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Abstract 
Quadratic distance methods based on a special distance which make use of 
survival functions are developed for inferences for bivariate continuous mod-
els using selected points on the nonegative quadrant. A related version which 
can be viewed as a simulated version is also developed and appears to be suit-
able for bivariate distributions with no closed form expressions and numeri-
cally not tractable but it is easy to simulate from these distributions. The no-
tion of an adaptive basis is introduced and the estimators can be viewed as 
quasilikelihood estimators using the projected score functions on an adaptive 
basis and they are closely related to minimum chi-square estimators with 
random cells which can also be viewed as quasilikeliood estimators using a 
projected score functions on a special adaptive basis but the elements of such 
a basis were linearly dependent. A rule for selecting points on the nonnegative 
quadrant which make use of quasi Monte Carlo (QMC) numbers and two 
sample quantiles of the two marginal distributions is proposed if complete 
data is available and like minimum chi-square methods; the quadratic dis-
tance methods also offer chi-square statistics which appear to be useful in 
practice for model testing. 
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1. Introduction 

In actuarial science or biostatistics, we often encounter bivariate data which are 
already grouped into cells forming a contingency table and we would like to make 
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inferences for a continuous bivariate model used to model the complete data, see 
Partrat [1] (p. 225), Gibbons and Chakraborti [2] (pp. 511-512) for examples. 

The bivariate distributions if they have closed form expressions then there is no 
difficulty in general to fit these distributions using maximum likelihood or 
minimum chi-square methods based on grouped data for examples but many 
useful distributions might only be computable numerically as they are expressible 
only using an integral representation and if the quadrature numerical methods 
often fail then it appears to be natural to develop simulated methods of inferences 
for these distributions. We would like to have methods which offer a unified ap-
proach to estimation and model testing as well beside they should be able to 
handle the situation where the lack of closed form expressions for the model 
survival distributions might create numerical difficulties. We shall see subse-
quently that new distributions created using the bivariate survival mixture op-
erator (BSPM) introduced by Marshall and Olkin [3] (pp. 834-836) and by the 
trivariate reduction techniques often lead to distributions with no closed form 
expressions for survival functions but it is easy to draw samples from such dis-
tributions. Since we focus on nonnegative bivariate distributions in actuarial 
science, it is natural to use survival functions instead of just using distribution 
functions alone. The BSPM operator will be introduced and we shall see a few 
examples to illustrate the numerical difficulties we might encounter when fitting 
these distributions. 

1.1. Bivariate Survival Power Mixture Operator 

Marshall and Olkin [3] in their seminal paper have introduced the following op-
erator to create a new bivariate survival function ( ),S x y  from two univariate 
survival functions ( ) ( )1 2,F x F y  and a mixing distribution ( )G θ  for a non-
negative mixing random variable 0θ ≥ . We shall call their operator bivariate 
survival power mixture operator and use the acronym BSPM and we shall see how 
this operator works to create new bivariate survival functions. The new survival 
function created can be expressed as an integral given by 

( ) ( )( ) ( )( ) ( )1 20
, dS x y F x F y G

θ θ
θ

∞
= ∫ . 

Since there is an integral representation, the new survival function might still be 
computable numerically depending on the expressions for ( ) ( )1 2,F x F y  and 
( )G θ .An algorithm to simulate a sample from ( ),S x y  has also been given by 

Marshall and Olkin [3] (p. 840). 
 Later on in section (1.2) we shall examine another way to create new survival 

functions. Unlike new distributions created using the BSPM operator, new dis-
tributions created using means of trivariate reduction techniques often do not 
even have an integral representation despite the functions used are simple for 
examples linear functions. We shall discuss further trivariate reduction techniques 
in section 1.2 and consider first a few examples of new distributions cretead using 
the BSPM operator subsequently. 
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1.2. Some Examples of New Bivariate Distributions Created 

Example 1 
We let ( ) 11

1 1 1 1 1; , e , 0, , 0xF x x
αλα λ λ α−= > >  which is the survival function of a 

Weibull distribution and similarly let ( ) 22
2 2 2 2 2; , e , 0, , 0xF y y

αλα λ λ α−= > > . For 
the mixing random variable θ let θ follows a Pareto type II distribution which is 
also called Lomax distribution with density function given by  

( )
( ) 1; ,f

δ

δ

δτ
θ τ δ

θ τ +=
+

 with the domain given by 0θ >  and the parameters α 

and δ are positive. Note that θ has no closed form Laplace transform (LT). 
The new bivariate distribution created using the BSPM operator is 

( )
( )

( )1 21 2
1 2 1 210

, e e d , , , , , ,x xS x y
α α

δ
θλ θλ

δ

δτ
θ α α λ λ δ τ

θ τ

∞ − −
+

′= =
+

∫β β . 

For most of the univariate distributions used in the paper, see Appendix A given 
by Klugman et al. [4] (pp. 459-482). 

Observe that if we specify a Gamma distribution for θ instead of a Lomax dis-
tribution as discussed earlier where the density function of θ is given by 

( ) ( )
11; , e , 0f δ θθ τ δ θ θ

δ
− −= >

Γ
 

and its Laplace transform is given by ( ) ( )ф 1s s δ−= + , the newly created bivariate 
survival distribution can be expressed as  

( ) ( )
1 21 2 1

0

1, e e e dx xS x y
α αθλ θλ δ θθ θ

δ
∞ − − − −=

Γ∫β  

and since ( )ф s  has a closed form expression ( ),S x yβ  has closed form expres-
sion which is given by 

( ) ( ) ( )( )1 1 1 2 2 2, ф ; , ; ,S x y H x H yα λ α λ= +β  

where ( )1 1 1; ,H x α λ  and ( )2 2 2; ,H y α λ  are respectively the cumulative hazard 
rate functions of ( )1 1 1; ,F x α λ  and ( )2 2 2; ,F y α λ  with  

( ) ( ) 1
1 1 1 1 1 1 1, , ln ; ,H x F x xαα λ α λ λ= − = , 

( ) ( ) 2
2 2 2 2 2 2 2, , ln ; ,H y F y yαα λ α λ λ= − = . 

By using the usual conditioning argument, by conditioning on θ often we can 
obtain the first two moments of the vector ( ),Z X Y ′=  and even higher positive 
integer moments can be obtained without having a closed form for ( ),S x yβ ; see 
the conditioning argument for the univariate case given by Klugman et al. [4] (pp. 
62-65). If complete data are available then the parameters of some bivariate dis-
tribution created using the BSPM operator can be estimated using the methods of 
moment (MM).  

In this paper we emphasize grouped data. In general, with grouped data MM 
estimators cannot be obtained and furthermore with four or five parameters in the 
bivariate model, high order moments must be used and as a result the MM esti-
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mators are not robust in general. We consider the situation where the data have 
been grouped into a contingency table so that we must analyse data in this from or 
the complete data is available but we must group them to perform chi-square tests 
for model testing. If complete data are available then we have choices to group the 
data; in this situation we hope to be able to propose a way to group them so that 
inference methods based on such a grouping rule will have have high efficiencies, 
see the discussions in section (5) by Klugman and Parsa [5] (pp. 146-147) on the 
difficulties on grouping data to perfom goodness of fit tests. We use the notion of 
complete data to describe the situation where we have bivariate observations.  

( ), , 1, ,i i iZ X Y i n′= = �  which are independent and identically distrib-
uted(iid)from a bivariate distribution specified by a bivariate survival function 

( ),S x yβ ; this includes a situation where the original observations have been left 
truncated by 1d  and 2d  where the values 1d  and 2d  are known; 1d  and 2d  are 
the amount of deductibles in actuarial science for example. We can view  

( ) ( )
( )1 2

,
,

,

o

o

S x y
S x y

S d d
β=β

β

 and we only need ( ),S x yβ  for fitting with ( ),oS x yβ   

being specified as well; see Klugman and Parsa [5] (p. 142) for these models in 
actuarial science. Furthermore, in our set up we emphasize survival function 

( ),S x yβ  but clearly the bivariate distribution function ( ),K x yβ  can be ob-
tained from ( ),S x yβ  using the relation 

( ) ( ) ( ) ( ), 1 ,S x y F x G y K x y= − − +β β β β , 

( )F xβ  and ( )G yβ  are the two marginal distributions of ( ),K x yβ .For non-
negative parametric families where the bivariate distribution functions are 
commonly used for specifying the families, it is not difficult to convert them to 
bivariate survival functions and consequently, MQD methods are still applicable; 
only some minor modifications are needed. 

Example 2 
In this example, we let 1F  and 2F  to be Burr survival functions, see Hogg et al. 

[6] (p. 201) for the Burr distribution with 

( ) ( ) 11
1 1 1 1 1; , , 1 , 0F x x x

γτα λ γ δ
−

= + >  

and the parameters 1 1 1, ,δ τ γ  are positive and similarly, let 

( ) ( ) 22
2 2 2 2 2; , , 1F y y

γτα λ γ δ
−

= + .  

For the distribution of θ, we specify a Weibull distribution with density function 
given by 

( ) 1; , e , 0.f
αα λθθ λ α αλθ θ− −= >  

The new distribution created using the BSPM operator will have bivariate sur-
vival function given by 

( ) ( ) ( )1 21 2 1
1 20

, 1 1 e dS x y x y
αθγ θγτ τ α λθδ δ αλθ θ

− −∞ − −= + + ⋅∫β . 

The bivariate survival function has no closed form expression. For bivariate 
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distributions without a closed form expression for their survival functions and 
only representable using an integral representation on an unbounded domain, 

( ),S x yβ  can be evaluated numerically or not depends on the integrand and the 
numerical quadrature method used. In the same vein, we can mention the class of 
bivariate contingency tables studied by Mardia [7], Mardia [8], Plackett [9] as 
these distributions have numerical tractable bivariate distribution functions but 
no closed form expression for the bivariate distributions. In this paper, we em-
phasize statistical aspects and do not go into details in the question of dependence 
of the two components of the new bivariate survival function. Marshall and Olkin 
[3], Marshall and Olkin [10] have discussed some of the issues of dependence and 
infinitely divisibility for distributions created using mixture procedures.  

For ( ),S x yβ  which is not numerical tractable we propose simulated minimum 
quadratic distance (SMQD) methods and providing that we can draw simulated 
samples from ( ),S x yβ , estimation of β  is still possible and minimum quadratic 
distance methods offer a unified approach for ( ),S x yβ  with a closed form ex-
pression or without a closed form expression for grouped data without choice and 
with choices. MQD methods version D will be suitable for numerical tractable 

( ),S x yβ  and a corresponding simulated version, version S will be suitable if 
( ),S x yβ  is not numerically tractable. For version S, ( ),S x yβ  will be replaced by a 

sample bivariate survival distribution ( ),sS x yβ  based on a simulated sample of 
size , 10U nτ τ= ≥  drawn from ( ),S x yβ  with ( ),sS x yβ  converges in probabil-
ity to ( ),S x yβ  for each point ( ),z x y ′=  fixed, 

i.e., ( ) ( ), ,psS x y S x y→β β , 

( ),sS x yβ  is defined similarly as ( ),nS x y , see expression (1). 
Data under the form of contingency tables are often encountered in actuarial 

science and biostatistics where bivariate observations are grouped into a two di-
mensions array or matrix and only the numbers of observations or proportions of 
the original sample which belong to the elements of such a matrix are recorded. The 
original data set is lost. Obviously, when the original complete data set is available, 
we can always group them into a contingency table but once grouped it is impossible 
to convert grouped data to complete data. We focus on the situations where the 
complete data are observations 1, , nZ Z�  which are independent and identically 
distributed as ( ),Z X Y ′=  which follows a bivariate absolutely continuous distri-
bution with domain given by the nonnegative quadrant and subsequently they are 
grouped and we develop statistical inference techniques using grouped data.  

1.3. New Bivariate Distributions Created by Trivariate Reductions 

A version of bivariate gamma distribution as introduced by Mathai and Mo-
schopolus [11] (pp. 137-138) can be introduced with the use of two linear func-
tions ( )1 0 1 2ф , ,V V V  and ( )2 0 1 2ф , ,V V V , these functions are known and their ar-
guments as given by 0 1 2, ,V V V  are independent univariate random variables. It is 
simple to simulate a pair of observation ( ),X Y ′  as we have the following 
equalities in distributionng for the pair of observations ( ),X Y ′ ,  
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( ) ( )1 0 1 2 2 0 1 2ф , , , ф , ,d dX V V V Y V V V= =  and the functional forms for  
( )1 0 1 2ф , ,V V V  and ( )2 0 1 2ф , ,V V V  are given. 

Let 0 1 2, ,V V V  be gamma random variables with their respective density func-
tions given by 

( )
( )

11; , e , 0, , 0
i

i i
i

v

i i i i i i i
i i

f v v vα β
αα β α β

α β

−
−= ≥ ≥

Γ
 

and  

( ) 1
1 0 1 2 0 1

0

ф , ,X V V V V Vβ
β

= = + , 

( ) 1
2 0 1 2 0 2

0

ф , ,Y V V V V Vβ
β

= = + . 

The bivariate density function ( ), ;f x y β  has no closed form expression and 
very complicated. It has five parameters which can be represented by the vector 

( )0 1 2 1 2, , , ,α α α β β ′=β , see section (5) as given by Mathai and Moschopoulos [11] 
(pp. 145-148). Mathai and Moschopolus [11] also give methods of moment es-
timators (MM) in section (7) of their paper. We shall consider their estimators and 
compare with the simulated quadratic distance estimators in section (4). The 
bivariate gamma distribution as introduced by Furman [12] can also be obtained 
similarly using another pair of linear functions ( )1ф .  and ( )2ф . . For the use of 
nonlinear functions ( )1ф .  and ( )2ф .  to create bivariate distributions, see 
Chapter 15 given by Hutchinson and Lai [13] (pp. 218-224).  

1.4. Contingency Tables 

Contingency table data can be viewed as a special form of two -dimensional 
grouped data. We will give some more details about this form of grouped 
data.Assume that we have a sample ( ), , 1, ,i i iZ X Y i n′= = �  which are inde-
pendent and identically distributed as ( ),Z X Y ′=  which follows a  
non-negative continuous bivariate distribution with model survival function 
given by ( ),S x yβ .  

The vector of parameters is ( )1, , mβ β ′= �β , the true vector of parameters is 
denoted by 0β . We do not observe the original sample but observations are 
grouped and put into a contingency table and only the number which fall into each 
cells of the contingency table are recorded or equivalently the sample proportions 
which fall into these cells are recorded. The grouping in two dimensional cells 
generalize the grouping of univariate into disjoint intervals of the nonnegative real 
line in one dimension. Contingency tables data are often encountered in actuarial 
science and biostatistics, see Partrat [1] (p. 225), Gibbons and Chakraborti [2] (pp. 
511-512). We shall give a brief description below. 

Let the nonnegative axis X be partitioned into disjoints interval [ )11
,i i

J

i
s s−=∪  

with 0 0, Js s= = ∞  and similarly, the axis Y be partitioned into disjoints interval 

)10
,K

j jj
t t−=
∪  with 0 0, Kt t= = ∞ . 
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The nonnegative quadrant can be partitioned into nonoverlapping cells of the 
form 

[ ) )1 1, , , 1, , , 1, ,ij i i j jC s s t t i I j J− −= × = = � � . 
The contingency table ( )ijT C=  is formed which can be viewed as a matrix with 

elements given by  

, 1, , , 1, ,ijC i I j J= =� �  

We can define the empirical bivariate survival function as  

 ( ) [ ]1

1, ,n
n i iiS x y I X x Y y

n =
= > >∑                  (1) 

and we have ( ) ( )
0

, ,p
nS x y S x y→ β . 

The sample proportion or empirical probability for one observation which falls 
into cell ijC  can be obtained using ( ),nS x y  

( ) ( ) ( ) ( ) ( )1 1 1 1, , , ,n ij n i j n i j n i j n j jp C S s t S s t S s t S s t− − − −= − − +
      

 (2) 

and the corresponding model probability is 

 ( ) ( ) ( ) ( ) ( )1 1 1 1, , , ,ij i j i j i j j jp C S s t S s t S s t S s tβ − − − −= − − +β β β β .      (3) 

Note that 

( ) ( ), 0, , 0, 1, ,i J n i JS s t S s t i I= = = �β                 (4) 

and similarly, 

( ) ( ), 0, , 0, 1, ,I j n I jS s t S s t j J= = = �β .              (5) 

so they can be discarded without affecting the efficiency of inference methods and 
this is precisely the approach quadratic distance methods use by discarding re-
dundant elements and create a basis with only linearly independent elements but 
the basis will span the same linear space. Consequently, we gain in numerical 
effciciency and at the same time retaining the same efficiency.  

1.5. Efficient Modified Minimum Chi-Square Methods 

Using the contingency table data, the modified minimum chi-square estimators 
which are as efficient as the likelihood estimators using the grouped data is ob-
tained by minimizing the objective function given by 

( ) ( )( )
( )

2

,

n ij ij

i j
n ij

p C p C

p C

−
∑

β  

and since ( ) ( )0

p
n ij ijp C p C→ β , the minimum chi-square estimators given by 

the vector �β  which minimizes the expression given above have the same as-

ymptotic efficiency as the vector ∗β  which minimize  

( ) ( )( )
( )0

2

,

n ij ij

i j
ij

p C p C

p C

−
∑

β

β

 and under differentiability assumptions given by the 

roots of the system of equation  
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( ) ( )( )

( )
( )

0

, 0
n ij ij ij

i j
ij

p C p C p C

p C

− ∂
=

∂∑
β β

β β
. 

Note that the quasi-score functions generated belong to the linear space spanned 
by 

( ) ( ){ }, 1, , , 1, ,n ij ijp C p C i I j J− = =� �β .             (6) 

But since we have the property given by expressions (4-5), the same linear space 
is spanned by 

( ) ( ){ }, , , 1, , 1, 1, , 1n ij ij ij ijS s t S s t i I j J− = − = −� �β .         (7) 

Therefore, an equivalent method but possibly numerically more efficient, re-
member we need to evaluate ( )ijp Cβ  numerically or by simulation is to mini-
mize a quadratic form using the elements of the basis given by expression (7) with 
an optimum matrix which is no longer diagonal as in the minimum chi-square 
objective function but it turns out to be quite simple and can be estimated em-
pirically as ( ),n ij ijS s t  are relatively simple and well defined for  

1, , 1, 1, , 1i I j J= − = −� � .Furthermore, for performing minimum chi square 
methods in practice if the cells do not have more than 5 elements, they need to be 
regrouped into larger cells, this will reduce the efficiency of the minimum 
chi-square methods in practice. We do not need as many regrouping operations 
with the proposed methods which are quadratic distance methods. For the 
equivalent efficiency of the new proposed methods, see the projection argument in 
Luong [14] (pp. 463-468) for quadratic distance methods. 

Also using expression (7) is equivalent to use overlapping cells of the form  

, , 1, , 1, 1, , 1ij ij ijO I x s y t i I j J = > > = − = −  � � .          (8) 

The objective function of the proposed quadratic form will be given below. It is a 
natural extension of the objective function used in the univariate case. Define a 
vector with components being elements of the basis so that we only need one 
subscript by collapsing the matrix given by expression (7) into a vector by putting 
the first row of the matrix as the first batch of elements of the vector and the 
second row being the second batch of elements so forth so on, i.e., let 

 ( ) ( )( ) ( )( )1 1, , , , , 1 1n n M MS s t S s t M I J′= = − −�nz .          (9) 

and its model counterpart is 

( ) ( )( )1 1, , , ,M MS s t S s t ′= �zβ β β .                (10) 

The number of components of nz  is M with the assumption M m> . 
Efficient quadratic distance methods can be constructed using the inverse of the 

covariance matrix of nz  as the weight matrix for the quadratic form but such an 
optimum matrix is only defined up to a constant, so the inverse of the matrix of the 
following vector 

( ) [ ] ( ) [ ] ( )( )1 1 1 1, , , , , , ,M M M Mx y I x s y t S s t I x s y t S s t ′= > > − > > −h �β β .  (11) 
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can also be considered as optimum. It can also be replaced by a consistent estimate 
and since the elements of the basis can be identified as the corresponding  

elements of the vector ( )1

1 ,n
i ii x y

n =∑ h  with the observations being independent 

and identically distributed, choosing a basis is equivalent to choose the vector 

( ),x yh . 

It is not difficult to see that the infinite basis of the form  

[ ] ( ){ }, , , 1, 2,l l l lI x s y t S s t l> > − = �β  

is complete and the projected score functions will give estimators which have the 
same efficiency as the maximum likelihood estimators as the score functions be-
long to the space spanned by the infinite basis, see Carrasco and Florens [15] for a 
similar property for the univariate case; also see Luong [14] (pp. 461-468) for the 
notion of MQD estimators as quasilikelihood estimators based on the projected 
score functions on a finite basis. The MQD methods which make use of such a 
basis for the bivariate case will be introduced below and they are similar to the 
univariate case. Note if the data has been grouped, this means that we have no 
choice of points ( ), , 1, ,l ls t i M′ = �  as they are already predetermined by the way 
data are grouped into cells. 

Beside the predetermined grouped scenario, we shall also examine the question: 
if we have complete data and we would like to choose a finite basis with M ele-
ments and since these elements are identified as points, the same question can be 
phrased as how we should choose M points or equivalently, how we should group 
the data into cells? 

The question on how to choose cells appear to be already difficult for the 
minimum chi square methods with univariate data, see Greenwood and Nikulin 
[16] (pp. 194-208), we shall propose a solution based on quasi-Monte Carlo (QMC) 
methods via a Halton sequences and two empirical quantiles from the marginal 
distributions to create an artificial sample with values on the nonnegative quad-
rant. The selected points used to construct quadratic distances are based on these 
artificial sample points. Since these points are random it is similar to the use 
random cells for minimum chi-square methods and naturally we would like to 
introduce the notion of an adaptive basis used to achieve high efficiency and it will 
also unify quadratic distance and minimum chi-square methods. An adaptive 
basis is data dependent and therefore carry informations about the true vector of 
parameters 0β  despite that 0β  is unknown and consequently the projected 
scores functions on such a basis will lead to inference with better efficiency than 
without using the informations obtainable from data concerning 0β , in general. 

We shall discuss on how to construct such an adaptive basis when complete data 
is available in section (3) where we would like to give some light on the question on 
how to form a finite basis so that inference methods using the basis will have high 
efficiencies for a restricted parameter space which appear to be reasonable for the 
applications. It appears that such an adaptive basis which is formed from a com-
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plete basis is very practical for applications. Using an infinite basis such as in the 
case of generalized method of moments (GMM) with univariate observations 
based on a continuum moment conditions as introduced by Carrasco and Florens 
[15] appears to be complicated for practitioners. Consequently, only finite bases 
are considered in this paper. 

Using the remarks given by Luong ([14] (p. 472), we need to work with a re-
stricted parameter space for a basis with finite number of elements so that statis-
tical inferences using MQD methods or GMM methods can have high efficiencies. 
An adaptive basis only has a finite number of elements so that numerically it is not 
so complicated to use such a basis to construct MQD or SMQD methods. The 
elements of the basis will be adapted to 0β  and efficiencies of the SMQD methods 
using such a basis come from the fact that the elements of the basis are chosen 
accordingly and adjustable depending on the value of the vector of true parame-
ters 0β  despite that 0β  is unknown.  

In general, it is not obvious on how to construct an adaptive basis from a complete 
basis, for example it is a difficult task to construct an adaptive basis from the complete 
basis of polynomials ( ){ }, 0,1, , 0,1,j k j kx y E x y j kβ− = =� �  so that the MQD 
methods using such a basis might have good efficiencies. Howewer, it is natural to 
construct an adaptive basis with only finite number of elements extracted from a 
complete basis as given by expression (11). This will be further developed in section 
(3) of the paper. The notion of an adaptive basis constructed from a complete basis 
used to project the score functions appears to be relatively new despite implicitly it 
has been used in the minimum chi-square methods without using explicitly this 
notion, see Moore and Spruill [17] and Pollard [18] (pp. 317-318). 

In the literature, attentions seem to be given to complete bases. Adaptive bases 
will be further developed and discussed in section (3) and used to develop MQD 
methods with a deterministic version (version D) and a simulated version (version 
S) or SMQD methods. 

For the deterministic version (version D) with ( ),S u vβ  considered to be fixed, 
asymptotic properties of the methods are similar to the univariate case as given 
Luong and Thompson [19], Duchesne et al. [20]; also see related results of gen-
eralized methods of moment (GMM) in Newey and McFadden [21] (p. 2148). For 
the simulated version where we replace ( ),S u vβ  by a sample survival function 
using a simulated sample of size U drawn from ( ),S u vβ , i.e., ( ),sS u vβ . We can 
make use of results given by Theorem (3.1) and Theorem (3.3) given by Pakes and 
Pollard [22] (pp. 1038-1043) to establish asymptotic properties for MQD and 
SMQD methods.  

It might be worth to mention in practice without an infinite and complete basis 
and only using a finite basis which is a subset of an infinite basis high efficiency for 
the procedures can only be attained in some restricted parameter space in general 
unless the score functions belong to the span of the finite base. One viable strategy 
is to identify a restricted parameter space for the type of applications being con-
sidered; often it suffices to use a restricted parameter space then try to identify 
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elements to form a finite basis so that the procedures will retain high efficiency 
overall for 0β  which belongs the restricted parameter space, see Luong [14] (pp. 
463-468). If such a strategy is not feasible then we might want to turn to using an 
adaptive basis with finite elements constructed from an infinite complete basis but 
the elements are adapted to data. Implicilty, the idead behind is to let the data 
points point to a restricted parameter space and the elements of the basis are 
adjusted accordingly. Minimum chi-square (MCS) methods using nonoverlap-
ping random cells make use of an adaptive basis where the elements are linearly 
dependent but for MQD methods and the simulated version SMQD methods we 
make use of overlapping random cells in the form of random points on the 
nonnegative quadrant and unlike minimum chi-square methods where it is dif-
ficult to have a rule to choose random cells we shall have a rule to select these 
points. 

For MQD or SMQD methods, the matrix 0Ω  which is the covariance matrix of 
the vector ( ),x yh  under 0β  plays an important role as we can obtain estimators 
with good efficiencies for estimators using 0Ω . Despite that 0Ω  is unknown, its 
elements are not complicated and moreover, it can be replaced by a consistent 
estimate constructed empirically without affecting the asymptotic efficiency of the 
procedures. It is also needed for constructing chi-square tests statistics. We shall 
give more details about this matrix and construct an empirical estimate �0Ω  
which is data dependent for 0Ω . 

Let 0Ω  the covariance matrix of the vector ( ),x yh  under 0β , its elements are 
given by 

( ) [ ]( )
[ ]( )( )( )
[ ]( )( ) [ ]( )( )
( ) ( )( )

( )( ) ( )( )
0

0 0

0 , , , ,

, ,

, ,

max , , max ,

, , , 1, , , 1, ,

i i j j

i i j j

i i i i

i j i j

i i j j

i j cov I x s y t I x s y t

E I x s y t I x s y t

E I x s y t E I x s y t

S s s t t

S s t S s t i M j M

 Ω = > > > > 

 = > > > > 

− > > > >

=

− = =� �

β

β β

      (12) 

Clearly, these elements can be estimated empirically with the bivariate empirical 
survival function using grouped data provided by the contingency table; we then 
have the corresponding estimates given by 

� ( ) ( ) ( )( )
( )( ) ( )( )

0 , max , ,max ,

, , , 1, , , 1, ,
n i j i j

n i i n j j

i j S s s t t

S s t S s t i M j M

Ω =

− = =� �
.      (13) 

Therefore, we can define the matrix �0Ω  and its inverse is denoted by �0W  and 
similarly let 0W  be the inverse of 0Ω . Clearly, �0 0

p→W W  as  
( ) ( )

0
, ,p

nS x y S x y→ β . Now, we can define the objective functions to be 
minimized for the implementations of MQD and SMQD methods. 

For version D, let 

 ( ) ( )n n
′= −G z zββ                                (14) 
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and let ( ),sS x yβ  be an estimate of ( ),S x yβ  using a simulated sample of size 
U nτ=  so that we can define 

( ) ( )( )1 1, , , ,s s s
M MS s t S s t ′=z �β β β  

and let 

 ( ) ( )s
n n

′= −G z zββ
                     

 (15) 

for version S. 
We can define the length of the random function ( )nG β  as ( )nG β  with the 

norm .  defined as  

 ( ) ( ) � ( )2
0n n n= − −′G z Wz z zβ ββ

               
 (16) 

or equivalently 

( ) ( ) ( )2
0n n n= − −′G z Wz z zβ ββ                 (17) 

as they will give asymptotic equivalent estimators and goodness-of-fit tests sta-
tistics; for finding estimators numerically, we need to minimize expression (16) 
and for asymptotic properties it might be slightly simpler to work with expression 
(17) as less notations are involved. Similarly, for version S let 

( ) ( ) ( ) � ( )0
2 s s

n n n nQ ′= = − −G z z W z zβ ββ β
           

 (18) 

or equivalently 

 ( ) ( ) ( ) ( )0
2 s s

n n n nQ ′= = − −G z z W z zβ ββ β .            (19) 

Note that the weight matrix �0W  is the same for both versions and the norm 
.  is a weighted Euclidean norm which obeys the triangle inequality so that re-

sults of Theorems given by Pakes and Pollard despite they are stated with the 
Euclidean norm remain valid if the Euclidean norm is replaced by a weighted 
Euclidean norm. Minimum QD estimators are obtained as the vector β̂  which 
minimizes the objective function ( )nQ β  or equivalently ( )nG β  as defined by 
expression (16) for version D or ˆ Sβ  which minimizes ( )nQ β  or equivalently 

( )nG β  as defined by expression (18) for version S. 
The paper is organized as follows. 
In Section 2, MQD and SMQD methods will be developed using predetermined 

grouped data. Asymptotic properties of the estimators are studied and asymptotic 
distribution for the model testing statistics are derived. The methods can be ex-
tended to the situation when comple data is available but will be grouped by de-
fining a rule to choose points on the nonnegative quadrant to group the data. An 
artificial sample constructed using two sample quantiles and QMC numbers are 
proposed in Section 3 to select points and the methods developed with preselected 
points or cells in section (2) are shown to be still applicable, the methods can be 
seen as equivalent to minimum chi-square methods with random cells but with a 
rule to define these cells; using random cells is equivalent to using an adaptive 
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basis. Both QD estimation and minimum chi-square estimation can be unified 
with the approach of quasilikelihood estimation using an adaptive basis and to 
implement MQD or SMQD methods require less computing time than the related 
minimum chi-square versions due to the adaptive basis being used by MQD and 
SMQD methods only has linearly independent elements and there is less nu-
merical evaluations or simulations for computing probabilities assigned to points 
than cells. Section 4 illustrates the implementations of SMQD methods by com-
paring the methods of moment estimators (MM) with the SMQD estimators. The 
SMQD estimators appear to be much more efficient and robust than MM esti-
mators in a limited study for a bivariate gamma model with the range of pa-
rameters often encountered in actuarial science and chosen in the study.  

2. SMQD Methods Using Grouped Data 
2.1. Estimation 

Consistency for both versions of quadratic distance estimators using predeter-
mined grouped data can be treated in a unified way using the following Theorem 1 
which is essentially Theorem 3.1 of Pakes and Pollard [22] (p. 1038) and the proof 
has been given by the authors. In fact, their Theorems 3.1 and 3.3 are also useful 
for section (3) where we have complete data and have choices to regroup the data 
into cells or equivalently forming the artificial sample points on the nonnegative 
quadrant.  

Theorem 1 (Consistency) 
Under the following conditions �β  converges in probability to 0β : 
1) ( ) ( ) ( )( )1 infn p no ∈≤ +G G�

ββ βΩ , the parameter space space Ω is compact 

2) ( ) ( )0 1n po=G β , 

3) 
( )

( )
0

1sup 1p
n

Oδ− >

 
=  

 Gβ β β
 for each 0δ > . 

Theorem 3.1 states condition 2) as ( ) ( )0 1n po=G β  but in the proof the authors 

just use ( ) ( )0 1n po=G β  so we state condition b) as ( ) ( )0 1n po=G β . 

An expression is ( )1po  if it converges to 0 in probability, ( )1pO  if it is 

bounded in probability and 
1
2

po n
− 

  
 

 if it converges to 0 in probability faster than 

1
2 0n

−
→ . For version D and version S, we have ( )( )inf n∈Ω Gθ β  occurs at the 

values of the vector values of the MQD estimators, so the conditions a) and b) are 
satisfied for both versions and compactness of the parameter space Ω is assumed. 
Also, for both versions ( ) 0p

n →G β  only at 0=β β  in general if the number 

of components of ( )nG β  is greater than the number of parameters of the model, 

i.e., M m> . For 0≠β β  we have ( )0 nQ B< ≤β  for some 0B >  since survival 

functions evaluated at points are components of ( )nG β  and these functions are 
bounded. 
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This implies that there exist real numbers u and v with 0 u v< < < ∞  such that 

( )0

1sup 1
n

P u vδ− >

  
 ≤ ≤ →     Gβ β β

 as n →∞ . 

Therefore, for both versions of ( )nQ β  whether deterministic or simulated, the 
minimum quadratic distance estimators MQD and SMQD estimators are consistent 
using Theorem 1, i.e., the vector of MQD estimators and the vector MSQD esti-
mators converge in probability to β0. Theorem 3.1 of Pakes and Pollard [22] (pp. 
1038-1039) is an elegant theorem, its proof is also concise using the norm concept of 
functional analysis and it allows many results to be unified. Now we turn our at-
tention to the question of asymptotic normality for the quadratic distance estima-
tors and it is possible to have unified approach using their Theorem 3.3, see Pakes 
and Pollard [22] (pp. 1040-1043) which we shall restate their Theorem as Theorem 2 
and Corollary 1 given subsequently after the following discussion on the ideas behind 
their Theorem which allow to get asymptotic normality results for estimators ob-
tained from extremum of a smooth or nonsmooth objective function. 

For both versions we can express ( ) ( )( )2

n nQ = Gβ β , ( )nG β  is as given by 
expression (14) for version D and as given by expression(15) for version S and 
since ( )nG β  not differentiable for version S, the traditional Taylor expansion 
argument cannot be used to establish asymptotic normality of estimators obtained 
by minimizing ( )( )2

nG β .  
For both versions, ( ) ( )p

n →G Gβ β  with  

( ) ( )0
z z ′= −G β ββ .                      (20) 

Explicitly, 

( ) ( ) ( ) ( ) ( )( )0 01 1 1 1, , , , , ,M M M MS s t S s t S s t S s t ′= − −G �β β β ββ .     (21) 

The points ( ) ( )1 1, , , ,M Ms t s t ′′ �  are predetermined by a contingency table we are 
given and we have no choice but to analyze the grouped data as they are presented. 

Note that ( )G β  is non-random and if we assume ( )G β  is differentiable with 
derivative matrix ( )βΓ , then we can define the random function ( )a

nQ β  to 
approximate ( )nQ β  for both versions in a unified way with 

( ) ( )( )2a
n nQ = Lβ β , ( ) ( ) ( )( )0 0 0n n= + −L Gβ β β β βΓ .      (22) 

The matrix ( )βΓ  can be displayed explicitly as 

 ( )

( ) ( )

( ) ( )

1 1 1 1

1

1

, ,

, ,

m

M M M M

m

S s t S s t

S s t S s t

β β

β β

∂ ∂ 
 

∂ ∂ 
 = −
 
∂ ∂ 
 ∂ ∂ 

�

� � �

�

Γ

β β

β β

β .            (23) 

Note that ( )a
nQ β  is differentiable for both versions. Since ( )a

nQ β  is a quad-
ratic function of β , the vector *β  which minimizes ( )a

nQ β  can be obtained 
explicitly and  
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�( ) � ( )0

1

00
*

0 n

−
′ ′− = − W W Gβ β βΓ Γ Γ  

and since �0 0
p→W W , 0W  is assumed to be a positive matrix, we have  

( ) �( ) � ( ) ( ) ( ) ( )
1 1*

0 0 0 0 00 0 1n n pn n n o
− −′ ′ ′ ′− = − = − +G W W GW Wβ β β βΓ Γ Γ Γ Γ Γ  

Let �β  and *β  be the vectors which minimize ( )nQ β  and ( )a
nQ β  respec-

tively. If the approximation is of the right order then �β  and *β  are asymp-
totically equivalent. This set up will allow a unified approach for establishing 
asymptotic normality for both versions. For version D, it suffices to let ˆ=�β β  
and for version S, let �S=�β β . 

Clearly the set up fits into the scopes of their Theorem (3.3) which we shall re-
arrange the results of these two theorems before applying to version D and version 
S for MQD methods and verify that we can satisfy the regularity conditions of 
these two Theorems. We shall state Theorem 2 and Corollary 1 which are essen-
tially their Theorem (3.3) and the proofs have been given by Pakes and Pollard [22] 
Note that the condition 4) is slightly more stringent but simpler than the condition 
iii) in their Theorem.  

Also, for version S, the simulated samples are assumed to have size U nτ=  and 
the same seed is used across different values of β  to draw samples of size U. We 
make these assumptions and they are standard assumptions for simulated 
methods of inferences, see section 9.6 for method of simulated moments (MSM) 
given by Davidson and McKinnon [23] (pp. 383-394). For numerical optimization 
to find the minimum of the objective function, we rely on direct search simplex 
methods and the R package already has prewritten functions to implement direct 
search methods  

Theorem 2. 
Let �β  be a vector of consistent estimators for 0β ,the unique vector which 

satisfies ( )0 =G 0β . 
Under the following conditions: 
1) The parameter space Ω is compact, �β  is an interior point of Ω. 

2) ( ) ( )
1
2 infn p no n

−

∈

 
≤ +  

 
G G�

ββ βΩ  

3) ( ).G  is differentiable at 0β  with a derivative matrix ( )0= βΓ Γ  of full rank 
4) ( ) ( ) ( ) ( )

0 0sup 1
n n n pn G G G oδ− ≤ − − =β β β β β  for every sequence { }nδ  

of positive numbers which converge to zero. 
5) ( ) ( )1n po=G β . 
6) 0β  is an interior point of the parameter space Ω. 
Then, we have the following representation which will give the asymptotic dis-

tribution of �β  in Corollary 1, i.e., 

( ) �( ) � ( ) ( )
1

00 0 0 1n pn n o
−

′ ′− = − +W W G�β β βΓ Γ Γ ,         (24) 

or equivalently, using equality in distribution, 

 ( ) ( ) ( )1
0 0 0 0

d
nn n−′ ′− = − W W G�β β βΓ Γ Γ             (25) 
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or equivalently, 

( ) �( ) � ( )0

1

0 0 0
d

nn n
−

′ ′− = − GW W�β β βΓ Γ Γ             (26) 

The proofs of these results follows from the results used to prove Theorem 3.3 
given by Pakes and Pollard [22] (pp. 1040-1043). For expression (13) or expression 
(14) to hold, in general only condition 5) of Theorem 2 is needed and there is no 
need to assume that ( )0nG β  has an asymptotic distribution. From the results of 
Theorem 2, it is easy to see that we can obtain the main result of the following 
Corollary 1 which gives the asymptotic covariance matrix for the quadratic dis-
tance estimators for both versions. 

Corollary 1. 
Let ( )0 0n nn ′=Y W G βΓ , if ( ),L

n N→Y V0  then  

( ) ( )0 ,Ln N− → T� 0β β  with 

( ) ( )1 1
0 0

− −′ ′=T W V WΓ Γ Γ Γ ,                  (27) 

The matrices T and V depend on 0β , we also adopt the notations  
( ) ( )0 0,= =T T V Vβ β . 

We observe that condition 4) of Theorem 2 when applies to SMQD methods in 
general involve technicalities. The condition 4) holds for version D, we only need 
to verifiy for version S. Note that to verify the condition 4, it is equivalent to verify 

( ) ( ) ( )( ) ( )
0

2

0sup 1
n n n pn oδ− ≤ − − =G G Gβ β β β β , 

a regularity condition for the approximation is of the right order which implies the 
condition (3) given by their Theorem 3.3, which might be the most difficult to 
check. The rest of the conditions for Theorem 2 are satisfied in general.  

Let 

( ) ( ) ( ) ( )( )2

0n n ng n= − −G G Gβ β β β
             

 (28) 

and for version S, using 

 
( ) ( ) ( )( ) ( ) ( )( )(

( ) ( )( ) ( ) ( )( ))
0 0

0 0

1 1 1 1 1 1 1 1, , , ,

, , , ,

s s
n

s s
M M M M M M M M

S s t S s t S s t S s t

S s t S s t S s t S s t

= − − −

′− − − −

u β β β β

β β β β

β
  (29) 

Consequently, ( )ng β  can also be expressed as 

( ) ( )� ( )0n nng n ′ ′= u uWβ β β . 

Since the elements of ( )nn ′u β  are bounded in probability, it is not difficult to 
see that the sequence ( ){ }ng β  is bounded in probability and continuous in 
probability with ( ) ( )p

n ng g→β β  as ′→β β , using the assumption that 
same seed is used across different values of β  and assuming that ( ),S x yβ  is 
differentiable with respect to β  and note that ( )0 0ng =β . Therefore, results 
given in section of Luong et al. [24] (p. 218) can be used to justify the sequence of 
functions ( ){ }ng β  attains its maximum on the compact set  
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{ }0n nC δ= − ≤β β β  in probability and hence has the property  

( )
0

sup 0
n n

pgδ− ≤ →β β β  as n →∞  and 0→β β .  

We can see for version D as 1
0
−=V W , 

 ( ) ( )1
0 00,p

nnG N −→ Wβ .                  (30) 

For version S, note that 

( ) ( )( ) ( ) ( )0 0 0 0

s S S
n n n

′ ′ ′′− = − − − = − − −z z z z z z z z z zβ β β β β β β , 

we can see that 

 ( ) 1
0 0

10, 1p
nnG N

τ
−  → +  

  
Wβ                (31) 

as the simulated samples size is U nτ=  and the simulated samples are inde-
pendent of the original sample given by the data. Implicitly, we assume that the 
same seed is used across different values of β  to obtain simulated samples. 

Using results of Corollary 1, we have asymptotic normality for the MQD esti-
mators for version D which is given by 

 ( ) ( )( )1
0 0

ˆ 0,Ln N −′− → Wβ β Γ Γ ,               (32) 

Γ  is as given by expression (23) which can be estimated easily. 
For version S, the SMQD estimators also follow an asymptotic normal distri-

bution with 

( ) ( ) 1
0 0

1ˆ 0, 1LSn N
τ

−   ′− → +  
  

Wβ β Γ Γ ,           (33) 

an estimate of Γ  can be obtained using the technique as given by Pakes and 
Pollard [22] (p. 1043). 

2.2. Model Testing  
2.2.1. Simple Hypothesis 
In this section, the quadratic distance ( )nQ β  will be used to construct goodness 
of fit test statistics for the simple hypothesis  

H0: data comes from a specified distribution with distribution 
0

Fβ , 0β  is 
specified. The chi-square test statistics, their asymptotic distributions and their 
degree of freedoms r are given below with 

( ) ( )2
0

L
nnQ r Mχ→ =β  for version D and          (34) 

( ) ( )2
01

L
nn Q r Mτ χ

τ
  → = + 

β  for version S.         (35) 

The version S is of interest since it allows testing goodness of fit for continuous 
distributions without closed form bivariate survival functions as we only need to 
be able to simulate from these distributions. We shall justify the asymptotic 
chi-square distributions given by expression (34) and expression (35) below. 

Note that 
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( ) ( )� ( )0 000nn nnQ n n′= WG Gθ θ θ  and for version D 

( ) ( )1
0 00,L

nn N −→G Wθ , 1
0 0
− =W Ω . 

For version S, 

( ) 1
0 0

10, 1L
nn N

τ
− → + 











G Wθ . 

We have the asymtoptic chi-square distributions as given, using standard results 
for distribution of quadratic forms and � 00

p→W W , see Luong and Thompson 
[19] (p. 247) for example.  

2.2.2. Composite Hypothesis 
The quadratic distances ( )nQ β  can also be used for construction of the test 
satistics for the composite hypothesis, ( )nQ β  is as defined by expression (18) for 
version D and as defined by expression (19) for version S. The null hypothesis can 
be stated as  

H0: data comes from a parametric model { }Fβ . The chi-square test statistics are 
given by 

( ) ( )2ˆ L
nnQ r M mχ→ = −β ,                 (36) 

for version D and for version S, 

( ) ( )2ˆ
1

LS
nn Q r M mτ χ

τ
  → = − + 

β
             

 (37) 

where β̂  and ˆ Sβ  are the vector of MQD and SMQD estimators which minimize 
( )nQ β  version D and version S respectively and assuming M m> . To justify 

these asymptotic chi-square dsitributions, note that we have for version D,  

( ) ( ) ( )ˆ ˆ 1a
n n pnQ nQ o= +β β . It suffices to consider the asymptotic distribution of  

( )ˆa
nnQ β  as we have the following equalities in distribution,  

( ) ( ) ( ) ( )� ( )
2

0
ˆ ˆ ˆ ˆd a

n n n n nnQ nQ n L nL n′= = = LWβ β β β β , ( )nL β  as given by  

expression (22). Also, using expressions (24-26).  

( ) ( ) ( )0 0
ˆ ˆd

n nn n n= + −L Gβ β β βΓ  which can be reexpressed as  

( ) ( ) ( ) ( )1
0 0 0 0

ˆ d
n n nn n n−′ ′= −L G W W Gβ β θΓ Γ Γ Γ  using expressions (25-26).  

or equivalently,  ( ) ( )( ) ( )1
0 0 0

ˆ d
n nn n−′ ′= −L I W W Gβ θΓ Γ Γ Γ  with  

( ) ( )1
0 00,L

nn N −→G Wθ . 
We have ( ) ( )ˆ 0,L

nn N→L β Σ ,  

( )( ) ( )( )1 11
0 0 0 0 0

− −−′ ′ ′ ′= − −I W W W I W WΣ Γ Γ Γ Γ Γ Γ Γ Γ
 
and note that 0Σ =W B   

and the trace of the matrix ( ) 1
0 0B −′ ′= −I W WΓ Γ Γ Γ  is ( )trace M m= −B ; the 

rank of the matrix B  is also equal to its trace. The argument used is very similar to 
the one used for the Pearson’s statistics, see Luong and Thompson [19] (pp. 248-249). 

Similarly, for version S, ( ) ( ) ( ) 2ˆ ˆ ˆS d a S S
n n nQ nQ n= = Lβ β β  and  

( ) ( )( ) ( )1
0 0 0

ˆ S d
n nn n−′ ′= −L I W W Gβ βΓ Γ Γ Γ  with  
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( ) 1
0 0

10, 1L
nn N

τ
− → + 











G Wβ . This justifies the asymptotic chi-square 

distributions as given by expression (36) and expression (37). 

3. Estimation and Model Testing Using Complete Data 
3.1. Preliminaries: Statistical Functional and Its Influence Function 

In section (3.1) and section (3.2), we shall define a rule of selecting the points 
( ), , 1, ,l ls t l M= �  if complete data are available. Equivalently, we would like to 
define the cells used to group the data and we shall see that random cells will be 
used as the points ( ), , 1, ,l ls t l M= �  constructed using quasi-Monte Carlo 
(QMC) numbers on the unit square multiplied by two chosen sample quantiles 
from the two marginal distributions will be used. For minimum chi-square 
methods it appears to be difficult to have a rule to choose cells to group the data, 
see discussions by Greenwood and Nikulin [16] (pp. 194-208). We need a few 
tools to develop such a rule. We shall define sample quantiles then statistics can be 
viewed as functionals of the sample distribution; their influence functions are also 
needed and it allows us to find their asymptotic variance. 

We shall define the pth sample quantile of a distribution as we shall need two 
sample quantiles from the marginal distributions together with QMC numbers to 
construct an approximation of an integral. Our quadratic distance based on se-
lected points can be viewed as an approximation of a continuous version given by 
an integral. 

From a bivariate distribution we have two marginal distributions ( )F x  and 
( )G y .The univariate sample pth quantile of the distribution ( )F x  assumed to 

be continuous is based the sample distribution function  
( ) [ ]1

1 n
n iiF x I x x

n =
= ≤∑  and it is defined to be ( ) ( ){ }infn

p nF x pα = ≥  and its 
model counterpart is given by ( ){ }infp F x pα = ≥ . We also use the notation 

( ) ( )1n
p nF pα −=  and ( )1

p F pα −= . We define similarly the qth sample quantile for 
the distribution ( )G y  as ( ) ( )1n

q nG qβ −=  and its model counterpart  
( )1

q G qβ −=  with 0 , 1p q< < . 
The sample quantile functions ( )n

pα  or ( )n
qβ  can be viewed as statisticaf func-

tionals of the form ( )nT H  with n nH F=  or n nH G= . The influence function of 
( )nT H  is a valuable tool to study the asymptotic properties of the statistical 

functional and will be introduced below. Let H be the true distribution and nH  is 
the usual empirical distribution which estimates H; also let xδ  be the degenerate 
distribution at x, i.e., ( ) 1x uδ =  if u x≥  and ( ) 0x uδ = , otherwise; the influence 
function of T viewed as a function of x, ( ),T HIC x  is defined as a functional direc-
t ional  der ivat ive at  H in the direct ion of  ( )x Hδ −  and  by let t ing  

( )xH H Hε ε δ= + − , i.e., ( ) ( ) ( ) ( ), 0lim HT H x

T H T H
IC x T Hε

ε δ
ε→

−
′= = −  and  

HT ′  is a linear functional. 

Alternatively, it is easy to see that ( ),
0

T H
HIC x ε

εε =

∂
=

∂
 and this gives a con-
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venient way to compute the influence function. It can be shown that the influence 
function of the pth sample quantile ( )nT H  is given by  

( )
( )( ) ( )1

, 1

1 ,T H
pIC x x H p

h H p
−

−

−
= <  and ( )

( )( ) ( )1
, 1

,T H
pIC x x H p

h H p
−

−
= >

  
with h being the density function of the distribution H which is assumed to be 
absolutely continuous, see Huber [25] (p. 56), Hogg et al. [6] (p. 593). A statistical 
functional with bounded influence function is considered to be robust, B-robust 
and consequently the pth sample quantile is robust. The sample quantiles are 
robust statistics. 

Furthermore, as ( ),T HIC x  is based on a linear functional, the asymptotic 

variance of ( )nT H  is simply ( )( ),
1

T HV IC x
n

 with ( ).V  being the variance of 

the expression inside the bracket since in general we have ( )( ), 0T HE IC x =  and 

the following representation when ( ),T HIC x  is bounded as a function of x 

( ) ( ) ( ) 1
Fn n pT H T H T H H o

n
 ′= + − +  
 

 

and  

( ) ( )1

1
i

n
n xFiFT H H T H

n
δ

=
′ ′− = −∑ ,  

( ) ( ),i T iF x HT H IC xδ′ − = , see Hogg et al. [6] (p. 593). Consequently, in general 

we have for bounded influence functionals with the use of means of central limit 
theorems (CLT) the following convergence in distribution,  

( ) ( )( ) ( )20,L
n ICn T H T H N σ− → , ( )( )2

,IC T HV IC xσ = . 

The influence function representation of a functional which depends only on 
one function such as nH  is the equivalent of a Taylor expansion of a univariate 
function and the influence function representation of a functional which depends 
on many functions is the equivalent of a Taylor expansion of a multivariate 
function with domain in an Euclidean space and having range being the real line. 
We will encounter an example of functionals which depend on three functions 

, ,n n nS F G  in section (3.2). 
Subsequently, we shall introduce the Halton sequences with the bases 1 2b =  

and 2 3b =  and the first M terms are denoted by  
( ) ( ) ( )( )1 2

, , , 1, 2, ,l l b bu v l l l Mϕ ϕ= = � , we also use MH  to denote set of points 
( ){ }, , 1, 2, ,l lu v l M= � . The sequence of points belong to the unit square 
( ) ( )0,1 0,1×  can be obtained as follows. 

For 1 2b = , we divide the interval ( )0,1  into half ( )1 2b =  then in fourth 

( )2 2
1 2b =  so forth so on to obtain the sequence 1 1 3, , ,

2 4 4
� . 

For 1 3b = , we divide the interval ( )0,1  into third ( )2 3b =  then in ninth 

( )2 2
2 3b =  so forth so on to obtain the sequence 

1 2 1, , ,
3 3 9

�  Now pairing them up 
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we obtain the Halton sequence 1 1 1 2 3 1, , , , , ,
2 3 4 3 4 9

     
     
     

�  Matlab and R  

have functions to generate the sequences and see Glaserman [26] (pp. 293-297) for 
the related pseudo codes; also see the seminal paper by Halton [27]. For the gen-
eral principles of QMC methods, see Glasserman [26] (pp. 281-292). The Halton 
sequences together with two chosen sample quantiles from the two marginal 
distributions will allow us to choose points to match the bivariate empirical sur-
vival function with its model counterpart as we shall have an artificial sample with 
values on the nonnegative quadrant with the use of two empirical quantiles from 
the marginal distributions. These points can be viewed as sample points from an 
artificial sample and since they depend on sample quantiles which are robust 
statistics, the artificial sample can be viewed as free of outliers and the methods 
which make use of them will be robust. 

Note that the Halton sequences are deterministic but if we are used to integra-
tion by simulation we might want to think the M terms represent a quasi random 
sample of size M from a bivariate uniform distribution which can be useful  

for integrating a function of the form ( )1 1

0 0
, d dA x y x yψ= ∫ ∫ . Using the M terms of 

the Halton sequences it can be approximated as ( )1

1 ,M
l llA s t

M
ψ

=
≈ ∑  which is 

similar to the sample mean from a random sample of size M. 
From observations which are given by ( ), , 1, ,i i iZ X Y i n′= = �  iid with com-

mon bivariate distribution function ( ),K x yβ  and survival function ( ),S x yβ . 
Let the two marginal distributions of ( ),K x yβ  be denoted by ( )F xβ  and 

( )G yβ  and also let 
0

F F= β  and 
0 0 0
, ,G G K K S S= = =β β β . 

Define the bivariate empirical distribution function which is similar to the 
bivariate empirical survival function as 

( ) [ ]1

1, ,n
n i iiK x y I x x y y

n =
= ≤ ≤∑ . 

We might want to think that it admits a bivariate empirical density estimate 
( ),nk x y  so that the following Cramer-Von Mises distances expressions are 

equivalent, 

( ) ( )( ) ( )2

0 0
d, , ,n nS x y S x y K x y

∞ ∞
−∫ ∫ β  

is equivalent to 

( ) ( )( ) ( )2

0 0
, , , d dn nS x y S x y k x y x y

∞ ∞
−∫ ∫ β . 

For univariate Cramér-Von Mises methods, see Luong and Blier-Wong [28]. 
In the next section we shall give details on how to form a type of quasi sample or 

artificial sample of size M from ( ),nk x y  using the Halton sequence of M terms 
and the pth-sample quantiles of the marginal distributions F and G which allow us 
to define the sequence ( ), , 1, ,l ls t l M= �  so that the above integrals can be ap-
proximated by the following finite sum of the type of an average of M terms, 

( ) ( )( )2

1

1 , ,M
n l l l ll S s t S s t

M =
−∑ β .                    (38) 
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We can see the expression (38) is an unweighted quadratic distance using the 
identity matrix I  as weight matrix instead of �0W . The unweighted quadratic 
distance still produces consistent estimators but possibly less efficient estimators 
than estimators using the quadratic distance with �0W  for large samples and for 
finite samples the estimators obtained using I  might still have reasonable per-
formances and yet being simple to obtained. 

The set of points ( ), , 1, ,l ls t l M= �  is a set of points proposed to be used to 
form optimum quadratic distances in case that complete data is available. We shall 
see the set of points depend on two quantiles chosen from the two marginal dis-
tributions and they are random consequently, we might want to think that we end 
up working with random overlapping cells. 

As for the minimum chi-square methods if random cells stabilize into fixed cells 
minimum chi-square methods in general have the same efficiency as based on 
stabilized fixed cells, see Pollard [18] (pp. 324-326) and Moore and Spruill [17] for 
the notion of random cells; quadratic distance methods will share the same 
properties that is to say the fact that the chosen points are random but it will be 
shown that they do stabilize and therefore these random points can be viewed as 
fixed points since they do not affect efficiencies of the estimators or asymptotic 
distributions of goodness-of-fit test statistics which make use of them. These 
properties will be discussed and studied in more details in the next section along 
with the introduction of an artificial sample of size M given by the points 
( ), , 1, ,l ls t l M= �  on the nonegative quadrant which give us a guideline on how 
to choose points if complete data is available.  

3.2. Halton Sequences and an Artificial Sample  

From the M terms of the Halton sequences, we have ( ), , 1, ,l lu v l M= � . 

Let 
( )

1
max , 1, ,lu l M

η =
= �

 and 
( )

1
max , 1, ,lv l M

=
= �

 , we can form the  

artificial sample with elements given by ( ), , 1, ,l ls t l M= �  with  
( ) ( )1 1,l l n l l ns u F p t v G pη − −= =   with 0.90 0.99p≤ ≤ . We can view  

( ), , 1, ,l ls t l M= �  being a form of quasi random sample on the nonegative 
quadrant and these are the points proposed to be used in case of complete data is 
avalaible. In general, we might want to choose 20 30M≤ ≤  if 2M n≤  and if n is 
small we try to ensure M n≤ .Consequently as n →∞ , M remains bounded. 

Since ( ) ( )1 1p
nF p F p− −→  and ( ) ( )1 1p

nG p G p− −→ ,  

( ) ( )0 0, ,p
l l l ls t s t→  with ( )0 1

l ls u F pη −=  and ( )0 1
l lt t G p−=   for 1, ,l M= �  

and the points ( )0 0, , 1, ,l ls t l M= �  are non-random or fixed. 

It turns out that quadratic distances for both versions constructed with the 
points ( ), , 1, ,l ls t l M= �  are asymptotic equivalent to quadratic distances using 
the points ( )0 0, , 1, ,l ls t l M= �  so that asymptotic theory developed using the 
points ( ), , 1, ,l ls t l M= �  considered to be fixed continue to be valid; we shall 
show indeed this is the case. Similar conclusions have been established for the 
minimum chi-square methods with the use of random cells provide that these cells 
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stabilize to fixed cells, see Theorem 2 given by Pollard [18] (pp. 324-326). We shall 
define a few notations to make the arguments easier to follow. 

Define ( ){ } ( ){ }, , , 1, ,l ls t s t l M= = �  and similarly let  

( ){ } ( ){ }0 0 0 0, , , 1, ,l ls t s t l M= = � . 
We work with the quadratic distance defined using ( ){ },s t  which leads to 

consider quadratic of the form ( ) 2
nG β  as defined by expression (16) for ver-

sion D and expression(18) for version S. Now to emphasize nz  and zβ  which 
depend on ( ){ },s t , we also use respectively the notations ( ){ }( ),n s tz  and 

( ){ }( ),s tzβ  and let ( ){ }( )0 0 0,n n s t=z z , ( ){ }( )0 0 0,s t=z zβ β . 
It suffices to verify that results of Theorem 1, Theorem 2 and its corollary in 

section (2) continue to hold.  
Now observe that for both versions D and S we have 

( ) ( )0

0 0p
n − → −z z z zβ β β                     (39) 

and  

( ) ( )0

0 0pS
n β− → −z z z zβ β                     (40) 

so that ( )G β  remains the same for both versions since ( ),S x yβ  is continuous 

with respect to ( ),x y , ( ) ( ), ,p
nS x y S x y→ β  and  

( ){ } ( ){ }0 0, ,ps t s t→ . Clearly, � ( ){ }( ) ( )0 0
0 0, ,ps t s t→W W . It remains to es-

tablish ( ) ( ) ( )0 0 1nn pn n o− = − +z z z zβ β  and note that zβ  is random instead  

of being fixed in section (2) as we are using an adaptive basis here. Using results on 
the influence functions representations for functionals as discussed, it suffices to 
show that the vector ( )n −z zβ  has the same influence representation as the vector 

( )0 0
n −z zβ  to conclude that all the asymptotic results are valid even ( ){ },s t  are 

random. 
We shall derive the influence functions for elements of the vector of functionals 

( )n −z zβ  and show that it is the same for the corresponding elements of the 
vector of functionals ( )0 0

n −z zβ . 
Let ( ), ,S

x y u vδ  be the degenerate bivariate survival function at the point ( ),x y , 
i.e., ( ), , 1S

x y u vδ =  if u x<  and v y<  and ( ), , 0S
x y u vδ = ,otherwise. 

Let the degenerate distribution function at 𝑥𝑥 be defined as ( ) 1x uδ =  if x u≤  
and ( ) 0x uδ =  if x u> . Similarly, let the degenerate distribution function at y be 
defined as ( ) 1y vδ =  if y v≤  and ( ) 0y vδ =  if y v> . Now we can define the 
following contaminated bivariate survival and marginal distribution functions, 

( ) ( ) ( ) ( )( ),, , , , ,0 1S
x yS u v S u v u v S u vε ε δ ε= + − ≤ ≤  

which is a contaminated bivariate survival function and 

( ) ( ) ( ) ( )( )1 1 1,0 1.xF u F u u F uε ε δ ε= + − ≤ ≤  

Similarly, 

 ( ) ( ) ( ) ( )( )2 2 2,0 1.yG v G v v G vε ε δ ε= + − ≤ ≤  
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Now we consider ( )jn j−z z β  the jth element of ( )0n −z zβ ,  

( ) ( ) ( )( ) ( ) ( )( ) ( )
0

, , , , , 1, ,jn j n j n j n j n j n j n n nz z S s F t G S s F t G T S F G j M− = − = = �β . 

Clearly, ( ), ,j n n nT S F G  depend on , ,n n nS F G  but we can use the influence 
function representation as given by Reid [29] which allows the asymptotic rep-
resentation with three influence functions given by  

( ) ( )1 2

1 2

0 0 0 0

0

, ,
, ,j

l l l l

T S F G
I x s y t S s tε ε ε

ε ε ε
ε

= = =

∂
 = > > − ∂

 which is bounded with 

respect to ( ),x y , 
( )1 2

1 2
1

0

, ,jT S F Gε ε ε

ε ε ε
ε

= = =

∂

∂
 and 

( )1 2

1 2
2

0

, ,jT S F Gε ε ε

ε ε ε
ε

= = =

∂

∂
. 

It is interesting to note that 
( )1 2

1 2
1

0

, ,
0jT S F Gε ε ε

ε ε ε
ε

= = =

∂
=

∂
 and  

( )1 2

1 2
2

0

, ,
0jT S F Gε ε ε

ε ε ε
ε

= = =

∂
=

∂
; so they do not contribute to the influence function 

representation of ( ), ,j n n nT S F G . 

If we consider the jth term of ( )0

0 0
n −z zβ  given by the functional  

( ) ( ) ( )0 0 0 0, ,j n n l l l lG S S s t S s t= −  which does not depend on nF  and nG , we find 
that 

( ) ( )1 2

1 2 1 2
0 0

, ,
.jj T S F GG S ε ε εε

ε ε ε ε ε ε
ε ε

= = = = = =

∂∂
=

∂ ∂
 

Therefore, all the asymptotic results of section (2) remain valid and all these 
influence functions are bounded so that inference methods making use of these 
functionals are robust in general. Furthermore, we can consider the inference 
procedures based on quadratic distances as we have non-random points ( ){ }0 0,s t  
and if needed they can be replaced by ( ){ },s t  without affecting the asymptotic 
results already established in section (2).  

4. An Illustration and a Simulation Study 

For iilustration, we consider a bivariate gamma model as discussed in section (1.2) 
introduced by Mathai and Moschopoulos [11] (pp. 137-139) which is a model with 
5 parameters given by the vector ( )0 1 2 1 2, , , ,α α α β β ′=β . Mathai and Moscho-
poulos [11] (pp. 138-140) also give the following model moments using the 
bivariate Laplace transform of the model and replacing them with the corre-
sponding empirical moments and solving a system of equations give the method 
of moments (MM) estimators. 

The moments being considered are given by 

( ) ( ) ( ) ( ) ( )( ) ( )32 3
0 1 1 0 1 1 0 1 1, , 2E X V X E X E Xα α β α α β α α β= + = + − = + , 

they are the first three cumulants of the marginal distribution of X; the first three 
cumulants of the marginal distribution of Y are given by 
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( ) ( ) ( ) ( ) ( )( ) ( )32 3
0 2 2 0 2 2 0 2 2, , 2E Y V Y E Y E Yα α β α α β α α β= + = + − = + , 

and the covariance between X and Y, ( ) 0 1 2,cov X Y α β β= . 

Let ( )12
3, ,XsX m  be the first three sample cumulants of the marginal distribution 

of X and similarly let ( )22
3, ,YY s m  be the first three sample cumulants of the mar-

ginal distribution of Y and finally let XYs  be the sample covariance between X 
and Y; the MM estimators for β  as given by Mathai and Moschopoulos [11] (p. 
151) can be expressead as 

�
( )
�

( )
�
��

1 2
3 3

1 2 02 2
1 2

, ,
2 2

XY

X Y

m m s
s s

β β α
β β

= = =   

and 

 �
�

� �
�

�
2 2

1 0 2 02 2
1 2

,X Ys s
α α α α

β β
= − = − . 

As the MM estimators depend on statistics of polynomials of degree 3, they will 
not be robust and they are very sensitive to outliers. 

As the bivariate density function for the model is complicated, we consider version 
S for quadratic distance with M = 25 and we compare the performance of MM es-
timators versus SMQD estimators using the overall asymptotic relative criterion 

�( ) �( ) �( ) �( ) �( )
�( ) �( ) �( ) �( ) �( )
0 1 2 1 2

0 1 2 1 2

S S S S SMSE MSE MSE MSE MSE
ARE

MSE MSE MSE MSE MSE

α α α β β

α α α β β

+ + + +
=

+ + + +
.  

The mean square errors (MSE) and ARE are estimated using simulated samples. 
For references on simulations, we find Ross [30] and Johnson [31] useful. The 
mean square error of an estimator π̂  for 0π  is defined as  

( ) ( )2
0ˆ ˆMSE Eπ π π= − . 

We fix M = 25, the two samples quantiles are 0.99 quantiles and we do not have 
problem to obtain the inverse matrix used as optimum matrix estimated from data. 
If we fix M = 30, occasionally the matrix 0Ω̂  is nearly singular and the package R 
give us a warning sign. It takes around one to two minutes to complete one run on 
a laptop computer as we do not have large computers, so we fix N = 50 replications 
with each sample of size n = 500. We observe that in general, each individual ARE is 
smaller for SMQD estimators than for MM estimators and over all more efficient 
and robust than MM estimators confirming asymptotic theory; also note that MM 
estimators require that complete data is available. The unweighted simulated 
quadratic distance estimators using I  perform almost as well as the estimators 
obtained using an optimum weight matrix. The range of parameters are fixed as 
follows, we let 0 2α = , 1 2α α= , 1 2β β= ,  

1 2,3, 4,6,8,9,10α =  and 1 2,3, 4,6,8,9,10β = . 
The chosen ranges are often encountered in actuarial science, we observe that in 

general when the samples are not contaminated the SMQD estimators are at least 
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five times better than their counterparts, the results are summarized in the upper 
table of Table 1. 

For robustness study we contaminate the distributions used above with 5% of 
observations coming from a bivariate gamma with parameters outside the range 
being considered used to generate outliers. The bivariate gamma distribution used 
to generate outliers has parameters given by the vector  

( )0 1 2 1 22, 2, 2, 50, 50c c c c c cβ α α α β β ′= = = = = = .We observe that SMQD estimators 
are at least 1000 times more efficient than MM estimators, we just display a row for 
illustrations of the order of efficiency gained by using SMQD methods and it is 
given at the bottom of Table 1. The limited study seems to point to better effi-
ciencies and robustness for SMQD estimators than MM estimators. MM esti-
mators are very vulnerable to outliers as expected. Despite the study is limited but 
it tends to confirm theoretical asymptotic results; more numerical and simulation 
works need to be done to further study the performances of the estimators pro-
posed especially the performances in finite samples. 

5. Conclusion 

Minimum Quadratic distance methods offer a unified and numerical efficient  
 

Table 1. Overall Asymptotic relative efficiencies comparisons between SMQD estimators 
and MM estimators using noncontaminated samples of size 500.n =  

0 1 2 1 22, ,b aα β β α α= = = = =  

a⋱b 2 3 4 6 8 9 10 

2 0.0372 0.0264 0.0446 0.0981 0.1595 0.1450 0.1807 

3 0.0311 0.0039 0.0036 0.0028 0.0027 0.0288 0.0512 

4 0.0448 0.0621 0.0376 0.0444 0.0790 0.0392 0.0565 

6 0.0110 0.0528 0.0064 0.0031 0.0022 0.0158 0.0948 

8 0.0063 0.0084 0.0046 0.0222 0.0039 0.0152 0.0949 

9 0.0027 0.0039 0.0035 0.0072 0.0028 0.0058 0.0024 

10 0.0055 0.0044 0.0649 0.0105 0.0195 0.0145 0.0180 

�( ) �( ) �( ) �( ) �( )
�( ) �( ) �( ) �( ) �( )
0 1 2 1 2

0 1 2 1 2

S S S S SMSE MSE MSE MSE MSE
ARE

MSE MSE MSE MSE MSE

α α α β β

α α α β β

+ + + +
=

+ + + +
 

Legend: Tabulated values are estimates of overall ARE (SMQD vs MM) based on simulated samples. Overall 
Asymptotic relative efficiencies comparisons between SMQD estimators and MM estimators using con-
taminated samples of size 500n =  with 5% contamination 

0 1 2 1 22, ,b aα β β α α= = = = =  

a⋱b 2 3 4 6 8 9 10 

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Legends: Tabulated values are estimates of overall ARE (SMQD vs MM) based on simulated contaminated 
samples. Samples are drawn from a contaminated model of the form pbivariate-Gamma  
( )0 1 2 1 22, ,b aα β β α α= = = = =  + qbivariate-Gamma ( )0 1 2 1 22, 50, 2α β β α α= = = = = , p = 0.95, q = 

0.05. 
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approach for estimation and model testing using grouped data and unify mini-
mum chi-square methods with fixed or random cells based on the notion of 
projected score functions on finite bases and adaptive bases. The simulated ver-
sion is especially suitable for handling bivariate distributions where numerical 
complications might arise. The rule on how to select points on the nonnegative 
quadrant for using minimum quadratic distance methods is also more clearly 
defined whereas it is not clear on how to form random cells for minimum 
chi-square methods. The methods appear to be relatively simple to implement and 
yet being more efficient and more robust than methods of moments in general 
especially when the model has more than three parameters. 
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