure 2). The ratio of DHEA-S to cortisol was significantly higher in the EP-group compared with the AP group (p < 0.01), indicating elevated catabolism in professional players with sustained anabolism in amateurs (Figure 3). In the SMAE factor test all personal subjective factors were found to have significantly more positive ratings in the amateurs (AP);
Self-image \((p = 0.008) \), Goal images \((p = 0.023) \), Attitudes \((p = 0.032) \), and Emotions \((p < 0.001) \) (Table 1). Thus, in professionals the response of the HPA-axis followed the level of physical exercise reflected in a concomitant emotional and cognitive stress load.

Discussion

The 33% higher plasma DHEA-S in the AP group corresponds to a difference in biological age that according to normal reference observations is approximately 10 years below the average age range in the EP-group. The subjective ratings showed that the amateur ice-hockey players (AP) had significantly better self-images, were more goal-oriented and motivated, were interpreting life in a more positive way and had more of positive emotions. Whether, the difference in biological or physical stress (Faredin, Fazekas, Toth, & Juslesz, 1996). (Endoh, Kristiansen, Casson, Buster, & Hornsby, 1996).

The results indicate that the amateurs are more adapted to a resonance state in a process that allows the individuals to feel the way they want to feel. Such a state of self-development underlies how to make meaning of daily experiences, and is reflected in the success of planning, thinking, and acting (Loevinger, 1976; Loevinge, Cohn, Bonniveille, Redmore, Streich, Bonniveille, Redmore, Streich, & Sargent, 1985; Cook-Greuter, 1999). The process is typically experienced as a seamless fit or harmony between the individual and the environment (Duran-Bush, Faubert, & Newburg, 2004).

The unchanged plasma cortisol between groups at restful conditions in the morning before the daily physical exercise begun accompanied with the decrease in the DHEA-S/cortisol ratio in professionals, agrees with findings after moderate physical exercise, which even lead to an increase in plasma cortisol when the exercise was intensified (Adlercreuts, Hakonen, Kuoppasalami, Naveri, Huhtanemi, Tikkanen, Remes, Dessypris, & Karvonen, 1986; Trembaly, Copeland, & Van Helder, 2004). Prolonged over-intense training may lead to an over-stressed condition, which may involve mental exhaustion, emotional discomfort and hormonal disturbance in the balance between anabolic and catabolic hormones. Continuing the physical training with unchanged intensity will in such a case have negative effects on physical performance (Adlercreuts, Hakonen, Kuoppasalami, Naveri, Huhtanemi, Tikkanen, Remes, Dessypris, & Karvonen, 1986). A study monitoring over-strain in two groups of long-distance runners, identified physiological over-strain from the plasma testosterone/cortisol ratio when it was exceeding 30% (Adlercreuts, Hakonen, Kuoppasalami, Naveri, Huhtanemi, Tikkanen, Remes, Dessypris, & Karvonen, 1986). Besides testosterone, other anabolic hormones have been tested monitoring physical overstrain (Adlercreuts, Hakonen, Kuoppasalami, Naveri, Huhtanemi, Tikkanen, Remes, Dessypris, & Karvonen, 1986).

In this regime, DHEA-S is a precursor hormone of more potent androgens involved to restore the consequences of catabolic activity and processes (Nafziger, Bowlin, Jenkins, & Pearson, 1998). Since DHEA-S is also a balancing hormone counteracting on the alleviated secretion of cortisol, e.g. after induction of an physiological state impressed by emotional comfort and well-being (Glaser, Brind, Vogelma, Eisner, Dillbeck, Walace, Chopra, & Orentreich, 1992; Johansson & Unestahl, 2005), but a shift in personal traits aligned with a comfortable attitude towards life-experiences and events built on high emotional internal self-residence.

| Table 1. |
| SMAE personal trait factors in ice-hockey players. |

<table>
<thead>
<tr>
<th></th>
<th>Goal-image*</th>
<th>Self-image**</th>
<th>Attitude***</th>
<th>Emotion*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amateurs</td>
<td>2.9 ± 0.5</td>
<td>2.2 ± 0.4</td>
<td>2.1 ± 0.4</td>
<td>1.9 ± 0.4</td>
</tr>
<tr>
<td>Professionals</td>
<td>2.4 ± 0.5</td>
<td>1.9 ± 0.35</td>
<td>1.7 ± 0.4</td>
<td>1.6 ± 0.5</td>
</tr>
</tbody>
</table>

Note: * \(p = 0.008 \); ** \(p = 0.024 \); *** \(p = 0.032 \); * \(p = 0.001 \).
shown that stress and serious disease are associated with a shift from secretion of androgens towards glucocorticoids (Cook-Greuter, 2000). This can mainly be seen as increased plasma cortisol and lower DHEA-S (Corrigan, 2002).

Additionally, a decrease in the DHEA/cortisol ratio and low DHEA-S has been correlated with the suppression of cellular immunity and the severity of disease (Parker & Odell, 1980). The average age-dependent decline in plasma DHEA-S concentrations differed significantly by a few % per year by sex and age group (Baulieu, 1996; Winniewski, Hilton, Morse, & Svec, 1993; Nafziger, Bowlin, Jenkins, & Pearson, 1998). The falling concentration in DHEA-S related to level of mental and physiological stress and physical illness (Boudarene, Legros, & Timsit-Berthier, 2002) support the hypothesis that those subjects with lower DHEA-S has a shorter life-span (Baulieu, 1996).

A common belief with so far limited support by research, is that elite athletes especially elite players in team sports, have a shorter life span than other human beings (Ruiz, Moran, Arenas, & Lucia, 2010). The thrifty of longevity research show conflicting results, where long-distance runners and cross-country skiers (Kujala, Tikkanen, Sarna, Pulkka, Kaprio, & Koskenvuo, 2001; Kujala, 2005) and Tour de France cyclists (Sanchez-Gomar, Olsaso-Gonzales, Corella, Gomez-Cabrera, & Vina, 2011) had increased longevity, while individuals with weekly energy expenditure in the range of 3500 kcal show a mortality rate higher than the sedentary population (Paffenbarger, Hyde, Wing, & Hsieh, 1986). A less effective energy expenditure gains a stress induced anabolic hormonal response with increased leptin values in over-strain athletes (Bobbert, Mai, Brechtel, Schult, Weger, Pfeiffer, Spranger, & Diederich, 2012r), a plausible longevity risk factor.

Conclusion

In conclusion our findings indicate that the lower DHEA-S level and DHEA-S/Cortisol ratio among the professional elite players correspond to a biological age around 10 years older than the amateur players. In addition to that the amateur ice hockey players rated themselves as more confident, goal-orientated, motivated and optimistic and with more positive moods and feelings than the professionals. Whether these experiential differences are a result mainly from the training levels or hormonal differences should be investigated in future research.

Other proposals for further research besides doing similar investigations as ours in other sport, (team- and individual-sports) could be to investigate the longevity of athletes in different sports and from different levels of physical activity and psychological distress.

REFERENCES

Endoh, A., Kristiansen, S. B., Casson, P. R., Bister, J. E., & Hornsby, P. J. (1996). The zona reticularis is the site of biosynthesis of dehydroepiandrosterone and dehydroepiandrosterone sulfate in the adult adrenal cortex resulting from its low expression of 3β-hydroxysteroid dehydrogenase. The Journal of Clinical Endocrinology & Metabolism, 81, 3558-3565. doi:10.1210/jc.81.10.3558

B. JOHANSSON, L.-E. UNESTÅHL