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ABSTRACT 

This paper deals with the error analysis of a novel navigation algorithm that uses as input the sequence of images ac- 
quired from a moving camera and a Digital Terrain (or Elevation) Map (DTM/DEM). More specifically, it has been 
shown that the optical flow derived from two consecutive camera frames can be used in combination with a DTM to 
estimate the position, orientation and ego-motion parameters of the moving camera. As opposed to previous works, the 
proposed approach does not require an intermediate explicit reconstruction of the 3D world. In the present work the 
sensitivity of the algorithm outlined above is studied. The main sources for errors are identified to be the optical-flow 
evaluation and computation, the quality of the information about the terrain, the structure of the observed terrain and the 
trajectory of the camera. By assuming appropriate characterization of these error sources, a closed form expression for 
the uncertainty of the pose and motion of the camera is first developed and then the influence of these factors is con- 
firmed using extensive numerical simulations. The main conclusion of this paper is to establish that the proposed navi- 
gation algorithm generates accurate estimates for reasonable scenarios and error sources, and thus can be effectively 
used as part of a navigation system of autonomous vehicles.  
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1. Introduction 

Vision-based algorithms has been a major research issue 
during the past decades. Two common approaches for the 
navigation problem are: landmarks and ego-motion inte- 
gration. In the landmarks approach several features are 
located on the image-plane and matched to their known 
3D location. Using the 2D and 3D data the camera’s pose 
can be derived. Few examples for such algorithms are [1, 
2]. Once the landmarks were found, the pose derivation 
is simple and can achieve quite accurate estimates. The 
main difficulty is the detection of the features and their 
correct matching to the landmarks set.  

In ego-motion integration approach the motion of the 
camera with respect to itself is estimated. The ego-mo- 
tion can be derived from the optical-flow field, or from 
instruments such as accelerometers and gyroscopes. 
Once the ego-motion was obtained, one can integrate this 
motion to derive the camera’s path. One of the factors 
that make this approach attractive is that no specific fea- 
tures need to be detected, unlike the previous approach. 
Several ego-motion estimation algorithms can be found 
in [3-6]. The weakness of ego-motion integration comes  

from the fact that small errors are accumulated during the 
integration process. Hence, the estimated camera’s path 
is drifted and the pose estimation accuracy decrease 
along time. If such approach is used it would be desirable 
to reduce the drift by activating, once in a while, an addi- 
tional algorithm that estimates the pose directly. In [7], 
such navigation-system is being suggested. In that work, 
like in this work, the drift is being corrected using a 
Digital Terrain Map (DTM). The DTM is a discrete rep- 
resentation of the observed ground’s topography. It con- 
tains the altitude over the sea level of the terrain for each 
geographical location. In [8] a patch from the ground was 
reconstructed using “structure-from-motion” (SFM) al- 
gorithm and was matched to the DTM in order to derive 
the camera’s pose. Using SFM algorithm which does not 
make any use of the information obtained from the DTM 
but rather bases its estimate on the flow-field alone, posi- 
tions their technique under the same critique that applies 
for SFM algorithms [8]. 

The algorithm presented in this work does not require 
an intermediate explicit reconstruction of the 3D world. 
By combining the DTM information directly with the 
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images information it is claimed that the algorithm is 
well-conditioned and generates accurate estimates for 
reasonable scenarios and error sources. In the present 
work this claim is explored by performing an error 
analysis on the algorithm outlined above. By assuming 
appropriate characterization of these error sources, a 
closed form expression for the uncertainty of the pose 
and motion of the camera is first developed and then the 
influence of different factors is studied using extensive 
numerical simulations.  

Comparison of the corrected position of the object, 
measured by an independent navigation system DGPS, 
with the calculated position of the object would estimate 
the real effectiveness of navigation corrections. The cor- 
respondent investigation for described method was made 
during flight in Galilee in Israel [9]. The position error 
was about 25 meters and angle error was about 1.5 degree. 

2. Problem Definition and Notations 

The problem can be briefly described as follows: At any 
given time instance t, a coordinates system  C t  is 
fixed to a camera in such a way that the Z-axis coincides 
with the optical-axis and the origin coincides with the 
camera’s projection center. At that time instance the 
camera is located at some geographical location  p t  
and has a given orientation  with respect to a 
global coordinates system W (  is a 3D vector, 

 is an orthonormal rotation matrix). 

 R t
p t 

 R t  p t

W

 and 
 define the transformation from the camera’s frame 
 to the world’s frame W, where if  and  

are vectors in  and W respectively, then  

 R t
 C t Cv v

 C t

   W Cv R t v p t  . 

Consider now two sequential time instances t1 and t2: 
the transformation from  to  is given by 
the translation vector  and the rotation matrix 

, such that 

 1C t
 1 2,p t t

 

 2C t

   





 1 2,R t t  , v p t t 2 1
1 2

C tt t 1 2 . 
A rough estimate of the camera’s pose at t1 and of the 
ego-motion between the two time instances—

,C t v R 

 1Ep t
 ,

, 
,  and 1 2 —are supplied (the 

subscript letter “E” denotes that this is an estimated 
quantity).  

 1ER t   1 2,Ep t t  tER t

Also supplied is the optical-flow field:   i ku t   
. For the i’th feature,  1, , , 1,2i n k    1iu t 2  

and  represent its locations at the first and 
second frame respectively. 

  2
2iu t 

Using the above notations, the objective of the pro- 
posed algorithm is to estimate the true camera’s pose and 
ego-motion: , ,  and  1p t  1R t  1 2,p t t

3. The Navigation Algorithm 

The following section describes a navigation algorithm 
which estimate the above mentioned parameters. The 
pose and ego-motion of the camera are derived using a 
DTM and the optical-flow field of two consecutive 
frames. Unlike the landmarks approach no specific fea- 
tures should be detected and matched. Only the corre- 
spondence between the two consecutive images should 
be found in order to derive the optical-flow field. As was 
mentioned in the previous section, a rough estimate of 
the required parameters is supplied as an input. Never- 
theless, since the algorithm only use this input as an ini- 
tial guess and re-calculate the pose and ego-motion di- 
rectly, no integration of previous errors will take place 
and accuracy will be preserved. 

The new approach is founded on the following obser- 
vation. Since the DTM supplies information about the 
structure of the observed terrain, depth of observed fea- 
tures is being dictated by the camera’s pose. Hence, 
given the pose and ego-motion of the camera, the optical- 
flow field can be uniquely determined. The objective of 
the algorithm will be finding the pose and ego-motion 
which lead to an optical-flow field as close as possible to 
the given flow field. 

A single vector from the optical-flow field will be used 
to define a constraint for the camera’s pose and ego-mo- 
tion. Let  be a location of a ground feature 
point in the 3D world. At two different time instances t1 
and t2, this feature point is projected on the image-plane 
of the camera to the points  and . Assuming 
a pinhole model for the camera, then , 

3WG

 1u t  2u t
 1u t   2

2u t  . 
Let  1  and Cq t  2q tC  be the homogeneous represen- 
tations of these locations. As standard, one can think of 
these vectors as the vectors from the optical-center of the 
camera to the projection point on the image plane. Using 
an initial-guess of the pose of the camera at t1, the line 
passing through  1p tE

W

 and 1  can be intersected 
with the DTM. Any ray-tracing style algorithm can be 
used for this purpose. The location of this intersection is 
denoted as 

q t C

EG . The subscript letter “E” highlights the 
fact that this ground-point is the estimated location for 
the feature point, that in general will be different from 
the true ground-feature location W . The difference 
between the true and estimated locations is due to two 
main sources: the error in the initial guess for the pose 
and the errors in the determination of 

G

W

EG  caused by 
DTM discretization and intrinsic errors. For a reasonable 
initial-guess and DTM-related errors, the two points 
W

EG  and W  will be close enough so as to allow the 
linearization of the DTM around 

G
W

EG . Denoting by N 
the normal of the plane tangent to the DTM at the point 
W

EG , one can write:  

  1 2,R t t , 
using the optical-flow field   i ku t

  ,Ep t
, the DTM and the 

initial-guess: , ,  and  
. 

 1Ep t  ER t1 1 2t
 1 2,ER t t
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T 0W W

EN G G 

1

.             (1) 

The true ground feature  can be described using 
true pose parameters:  

WG

     1 1
W CG R t q t p t    .          (2) 

Here,   denotes the depth of the feature point (i.e. 
the distance of the point to the image plane projected on 
the optical-axis). Replacing (2) in (1):  

.     (3)      T

1 1 1 0C W

EN R t q t p t G     
From this expression, the depth of the true feature can 

be computed using the estimated feature location:  

 
   

T T

T

1

1 1

W

C

EN G N p t

N R t q t



 .            (4) 

By plugging (4) back into (2) one gets:  

     
   

 
T T

T

1
1 1

1 1

W

W C

C

EN G N p t
G R t q t p t

N R t q t

 
    

 
1



.  (5) 

In order to simplify notations,  will be replaced 
by  and likewise for  and .  

1 2  and 1 2  will be replaced by 12  and 

12  respectively. The superscript describing the coordi- 
nate frame in which the vector is given will also be 
omitted, except for the cases were special attention needs 
to be drawn to the frames. Normally, 12  and q’s are in 
camera's frame while the rest of the vectors are given in 
the world's frame. Using the simplified notations, (5) can 
be rewritten as:  

 iR t
q t

p

iR
 ,R t

 ip t


  , 1, 2i i 
Rt

p
 ,p t t

T T

T T

1 1 1 1
1

1 1 1 1
E

R q N R q N
G G p

N R q N R q
  1p .       (6) 

In order to obtain simpler expressions, define the 
following projection operator:  

 
T

T
,

us
u s I

s u

 
 
 

  .             (7) 

This operator projects a vector onto the subspace 
normal to s , along the direction of . As an illustration, 
it is easy to verify that 

u
 ,Ts u 0

0
s v  and  

. By adding and subtracting  ,u s u  EG  to (6), 
and after reordering:  

T T

1 1 1 1
1

1 1 1 1
E ET T

R q N R q N
G G I p I G

N R q N R q

  
      

  







.  (8) 

Using the projection operator, (8) becomes:  

 1 1 1,E EG G R q N p G   .       (9) 

The above expression has a clear geometric interpreta- 
tion (see Figure 1). The vector from GE to p1 is being 
projected onto the tangent plane. The projection is along 
the direction R1q1, which is the direction of the ray from 
the camera’s optical-center (p1), passing through the im- 
age feature. 

Our next step will be transferring G from the global 
coordinates frame-W into the first camera’s frame C1 and 
then to the second camera’s frame C2. Since p1 and R1 
describe the transformation from C1 into W, we will use 
the inverse transformation:  

 T2
12 12 1 1

C G p R R G p   



.        (10) 

Assigning (9) into (10) gives:  

2
12 12 1

C

EG p R G p   .         (11) 

  in the above expression represents:  

T

1

1 1
T

q N

N R q
 .                (12) 

One can think of  as an operator with inverse char- 
acteristic to : it projects vectors on the ray continuing 
R1q1 along the plane orthogonal to N. 




q2 is the projection of the true ground-feature G. Thus, 
the vectors q2 and  should coincide. This observa- 
tion can be expressed mathematically by projecting  
on the ray continuation of q2:  

2C G
2C G

T

2 2 2

2 2

C q q
G

q q

 
  

 
2C G  .           (13) 

In expression (13), T 2
2 2

Cq q G  is the magnitude of 
’s projection on q2. By reorganizing (13) and using  2C G

 

 

  1 1 1, ER q N p G

 

Figure 1. Geometrical description of expression (9) using 
the projection operator (7). 
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the projection operator, we obtain:  

 
T

22 2
2 2

2 2

,C

T

q q
I G q q

q q

 
     

 2 0C G 



    (14) 

2C G  is being projected on the orthogonal complement 
of q2. Since  and q2 should coincide, this projection 
should yield the zero-vector. Plugging (11) into (14) 
yields our final constraint:  

2C G

   2 2 12 12 1, 0Eq q p R G p          (15) 

This constraint involves the position, orientation and 
the ego-motion defining the two frames of the camera. 
Although it involves 3D vectors, it is clear that its rank 
can not exceed two due to the usage of  which pro- 
jects  on a two-dimensional subspace. 


3

Such constraint can be established for each vector in 
the optical-flow field, until a non-singular system is ob- 
tained. Since twelve parameters need to be estimated (six 
for pose and six for the ego-motion), at least six optical- 
flow vectors are required for the system solution. But it is 
correct conclusion for nonlinear problem. If we use 
Gauss-Newton iterations method and so make lineariza- 
tion of our problem near approximate solution. The 
found matrix will be always singular for six points (with 
zero determinant) as numerical simulations demonstrate. 
So it is necessary to use at least seven points to obtain 
nonsingular linear approximation. Usually, more vectors 
will be used in order to define an over-determined system, 
which will lead to more robust solution. The reader at- 
tention is drawn to the fact that a non-linear constraint 
was obtained. Thus, an iterative scheme will be used in 
order to solve this system. A robust algorithm which uses 
Gauss-Newton iterations and M-estimator is described in 
[10]. We begin to use Levenberg-Marquardt method if 
Gauss-Newton method after several iterations stopped to 
converge. This two algorithms are realized in lsqnonlin() 
Matlab function. The applicability, accuracy and robust- 
ness of the algorithm was verified though simulations 
and lab-experiments. 

It is more convenient to use more robust for iterations 
equivalent to (15) equation: 

    2
2 2 12 12 1, C

ii Eq q p R G p G     0    (16) 

Using of this normalized form of equations avoids to 
get incorrect trivial solution when two positions are in a 
single point on the ground. 

3.1. Multiple Features 

Suppose next that n feature points are tracked in two 
frames, so that the estimated locations Ei  and projec- 
tions onto the image plane  and  are estimated 

and measured, respectively, for . Associated 
with each 

Q

2iq1iq

1, ,i   n

Ei  is the normal vector to the DTM at this 
point, namely . 

Q

i

Taking this into account, one can rewrite (15) in 
matrix form as:  

N

   

 

T
12

11 1

i i

i i

i

pN

pq

   
   

  
T

T

T

12 1
2 2

12 1

1 1

.

i i

i i
i E

i i

R q
q q

N R

R q N
q Q

N R q


 

2





       (17) 

Repeating this for each feature point:  

   

   

   

 

 

 

T

T

T

11 1

1 1 11

12 2
12

2 1 12
1

1

1 1

n n

n n

n

N

q

N
p

q
p

N

q

 
 
 
 
   
   

  
 
 
 
  













.n

T

T

T

T

T

T

T

T

T

12
21 21

12
22 22

12
2 2

12 11 1
21 1

1 1 11

12 12 2
22 2

2 1 12

12 1
2

1 1

n n

E

E

n n
n E

n n

R q
q q

N R

R q
q q

N R

R q
q q

N R

R q N
q Q

N R q

R q N
q Q

N R q

R q N
q Q

N R q



 



 

 

 

 

























      (18) 

In compact notation:  

12

1
n

p
A B

p

 
 

 
               (19) 

Note that nA  and n  depend on known quantities: 
the estimated features, the normals of the DTM tangent 
planes, and the images of the features at the two time 
instances, together with the unknown orientation 1  
and the relative rotation 12 . At this point in our discus- 
sion, several remarks are in order. 

B

R
R

Remark 1: The constraint (18) involves twelve “un- 
knowns”, namely the pose and ego-motion of the camera. 
From the remark at the end of the previous section, the 
equation involves at most 2n linearly independent con- 
straints, so that at least six features at different locations 

Ti  are required to have a determinate system of equa- 
tions. But it is correct conclusion for nonlinear problem. 
If we use Gauss-Newton iterations method and so make 
linearization of our problem near approximate solution. 
The found matrix will be always singular for six points 
(with zero determinant) as numerical simulations demon- 

Q
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strate. So it is necessary to use at least seven points to 
obtain nonsingular linear approximation. Usually, more 
vectors will be used in order to define an over-deter- 
mined system, and hence reduce the effect of noise. 
Clearly, there are degenerate scenarios in which the ob- 
tained system is singular, no matter what is the number 
of available features. Examples for such scenarios in- 
clude flying above completely planar or spherical terrain. 
However, in the general case where the terrain has “in- 
teresting” structure the system is non-singular and the 
twelve parameters can be obtained. 

Remark 2: The constraint (18) is non-linear and, there- 
fore, no analytic solution to it is readily available. Thus, 
an iterative scheme will be used in order to solve this 
system. A robust algorithm using Newton-iterations and 
M-estimator will be described in following sections. 

Remark 3: Given Remark 2, one observes that the lo- 
cation and translation appear linearly in the constraint. 
Using the pseudo-inverse, these two vectors can be 
solved explicitly to give:  

12 †

1

,n n

p
A B

p

 
 

 
             (20) 

so that, after resubstituting in (19):  

 † 0.n n nI A A B 

q

           (21) 

This remark leads to two conclusions:   
1) If the rotation is known to good accuracy and meas- 

urement noise is relatively low, then the position and 
translation can be determined by solving a linear equa- 
tion. This fact may be relevant when “fusing” the proce- 
dure described here with other measurement, e.g., with 
inertial navigation.  

2) Equation (21) shows that the estimation of rotation 
(both absolute and relative) can be separated from that of 
location/translation. This fact is also found when esti- 
mating pose from a set of visible landmarks as shown in 
[11]. In that work, similarly to the present, the estimate is 
obtained by minimizing an objective function which 
measures the errors in the object-space rather than on the 
image plane (as in most other works). This property en- 
ables the decoupling of the estimation problem. Note 
however that [11] address’s only the pose rotation and 
translation decoupling while here the 6 parameters of 
absolute and relative rotations are separated from the 6 
parameters of the camera location and translation.  

3.2. The Epipolar Constraint Connection 

Before proceeding any further, it is interesting to look at 
(15) in the light of previous work in SFM and, in par- 
ticular, epipolar geometry. In order to do this, it is worth 
deriving the basic constraint in the present framework 

and notation. Write:  

2
2 2 12 1 12 1

C

TQ q p R              (22) 

for some scalars 1  and 2  (see Figure 2). 
It follows that:  

12 2 2 12 1 12 1,p q p R q              (23) 

and hence:  

 T

2 12 12 1 0.q p R q              (24) 

For a vector , let 3x x  denote the skew-sym- 
metric matrix:  

1 3

2 3

3 2 1

0

0

0

2

1

x x x

x x x

x x x





 
x

 
        
     

 

Then, it is well known that the vector product between 
two vectors x and y can be expressed as:  

.x y x y   

Using this notation, the epipolar constraint (24) can be 
written as:  

 T

2 12 1 12 0q R q p
              (25) 

and symmetrically as:  
 

 

Figure 2. The examined scenario from the second camera 
frame’s (C2) point of view. q2 is the perspective projection of 
the terrain feature , and thus the two should coincide. 

Additionally, since q1 is also a projection of the same feature 
in the C1-frame, the epipolar constraint requires that the 
two rays (one in the direction of q2 and the other from p12 in 
the direction of R12q1) will intersect. 

2C

TQ
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T T

1 12 2 12 0q R q p  .             (26) 

The important observation here is that if the vector 

12  verifies the above constraint, then the vector 12p p   
also verifies the constraint, for any number . This is an 
expression of the ambiguity built into the SFM problem. 
On the other hand, the constraint (15) is non-homoge- 
neous and hence does not suffer from the same ambiguity. 
In terms of the translation alone (and for only one feature 
point!), if p12 verifies (15) for given R1 and R12, then also 

12 2  will verify the constraint, and hence the ego- 
motion translation is defined up to a one-dimensional 
vector. However, one has the following trivially:  



p  q

T T

1 12 2 2 0,q R q q               (27) 

and hence the epipolar constraint does not provide an 
additional equation that would allow us to solve for the 
translation in a unique manner. Moreover, observe that 
(15) can be written using a vector product instead of the 
projection operator as:  

 
T

12 1
2 12 1

1 1

0.
T E

R q N
q p Q p

N R q
   






     (28) 

Taking into account the identity  

 T

12 1 2 12 1 0,R q q R q            (29) 

it is possible to conclude that (28)  (26), and hence the 
new constraint “contains” the classical epipolar geometry. 
Indeed, one could think of the constraint derived in (15) 
as strengthening the epipolar constraint by requiring not 
only that the two rays (in the directions of q1 and q2) 
should intersect, but, in addition, that this intersection 
point should lie on the DTM’s linearization plane. Ob- 
serve, moreover, that taking more than one feature point 
would allow us to completely compute the translation (at 
least for the given rotation matrices). 

4. Vision-Based Navigation Algorithm  
Corrections for Inertial Navigation by 
Help of Kalman Filter 

Vision-based navigation algorithms has been a major 
research issue during the past decades. Algorithm used in 
this paper is based on foundations of multiple-view ge- 
ometry and a land map. By help of this method we get 
position and orientation of a observer camera. On the 
other hand we obtain the same data from inertial naviga- 
tion methods. To adjust these two results Kalman filter is 
used. We employ in this paper extended Kalman filter for 
nonlinear equations [12]. 

For inertial navigation computations was used Inertial 
Navigation System Toolbox for Matlab [13]. 

Input of Kalman filter consists of two part. The first 
one is variables X for equations of motion. In our case it 
is inertial navigation equations. Vector X consists of fif- 
teen components:  

x y z x y z x y zx y z V V V a a a b b b           . 

Coordinates x y z    are defined by difference be- 
tween real position of the camera and position gotten 
from inertial navigation calculus.Variables x y zV V V    
are defined by difference between real velocity of the 
camera and velocity gotten from inertial navigation cal- 
culus. Variable 

T D

D

  are defined as Euler angles of 
matrix r c  where r  is matrix defined by real Euler 
angles of camera with respect to Local Level Frame 
(L-Frame) and c  is matrix defined by Euler angles of 
camera with respect to Local Level Frame (L-Frame) 
gotten by inertial navigation computation. It is necessary 
to pay attention that found Euler angles 

D D

  ARE 
NOT equivalent to difference between real Euler angles 
and Euler angles gotten from inertial navigation calculus. 
For small values of   perturbations to these an- 
gles can be added linearly and so these angles can be 
used in Kalman filter for small errors. Such choose of 
angles is made because formulas describing their evolu- 
tion are much simpler than formulas describing evolution 
of Euler angles differences. Variables x y z  are de- 
fined by vector of Accel bias in inertial navigation meas- 
urements. Variables 

a a a

x y z  are defined by vector of 
Gyro bias in inertial navigation measurements. 

b b b

The second input of Kalman filter is Z-result of meas- 
urements by vision-based navigation algorithms. Vector 
Z consists of six components  
 m m m m m mx y z       Coordinates m m mx y z    
are difference between camera position measured by vi- 
sion-based navigation algorithm and position gotten from 
inertial navigation calculus. Variable m m   are de- 
fined as Euler angles of matrix m c  where m  is 
matrix defined by Euler angles of camera with respect to 
Local Level Frame (L-Frame) measured by vision-based 
navigation algorithm and c  is matrix defined by Euler 
angles of camera with respect to Local Level Frame (L- 
Frame) gotten by inertial navigation computation. Let 
variable k to be number of step for time discretization 
used in Kalman filter. 

TD D D

D

We assume that errors for between values gotten by 
inertial navigation computation and real values are line- 
arly depend on noise. Corespondent process noise co- 
variance matrix is denoted by Qk. Diagonal elements of 
Qk correspondent to velocity are defined by Accel noise 
and proportional to , where dt is time in- 
terval between tk and 1 1k kt t

2d : dVt Q t
: dk

2

t t  . Diagonal ele- 
ments of Qk correspondent to Euler angles are defined by 
Gyro noise and proportional to . 

 

At Q d : dt
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We assume that errors for between values gotten by 
vision-based navigation algorithm and real values are 
linearly depend on noise. Corespondent measurement 
noise covariance matrix is denoted by Rk. Error analysis 
giving this matrix is described in [14]. 

Kalman filter equations describe evolution of a poste- 
riori state estimation Xk described above and a posteriori 
error covariation covariance matrix Pk for variables Xk. 

To write Kalman filter equations we must define two 
15 × 15 matrices yet: Hk and Ak. Matrix Hk is measure- 
ment Jacobian describing connection between predicted 
measurement k kH X  and actual measurement Zk de- 
fined above. Diagonal elements ,  1,1kH  2,2kH , 

 describing coordinate and elements 3,3kH   4,7kH , 
,  describing angles are equal to one. 

The rest of the elements are equal to zero. 
 5,8kH  6,9kH

kA  is Jacobian matrix describing evolution of vector 

kX . The exact expression for this matrix is very difficult 
so we use approximate formula for kA  neglecting by 
Coriolis effects, Earth rotation and so on. Let   be 
the Euler angles in L-Frame,  is deltaV vector got- 
ten from inertial navigation measurements, vec

dV
f  is ac- 

celeration vector in L-frame, -to-b l  is direction 
cosine matrix (from body-frame to L-frame). 

DCM

The formulas defining kA  are follow: 

   
   

cos sin 0

sin cos 0

0 0
DCM

 
 


  

 1







       (30) 

   

   

cos 0 sin

0 1 0

sin 0 cos
DCM

 

 


  









       (31) 

   
   

1 0 0

0 cos sin

0 sin cos
DCM  

 


  
 







       (32) 

-to-b l DCM DCM DCMDCM             (33) 

-to-

d

dvec b l

V
f DCM

t
            (34) 

 
1 0 0

1: 3, 4 : 6 0 1 0

0 0 1

Phi

 
 
 
 




2

         (35) 

 
   

   
   

0 3

4 : 6,7 : 9 3 0 1

2 1 0

vec vec

vec vec

vec vec

f f

Phi f f

f f

 
   
  

 (36) 

  -to-7 : 9,10 :12 bPhi DCM  l         (37) 

  -to-4 : 6,13 :15 bPhi DCM  l         (38) 

The rest of elements for matrix Phi are equal to zero.  

dkA I Phi t                 (39) 

Kalman filter time update equations are follow: 

1 1 1 1 1

0 0 0 0 0 0 0 0 0k

xk yk zk xk yk zk

X

a a a b b b



     

 
1

1

 (40) 

1
T

k k k k kP A P A Q
             (41) 

Kalman filter update equations project the state and 
covariance estimates from the previous time step 1k   
to the current time step k. 

Kalman filter measurement update equations are follow: 

 1T T
k k k k k k kK P H H P H R

           (42) 

 k k k k k kX X K Z H X              (43) 

   T T
k k k k k k k k kP I K H P I K H K R K       (44) 

Kalman filter measurement update equations correct 
the state and covariance estimates with measurement 

kZ . 
The found vector kX  is used to update coordinates, 

velocities, Euler angles, Accel and Gyro biases for iner- 
tial navigation calculations on the next step. 

Numerical simulations were realized to examine effec- 
tiveness of Kalman filter to combine these two naviga- 
tion algorithms. On Figures 3-5 we can see that cor- 
rected path for coordinate error much smaller than iner-
tial navigation coordinate error without Kalman filter. 
Improved results by help Kalman filter are gotten also for 
velocity in spite of the fact that this velocity was not 
measured by help vision-based navigation algorithm (Fig- 
ure 6). 

5. Error Analysis 

The rest of this work deals with the error-analysis of the 
proposed algorithm. In order to evaluate the algorithm’s 
performance, the objective-function of the minimization 
process needs to be defined first: For each of the n opti- 
cal-flow vectors, the function  is defined 
as the left-hand side of the constraint described in (16):  

12 3:if  

 
    2

1 1 1 1 12 12 12 12

2 2 12 12 1

, , , , , , ,

, C

i

i

i E

f p p

q q p R G p G

     

     
   (45) 

Copyright © 2013 SciRes.                                                                                  POS 



Correction of Inertial Navigation System’s Errors by the Help of  
Video-Based Navigator Based on Digital Terrarium Map 

96 

In the above expression,  and i  are functions 
of  and 

12R
 1 1, , 12 12 12, ,   1  


 respectively. Addi-

tionally, the function  will be defined as 
the concatenation of the 

12:F

i

3n
f  functions:  

 , , , ,   T

1 1 1 1 12 12 12 12 1, , , , , nF p p   f f 

 

   . According 
to these notations, the goal of the algorithm is to find the 
twelve parameters that minimize   2

, ,M D F D  , 
where θ represents the 12-vector of the parameters to be 
estimated, and D is the concatenation of all the data ob- 
tain from the optical-flow and the DTM. If D would have 
been free of errors, the true parameters were obtained. 
Since D contains some error perturbation, the estimated 
parameters are drifted to erroneous values. It has been 
shown in [15] that the connection between the uncer- 
tainty of the data and the uncertainty of the estimated 
parameters can be described by the following first-order 
approximation:  

1 T
d d d d

d d d dD

g g g g

D D  

 
                
       

1

     (46) 

Here,   and D  represent the covariance matrices 
of the parameters and the data respectively. g is defined 
as follows:  

   

T T

d
, . ,

d
d

2
d

g D M D

F F J

 






  F

        (47) 

d dJ F   is the (3n × 12) Jacobian matrix of F 
with respect to the twelve parameters. By ignoring sec- 
ond-order elements, the derivations of g can be approxi- 
mate by:  

Td
2

d

g
J J 

                (48) 

Td
2

d D

g
J J

D                (49) 

d dDJ F D  is defined in a similar way as the (3n × 
m) Jacobian matrix of F with respect to the m data com-
ponents. Assigning (48) and (49) back into (46) yield the 
following expression:  

 
 

1T T

T T

,T

T D D D

J J J J

TJ J J J

   


 

   
           (50) 

The central component T
D D DJ J  represents the un- 

certainties of F while the pseudo-inverse matrix  
  1T

 
(a) 

 
(b) 

 
(c) 

Figure 3. Position errors ((a) for x coordinate (b) for y coor- 
dinate (c) for z coordinate) of the drift path are marked 
with a red line, and errors of the corrected path are marked 
with a blue line. Parameters: Height 1000 m, FOV 60 de- 
gree, Features number 120, Resolution 1000 × 1000, Base- 
line = 200 m, ∆time = 15 s. 

TJ J J 



  transfers the uncertainties of F to those of 
the twelve parameters. In the following subsections, J , 

DJ  and D  are explicitly derived. 
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(a) 

 
(b) 

 
(c) 

Figure 4. Position errors for z coordinate of the drift path 
are marked with a red line, and errors of the corrected path 
are marked with a blue line. Parameters: FOV 60 degree, 
Features number 120, Resolution 1000 × 1000, Baseline = 
200 m, ∆time = 15 s, Height (a) 700 m; (b) 1000 m; (c) 3000 
m. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Position errors for z coordinate of the drift path 
are marked with a red line, and errors of the corrected path 
are marked with a blue line. Parameters: FOV 60 degree, 
Features number 120, Baseline = 200 m, ∆time = 15 s, 
Height 1000 m, Resolution (a) 500 × 500; (b) 1000 × 1000; (c) 
4000 × 4000.  

Copyright © 2013 SciRes.                                                                                  POS 



Correction of Inertial Navigation System’s Errors by the Help of  
Video-Based Navigator Based on Digital Terrarium Map 

98 

 
(a) 

 
(b) 

Figure 6. (a) Velocity errors of the drift path (x y z compo- 
nents), and (b) Velocity errors of the corrected path (x y z 
components). Parameters Height 1000 m, FOV 60 degree, 
Features number 120, Resolution 1000 × 1000, Baseline = 
200 m, ∆time = 15 s.  

5.1. Jθ Calculation 

Simple derivations of if  which is presented in (45), 
yield the following results: 

     2 2 2
2 2 2, , ,C C C

PN q G q q G G G   2C     (51) 

 2
2 1

1

d
,

d
C

P

f
N q G R

p
  2           (52) 

   2
2 12 1

1 1

d d
,

d d
C

P

f
N q G R R G p

 
 

   
 
  1E  (53) 

 2
2

12

d
,

d
C

P

f
N q G

p


  2
2 12

12 12

d d
,

d d
C

P E

f
N q G R G p

 
 

  
 

 1    (55) 

In expressions (53) and (55): 11 1 1, ,     and:  

12 12 12 12, ,    . The Jacobian J  is obtained by sim- 
ple concatenation of the above derivations. 

5.2. JD Calculation 

Before calculating DJ , the data vector D must be ex- 
plicitly defined. Two types of data are being used by the 
proposed navigation algorithm: data obtained from the 
optical-flow field and data obtained form the DTM. Each 
flow vector starts at 1  and ends at 2 . One can con- 
sider 1 ’s location as an arbitrary choice of some ground 
feature projection, while 2  represent the new projec- 
tion of the same feature on the second frame. Thus the 
flow errors are realized through the  vectors. 

q q

2

q
q

q
The DTM errors influence the EG  and N vectors in 

the constraint equation. As before, the DTM linearization 
assumption will be used. For simplicity the derived ori- 
entation of the terrain’s local linearization, as expressed 
by the normal, will be considered as correct while the 
height of this plane might be erroneous. The connection 
between the height error and the error of EG  will be 
derived in the next subsection. Resulting from the above, 
the 1 ’s and the N’s can be omitted from the data vector 
D. It will be defined as the concatenation of all the ’s 
followed by concatenation of the 

q

2q

EG
q

’s. 
The i’th feature’s data vectors: 2i

 and 
iEG  appears 

only in the i’th feature constraint, thus the obtained Jaco- 
bian matrix ,D q GJ J J     is a concatenation of two 
block diagonal matrices: qJ  followed by GJ . The i’th 
diagonal block element is the 3 × 3 matrix 2i

d dif q  and 
d d

ii Ef G  for qJ  and GJ  respectively: 

   2 2

2

T T
2 2 2 22

2

d

d

1
,C C

f

q

q G I q G q q G
q

      
2C

  (56) 

 2
2 1

d
,

d
C

P
E

f
N q G R

G
 2          (57) 

2C G  in expression (56) is the ground feature G under 
the second camera frame as defined in (11). 

5.3. ΣD Calculation 

As mention above, the data-vector D is constructed from 
concatenation of all the 2 ’s followed by concatenation 
of the 

q

EG ’s. Thus D  should represent the uncertainty 
of these elements. Since the 2 ’s and the q EG ’s are ob- 
tained from two different and uncorrelated processed the 

             (54) 
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covariance relating them will be zero, which leads to a 
two block diagonal matrix:  

0

0
q

D
G

 
    

              (58) 

In this work the errors of image locations and DTM 
height are assumed to be additive zero-mean Gaussian 
distributed with standard-deviation of I  and h  re- 
spectively. Each 2  vector is a projection on the image 
plane where a unit focal-length is assumes. Hence, there 
is no uncertainty about its z-component. Since a normal 
isotropic distribution was assumed for the sake of sim- 
plicity, the covariance matrix of the image measurements 
is defined to be:  

q

2

1

1

0
iq I

 
   
  


              (59) 

and  is the matrix with the ’s along its diagonal. q iq

In [16] the accuracy of location’s height obtained by 
interpolation of the neighboring DTM grid points is 
studied. The dependence between this accuracy and the 
specific required location, for which height is being in- 
terpolated, was found to be negligible. Here, the above 
finding was adopted and a constant standard-deviation 
was set to all DTM heights measurements. Although 
there is a dependence between close 

 

EG ’s uncertainties, 
this dependence will be ignored in the following deriva- 
tions for the sake of simplicity. Thus, a block diagonal 
matrix is obtained for G  containing the 3 × 3 covari- 
ance matrices 

iG  along its diagonal which will be de- 
rived as follows: consider the ray sent from 1  along 
the direction of . This ray should have intersected 
the terrain at 1 1 1E




R q
p

1 1

G p R q   for some  , but due to 
the DTM height error the point EG x  was 
obtained. Let h be the true height of the terrain above 

   


T
, ,y h

 ,x y   and  , , H x y  h  be the 3D point on the terrain 
above that location. 

Using that H belongs to the true terrain plane one 
obtains:  

   T T
1 1 1 0EN G H N p R q H         (60) 

Extracting   from (60) and assigning it back to 

EG ’s expression yields:  

 1 1 1EG p R H p             (61) 

For EG ’s uncertainty calculation the derivative of 

EG  with respect to h should be found:  

 T 1 1
1 T

1 1

d
0 0 1

d
EG

R
h N R q

  
R q



     (62) 

The above result was obtained using the fact that the 
z-component of  is . Finally, 
the uncertainty of 

N  T
1: 1N DTM 

EG  is expressed by the following 
covariance-matrix:  

 

T T T
2 2 1 1 1 1

2T
1 1

d d

d di

E E
G h h

G G R q q

h h N R q
            

   

R
  (63) 

5.4. 
2C  Calculation 

The algorithm presented in this work estimates the pose 
of the first camera frame and the ego-motion. Usually, 
the most interesting parameters for navigation purpose 
will be the second camera frame since it reflect the most 
updated information about the platform location. The 
second pose can be obtained in a straightforward manner 
as the composition of the first frame pose together with 
the camera ego-motion:  

T
2 1 1 12 1p p R R p  2

12

            (64) 

T
2 1R R R                (65) 

The uncertainty of the second pose estimates will be 
described by a 6 × 6 covariance matrix that can be de- 
rived from the already obtained 12 × 12 covariance ma- 
trix   by multiplication from both sides with 

2CJ . 
The last notation is the Jacobian of the six 2  parame- 
ters with respect to the twelve parameters mentioned 
above. For this purpose, the three Euler angles 2

C

 , 2  
and 2  need to be extracted from (65) using the fol- 
lowing equations:  

 
 

2
2

2

2,3
arctan

3,3

R

R


 
 

 
             (66) 

  2 2arcsin 1,3R               (67) 

 
 

2
2

2

1,2
arctan

1,1

R

R


 
 

 
             (68) 

Simple derivations and then concatenation of the 
above expressions yields the required Jacobian which is 
used to propagate the uncertainty from 1  and the ego- 
motion to 2 . The found covariance matrix 

2C

C
C   is the 

same as measurement covariant matrix  described in 
section about Kalman filter. 

kR

2kR C  .                (69) 

6. Divergence of the Method. Necessary 
Thresholds for the Method Convergence 

In previous section we considered Error analysis for 
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video navigation method. But its consideration is correct 
only if found solution is close to true one. If it is not true 
nonlinear effects can appear or even we can found incur- 
rect local minimum. In this case the method can begins to 
diverge. We can obtain the such result: 

1) if large number of outliers features appears. 
2) if the case is close to degenerated one. In this case 

the position or orientation errors are too large. It can 
happen for example for small number of features, flat 
ground, small field of view of camera and all that. 

3) if the initial position and orientation for iterations 
process are too far from true values. 

In the follow subsections we consider some threshold 
conditions which allow us to avoid the such situations. 

If in some case even one of these threshold conditions 
is not correct we don’t use for this case the correction of 
visual navigation method and use only usual INS result.If 
such situation repeats three times we stope to use the 
visual navigation method at all and don’t use it also for 
the last correct case. Let us discourse these three factors 
in details 

6.1. Dealing with Outliers 

In order to handle real data, a procedure for dealing with 
outliers must be included in the implementation. The 
objective of the present section is to describe the current 
implementation, which seems to work satisfactorily in 
practice. Three kinds of outliers should be considered:  

1) Outliers present in the correspondence solution (i.e., 
“wrong matches”);  

2) Outliers caused by the terrain shape; and  
3) Outliers caused by relatively large errors between 

the DTM and the observed terrain.  
The latter two kinds of outliers are illustrated in Fig- 

ure 7. The outliers caused by the terrain shape appear for 
terrain features located close to large depth variations. 
For example, consider two hills, one closer to the camera, 
the other farther away, and a terrain feature Q located on  
 

 

Figure 7. Outliers caused by terrain shape and DTM mis- 
match. CT and CE are true and estimated camera frames, 
respectively. 

E
Q1  and 

E
Q2  are outliers caused by terrain 

shape and by terrain/DTM mismatch, respectively. 

the closer hill. The ray-tracing algorithm using the erro- 
neous pose may “miss” the proximal hill and erroneously 
place the feature on the distal one. Needless to say, the 
error between the true and estimated locations is not 
covered by the linearization. To visualize the errors in- 
troduced by a relatively large DTM-actual terrain mis- 
match, suppose a building was present on the terrain 
when the DTM was acquired, but is no longer there when 
the experiment takes place. The ray-tracing algorithm 
will locate the feature on the building although the true 
terrain-feature belongs to a background that is now visi- 
ble. 

As discussed above, the multi-feature constraint is 
solved in a least-squares sense for the pose and motion 
variables. Given the sensitivity of least-squares to incor- 
rect data, the inclusion of one or more outliers may result 
in the convergence to a wrong solution. A possible way 
to circumvent this difficulty is by using an M-estimator, 
in which the original solution is replaced by a weighted 
version. In this version, a small weight is assigned to the 
constraints involving outliers, thereby minimizing their 
effect on the solution. More specifically, consider the 
function  if   defined in (45) resulting from the i-th 
correspondence pair. In the absence of noise, this func- 
tion should be equal to zero at the true pose and motion 
values and hence, following standard notation, define the 
residual    ir if   . Using an M-estimator, the 
solution for   (the twelve parameters to be estimated) 
is obtained using an iterative re-weighted least-squares 
scheme:  

2

1

arg min .
n

i i
i

w r


               (70) 

The weights i  are recomputed after each iteration 
according to their corresponding updated residual. In our 
implementation we used the so-called Geman-McClure 
function, for which the weights are given by:  

w

 
 22

1
.

1
w x

x



             (71) 

The calculated weights are then used to construct a 
weighted pseudo-inverse matrix that replaces the regular 
pseudo-inverse TJ  appearing in (50). See [17] for fur- 
ther details about M-estimation techniques. Let us define 
weights matrix W which allows us to decrease influence 
of outliers 

 
 

 

1 1 1 1 12 12 12 12, , , , , , ,

med median

med

T i i

i

i i

J r f p p

R x

R w r R

     





   (72) 

where 1, ,i n   and n is number of features. 
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The weights matrix W  can be found as 
follow: for diagonal elements of W we can write: Wii = Rk 
where k is integer part of 

3 3n n 

 1 3 1i    . Non-diagonal 
elements of  for . 0ijW  i j

Instead Equation (50) we use new one: 

 
 

1T T

T T
D D D

JT J WJ J W

JT J J JT

  






    
          (73) 

If we know two positions of camera and features posi- 
tion in the first photo so we can find the features position 
on the second photo. If the distance between true position 
of some correspondent feature on second photo and the 
position found by previously described method larger 
than 3 I  we would consider the such feature as outlier. 
Let us define Ni as number of outliers in initial approxi- 
mation of cameras position and orientation (i.e. before 
using visual navigation method) and Nf as number of 
outliers after visual navigation method corrections. The 
follow conditions let us to avoid too large number of 
outliers case: 

%, thresholdf
i f

N
N N

N
           (74) 

where N is full number of features and threshold% is 
some threshold value. We choose it to be equal 0.1. 

6.2. Degenerated Case Large Errors 

For degenerate case the matrix TJ WJ   in Equation (73) 
can be singular. It gives us follow threshold condition: 

 T
rcondrcond thresholdJ WJ          (75) 

where rcond()-Matlab function for matrix reciprocal 
condition number estimate. It is measure for matrix sin- 
gularity (0 < rcond() < 1). Threshold value thresholdrcond 
is chosen to be 10−16. 

Degenerated case because of small number of features, 
flat ground or small field of view of camera gives the 
follow threshold conditions: 

 
2

distthreshold
3

C ii

I f h

             (76) 

where  coordinate indexes for diagonal ele- 
ments of covariance matrix  is a focus length  

, ,i x y z

2
1C f  

of the camera, h is height of the camera. 
3 I h

f


 gives us  

the maximum camera position shift allowing the photo 
feature error to be smaller than pixel size. Threshold 
value thresholddist is chosen to be 40. 

2 ground-dist3 C ii
L               (77) 

where , ,i x y z  coordinate indexes for diagonal ele- 
ments of covariance matrix ,  is character 
size of ground relief change. 

2C ground-distL

 
2

anglethreshold
3

C ii

I f

             (78) 

where , ,i     angular indexes for diagonal elements  

of covariance matrix 
2

3 I
C f


   gives us the maximum  

camera angular shift allowing the photo feature error to 
be smaller than pixel size.Threshold value  
is chosen to be 40. 

anglethreshold

2

ground-dist3 C ii

L

h
               (79) 

where , ,i     angular indexes for diagonal elements 
of covariance matrix 

2C . 
Degenerated case because of small baseline (distance 

between two camera positions used in video navigation 
method) gives the follow threshold conditions: 

 
12dist

12

thresholdii

p

            (80) 

where 12 12 12, ,i x y z  mutual coordinate indexes for 
diagonal elements of covariance matrix  . Threshold 
value  is chosen to be 0.1. 

12distthreshold

 
  12angle

12

thresholdii

p h

          (81) 

where 12 12 12, ,i     mutual angular indexes for di- 
agonal elements of covariance matrix  . Threshold 
value  is chosen to be 0.1. 

12anglethreshold

6.3. The Initial State of the Camera Is Too Far 
from It’s True or Final Calculated State 

Let us define threshold conditions to avoid the initial 
state of the camera to be too far from the its true state. 

kP  is covariant matrix obtained from INS and previous 
corrections of INS by video navigation method with help 
of Kalman filter and described in section about Kalman 
filter. 

ground-dist3 k ii
P L                (82) 

where , ,i x y z  coordinate indexes for diagonal ele- 
ments of covariance matrix . kP
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ground-dist3 k ii

L
P

h
                (83) 

where , ,i     angular indexes for diagonal elements 
of covariance matrix . k

Let us define threshold conditions to avoid the initial 
state of the camera to be too far from the its final state. 
The follow four equations give us differences between 
initial and final state obtain as corrections of INS by 
video navigation method with help of Kalman filter. 

P

2 2final 2inip p p   t               (84) 

12 12final 12initp p p                (85) 

 2 2final 2init mod 2π             (86) 

12 12final 12init mod 2π             (87) 

 2 23 k Cii ii
P p          i        (88) 

where  coordinate indexes for diagonal ele- 
ments of covariance matrix 

, ,i x y z
kP  and  

2C

 2 23 k Cii ii
P i                  (89) 

where , ,i     angular indexes for diagonal elements 
of covariance matrix  and  kP

2C

12

12
dist

12

thresholdip

p


            (90) 

where  mutual coordinate indexes. 12 12 12, ,i x y z

  12

12
angle

12

thresholdi

p h


         (91) 

where 12 12 12, ,i     mutual angular indexes. 

7. Simulations Results 

7.1. Dependence of Error Analysis on Different 
Factors 

The purpose of the following section is to study the in- 
fluence of different factors on the accuracy of the pro- 
posed algorithm estimates. The closed form expression 
that was developed throughout the previous section is 
being used to determine the uncertainty of these esti- 
mates under a variety of simulated scenarios. Each tested 
scenario is characterized by the following parameters: the 
number of optical-flow features being used by the algo- 
rithm, the image resolution, the grid spacing of the DTM 
(also referred as the DTM resolution), the amplitude of 
hills/mountains on the observed terrain, and the magni- 

tude of the ego-motion components. At each simulation, 
all parameters except the examined one are set according 
to a predefined parameters set. In this default scenario, a 
camera with 400 × 400 image resolution flies at altitude 
of 500 m above the terrain. The terrain model dimensions 
are 3 × 3 km with 300 m elevation differences (Figure 
13(b)). A DTM of 30 m grid spacing is being used to 
model the terrain (Figure 10(c)). The DTM resolution 
leads to a standard-deviation of 2.34 m for the height 
measurements. The default-scenario also defines the 
number of optical-flow features to about 170, where an 
ego-motion of 12 40 mp   and  12 12 12, , 10      
differs the two images being used for the optical-flow 
computation. Each of the simulations described below 
study the influence of different parameter. A variety of 
values are examined and 150 random tests are performed 
for each tested value. For each test the camera position 
and orientation were randomly selected, except the cam- 
era’s height that was dictated by the scenario’s parame- 
ters. Additionally, the direction of the ego-motion trans- 
lation and rotation components were first chosen at ran- 
dom and then normalized to the require magnitude. 

In Figure 8, the first simulation results are presented. 
In this simulation the number of optical-flow features 
that are used by the algorithm is varied and its influence 
on the obtained accuracy of 2  and the ego-motion is 
studied. All parameters were set to their default values 
except for the features number. Figure 8(a) presents the 
standard-deviations of the second frame of the camera 
while the deviations of the ego-motion are shown in 
Figure 8(b). As expected, the accuracy improves as the 
number of features increases, although the improvement 
becomes negligible after the features’ number reaches 
about 150. 

C

In the second simulation the influence of the image 
resolution was studied (Figure 9). It was assumed that 
the image measurements contain uncertainty of half-pixel, 
where the size of the pixels is dictated by the image 
resolution. Obviously, the accuracy improves as image 
resolution increases since the quality of the optical-flow 
data is directly depends on this parameter. 

The influence of DTM grid spacing is the objective of 
the next simulation. Different DTM resolutions were 
tested varying from 10 m up to an extremely rough reso- 
lution of 190 m between adjacent grid points (see Figure 
10). The readers attention is drawn to the fact that the 
obtained accuracy seems to decrease linearly with respect 
to the DTM grid-spacing (see Figure 11). This pheno- 
menon can be understood since, as was explained in the 
previous section, the DTM resolution does not affect the 
accuracy directly but rather it influences the height un- 
certainty which is involved in the accuracy calculation. 
As can be seen in Figure 12, the standard-deviation of  
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Figure 8. Average standard-deviation of the second position 
and orientation (a), and the ego-motion’s translation and 
rotation (b) with respect to the number of flow-features. In 
both graphs, the left vertical axis measures the translational 
deviations (in meters) and corresponds to the solid graph- 
line, while the right vertical axis measures the rotational de- 
viations (in radians) and corresponds to the dotted graph- 
line. 

 
the DTM heights increases linearly with respect to the 
DTM grid spacing which is the reason for the obtained 
results. 

Another simulation demonstrates the importance of the 
terrain structure to the estimates accuracy. In the extreme 
scenario of flying above a planar terrain, the observed 
ground features do not contain the required information 
for the camera pose derivation, and a singular system 
will be obtained. As the height differences and the vari- 
ability of the terrain increase, the features become more 
informative and a better estimates can be derived. For 
this simulation, the DTM elevation differences were 
scaled to vary from 50 m to 450 m (Figure 13). It is em- 
phasized that while the terrain structure plays a crucial 
role at the camera pose estimation together with the 
translational component of the ego-motion, it has no di- 
rect affect on the ego-motion rotational component. As 
the optical-flow is a composition of two vector fields- 
translation and rotation, the information for deriving the  

 

Figure 9. Average standard-deviation of the second position 
and orientation (a), and the ego-motion’s translation and 
rotation (b) with respect to the image resolution. 
 

 

(a) 

(b) 

(c)  

Figure 10. Different DTM resolutions: (a) grid spacing = 
190 m; (b) grid spacing = 100 m; (c) grid spacing = 30 m. 
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Figure 11. Average standard-deviation of the second posi- 
tion and orientation (a), and the ego-motion’s translation 
and rotation (b) with respect to the grid-spacing of the 
DTM. 
 

 

Figure 12. Standard-deviation of the DTM’s height meas- 
urement with respect to the grid-spacing of the DTM. 
 
ego-motion rotation is embedded only in the rotational 
component of the flow-field. Since the features depths 
influence only the flow’s translational component it is 
expected that the varying height differences or any other 
structural change in the terrain will have no affect on the  

 

(a)

(b)

(c)  

Figure 13. DTM elevation differences: (a) 150 m; (b) 300 m; 
(c) 450 m. 
 
ego-motion rotation estimation. The above characteristics 
are well demonstrated in Figure 14. 

Since it is the translation component of the flow which 
holds the information required for the pose determination, 
it would be interesting to observe the effect of increasing 
the magnitude of this component. The last simulation 
presented in this work demonstrates the obtained pose 
accuracy when the ego-motion translation component 
vary form 5 m to 95 m. Although it has no significant 
effect on the ego-motion accuracy, the uncertainty of the 
pose estimates decreases for a large magnitude of trans- 
lations (see Figure 15). As a conclusion from the above 
stated, the time gap between the two camera frames 
should be as long as the optical-flow derivation algo- 
rithm can tolerate. 

7.2. Results of Numerical Simulation for Real 
Parameters of Flight and Camera 

Inertial navigation systems (INS) are used usually for 
detection of missile position and orientation. The prob- 
lem of this method is that its error increases all time. We 
propose to use new method (Navigation Algorithm based 
on Optical-Flow and a Digital Terrain Map) [18] to cor- 
rect result of INS and to make the error to be finite and 
constant. Kalman Filter is used to combine results of INS 
and results of new method [12]. Error analysis with lin- 
ear first-order approximation is used to find error corre-  
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Figure 14. Average standard-deviation of the second posi- 
tion and orientation (a), and the ego-motion’s translation 
and rotation (b) with respect to the height differences of the 
terrain. 

  
lation matrix for our new method [14]. We made nu- 
merical simulations of flight with real parameters of 
flight and camera using only INS and INS and our new 
method to check usefulness of this new method.  

The chosen flight parameters are following: 
Height of flight is 700, 1000, 3000 m; 
Velocity of flight is 200 m/s; 
Flight time is 800 s.  
Trajectory of the flight we can see on (Figure 16). 

Digital Terrain Map of real ground was used as cell (Fig- 
ure 17) for our simulations. This cell was continued pe- 
riodically to obtain full Map of the ground (Figure 18). 
Random noise was used as main component of INS noise. 
The more real drift and bias noise give much bigger mis- 
take (about 6000 m instead 1000 m in the finish point of 
the flight).  

The chosen camera and simulation parameters are fol-
lowing: 

FOV (field of view of camera) is 60 degree. (FOV is 
field of view of camera.) 

Features number found on photos is 100, 120. 
Resolution of camera is 500 × 500, 1000 × 1000, 4000 

× 4000. (The resolution of camera defines precision of  

 

Figure 15. Average standard-deviation of the second posi- 
tion and orientation (a), and the ego-motion’s translation 
and rotation (b) with respect to the magnitude of the trans- 
lational component of the ego-motion. 
 

 

Figure 16. Trajectory of the flight. 
 
feature detection, we assume no Optical Flow outliers for 
features.) 

Baseline is 30 m, 50 m or 200 m. (Baseline is distance  
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Figure 17. Map of real ground was used as cell. 
 

 

Figure 18. Cell was continued periodically to obtain full 
Map of the ground. 
 
between two camera positions used to make two photos 
for new method.) 
∆time is 5 s, 15 s, 30 s. (∆time is time interval be- 

tween measurements.) 
The typical results of numerical simulations can be 

seen on (Figures 3-6) for different cases of flight, cam- 
era and simulation parameters. Let us demonstrate error 
tables for typical case with positive results: x, y, z posi- 
tion errors of INS with using new method and without 
using new method.  

Used flight, camera and simulation parameters for this 
case: 

FOV is 60 degree; 
Number of features is 120; 
Resolution is 1000 × 1000; 
Baseline is 200 m; 
∆time is 15 s; 
Flight velocity is 200 m/s; 

Heights are 700 m, 1000 m, 3000 m.  
Let us demonstrate error tables for typical case with 

positive results: x, y, z position errors of INS with using 
new method for different resolutions of camera. Used 
flight, camera and simulation parameters for this case: 

FOV 60 degree, Number of features:120, Resolution 
500 × 500, 1000 × 1000, 4000 × 4000, Baseline 200 m, 
Deltatime 15 s, Flight velocity 200 m/s, Heights: 1000 m. 

8. Open Problems and Future Method  
Development 

1) If situation is close to degenerated case (for exam-
ple, for small camera field of view, almost flat ground, 
small baseline and so on) we can not used described 
method because it is impossible to find cameras states 
from this data. But it is possible also for this case to used 
found correspondent features constrains for INS results 
improvement by help Kalman filter. We can consider 
directly these corespondent features (and not calculated 
position and orientation on basis these features) as result 
of measurement for Kalman filter. Example of the such 
improvement can be found in [19]. But in this case errors 
of method will increase with time similar to INS. So after 
some time measured position is too far from the true po- 
sition and we can not use DTM constrains for error cor- 
rection, but only epipolar constrains. For described in 
this paper method the error stops to increase and remains 
constant so we are capable to use DTM constrains all 
time. 

2) It is possible to consider more optimal and fast 
methods for looking for minimum of function giving 
position and orientation of camera. For example it is pos- 
sible to improve initial state for described method , using 
epipolar Equation (25) for R12 and p12 up to constant cal-
culations. The next step can be use Equation (21) for R1 
calculation. And final step using Equation (18) for p12 
and p1 calculation. The result can be improved by de- 
scribed iteration method. 

3) We can look for not only some random features. 
Also hill tops, valleys and hill occluding boundaries can 
be used for position and orientation specifying. 

4) Using distributed (not point) features and also some 
character object recognition. 

5) Using the used methods in different practical situa- 
tions: orientation in rooms, inside of man body. 

9. Conclusions 

An algorithm for pose and motion estimation using cor- 
responding features in images and a DTM was presented 
with using Kalman filter. The DTM served as a global 
reference and its data was used for recovering the abso- 
lute position and orientation of the camera. In numerical 
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simulations position and velocity estimates were found to 
be sufficiently accurate in order to bound the accumu- 
lated errors and to prevent trajectory drifts. 

An error analysis has been performed for a novel algo- 
rithm that uses as input the optical flow derived from two 
consecutive frames and a DTM. The position, orientation 
and ego-motion parameters of the the camera can be es- 
timated by the proposed algorithm. The main source for 
errors were identified to be the optical-flow computation, 
the quality of the information about the terrain, the 
structure of the observed terrain and the trajectory of the 
camera. A closed form expression for the uncertainty of 
the pose and motion was developed. Extensive numerical 
simulations were performed to study the influence of the 
above factors. 

Tested under reasonable and common scenarios, the 
algorithm behaved robustly even when confronted with 
relatively noisy and challenging environment. Following 
the analysis, it is concluded that the proposed algorithm 
can be effectively used as part of a navigation system of 
autonomous vehicles. 

On basis results of numerical simulation for real pa- 
rameters of flight and camera we also can conclude fol- 
low: 

1) The most important parameter of simulations is 
FOV: for the small FOV the method diverges. For FOV 
60 degree the results are very good. The reason for this is 
that for small FOV (12 or 6 degree) the situation is close 
to degenerated state, also we must choose small baseline 
and observed ground patch is too small and almost flat. 

2) Resolution of camera is also very important pa- 
rameter: for better resolution we have much more better 
results, because of much more better precision of features 
detection. 

3) The precision of new method depends on flight 
height. Initially precision increases with height increas- 
ing because we can use bigger baseline and can see big- 
ger patch of ground. But for bigger heights precision 
begin to decrease because of small parallax effect. 
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